Как научиться определять время, сравнивая молекулы? В настоящее время развитие молекулярной биологии, биоинформатики и геномики позволяет находить новые подходы к изучению центрального вопроса всей биологической науки - проблемы эволюции живых систем. Одним из весомых вкладов этих относительно молодых дисциплин в развитие данной области является метод оценки времени эволюционного расхождения таксонов - так называемый метод «молекулярных часов».

Развитие молекулярной систематики

Идея использовать биомолекулы для определения степени родства между видами, как и многие другие важные идеи в биохимии прошлого века, пришла в голову Лайнусу Полингу (Linus Pauling ). Предложенная им и его коллегой Эмилем Цукеркандлем (Emil Zuckerkandl ) в 1965 году концепция была достаточно проста и основывалась примерно на тех же принципах, на которых основана систематика морфологическая. Ученые рассудили, что чем больше сходство между биомолекулами, синтезируемыми организмами, тем более филогенетически близки сами организмы, и наоборот. В первых экспериментах, посвященных изучению данного вопроса, Полинг и его коллеги исследовали некоторые биохимические характеристики (такие, например, как молекулярная масса и электрофоретическая подвижность) гемоглобина, выделенного из крови представителей разных таксонов. В результате оказалось, что гемоглобины человека и гориллы отличаются заметно меньше, чем они вместе отличаются от гемоглобинов лошади. Еще дальше от этой группы стояли гемоглобины курицы, ну а самые сильные отличия наблюдались в белках, выделенных из крови рыбы . Несложно заметить, что выводы зарождающейся молекулярной систематики в этом случае полностью совпали с устоявшимися представлениями морфологов. Разумеется, подобный результат вполне удовлетворил исследователей.

Собственно, время расхождения таксонов при таком подходе определяется исходя из двух параметров: примерной скорости накопления изменений в неких биомолекулах и непосредственного количества этих изменений (различий между биомолекулами таксонов, время расхождения которых пытается определить исследователь). Чем раньше виды разошлись, тем больше отличий в последовательностях биополимеров они накопили. Зная количество различий и скорость их появления можно рассчитать время, за которое они образовались. Однако это только теория, а на практике оба этих показателя довольно трудно поддаются точной оценке.

Рисунок 1. Филогенетическое дерево трёх гипотетических видов A, B и C. Эти виды имеют общего предка X. Виды B и C имеют более позднего предка Y.

Одна из первых попыток осуществить калибровку молекулярных часов была предпринята в конце 60-х годов работах Винсента Сэрича (Vincent Sarich ) и Алана Уилсона (Alan Wilson ), изучавших реципрокное сродство иммуноглобулинов разных родов и видов приматов . Как и Полинг, эти исследователи работали с белками. Сначала выделялись белки из трех разных таксонов. Для простоты назовем их A , B и C (рис. 1). Причем известно, что B и C эволюционно ближе друг к другу, чем к A . К каждому белку были получены антитела, после чего проверялось сродство этих антител к «чужим» белкам. Сначала антитела к белку А тестировались на сродство к белкам В и С , после чего антитела к белкам В и С тестировались на сродство к более эволюционно удаленному белку А . Их целью было выяснить правильность гипотезы о том, что скорость накопления изменений в белковых молекулах является постоянной для изучаемых видов. Данные исследования эту гипотезу не опровергли, поскольку показали, что скорость накопления изменений в линии “В ” оказалась такой же, как и скорость накопления изменений в линии “С ” с момента их расхождения. После этого ученые предположили, что, зная время расхождения линий “В ” и “С ” из палеонтологических данных, можно откалибровать получившиеся молекулярные часы и впоследствии датировать время расхождения таксонов, изучая только их биомолекулы. Впрочем, очень быстро выяснилось, что это не так просто, поскольку их попытки осуществить подобные операции не увенчались успехом - молекулярные оценки сильно расходились с данными палеонтологии.

Однако, несмотря ни на что, методика молекулярных часов находила широкое применение на ранних этапах молекулярно-филогенетических исследований. В частности, ее использовали для оценки времени расхождения крупных таксонов. Например, Дикерсон изучал эволюционные изменения гемоглобина и определил, что растения, животные и грибы дивергировали порядка 1-1,2 млрд. лет назад. Используя последовательности тРНК и 5S РНК МакЛафлин и Дэйхофф , а также Кимура и Ота оценили время расхождения про- и эукариот, получив результат порядка 2-2,6 млрд. лет назад. Как уже говорилось, все эти оценки характеризуются большими погрешностями, однако они не расходятся принципиально с оценками более точных современных исследований.

Несколько отличный подход к определению степени родства видов молекулярными методами применили Бриттен и Кон в 1968 году . Суть их метода заключалась в сравнении сразу всей ДНК исследуемых видов. Это делалось таким образом: сначала молекулы геномной ДНК подвергались денатурации, после чего одноцепочечные молекулы отжигались друг с другом. Далее исследовался полученный гетеродуплекс. Логика была такова: чем больше энергии придется затратить для того, чтобы осуществить денатурацию полученного дуплекса (чем дуплекс более прочен), тем ближе виды между собой, поскольку очевидно, что стабильность такой гибридной ДНК напрямую зависит от того, насколько похожи две частично комплементарные цепи.

Результаты этих исследований не были очень впечатляющими, поскольку тогда еще не было четкого понимания того, что геном состоит далеко не только из уникальной ДНК. Картину портили всевозможные геномные повторы, количество и размер которых, как оказалось, плохо коррелирует со степенью различия между видами (кстати, данная работа сделала серьезный вклад в их изучение) . Возникновение и исчезновение повторов - это непредсказуемый процесс, который может быть вызван огромным числом самых разных причин. К тому же, предполагать, что число повторов изменяется с постоянной скоростью у всех видов в любой исторический момент, довольно наивно.

К 70-м годам прошлого века стало ясно, что если имевшиеся тогда методы молекулярной систематики и подходят для того, чтобы классифицировать эволюционно далекие объекты, то когда речь заходит о близких видах, сопоставление белков и полных геномов обнаруживает явные неточности и дает ненадежные результаты. Например, оказалось, что биохимические различия между шимпанзе и человеком настолько малы, что, судя только по ним, невозможно будет отделить один вид от другого. Становилось понятно, что для более точных результатов надо искать и сравнивать конкретные последовательности ДНК

ДНК: какие куски лучше сравнивать?

Как уже говорилось, одним из самых тонких мест в методике молекулярных часов является определение скорости накопления изменений, которую довольно проблематично точно оценить. К тому же, в большинстве случаев эта скорость для удобства считается постоянной на всем времени с момента расхождения изучаемых видов, а говорить об этом не всегда правомерно. Классическим эволюционистам идея постоянства скорости накопления мутаций была непонятна совершенно. Ведь согласно общепризнанной в то время синтетической теории эволюции, скорость эволюционного изменения видов определяется факторами среды и интенсивностью естественного отбора, а, следовательно, она просто обязана колебаться, поскольку условия среды меняются с переменной скоростью.

Первые идеи по разрешению сложившегося противоречия были предложены японским биологом Моту Кимура (Motoo Kimura ), который сформулировал так называемую «нейтральную теорию» молекулярной эволюции . Предположение заключалось в том, что большинство изменений в последовательности геномной ДНК никак не отражается на фенотипе особей, а, следовательно, не попадает под действие естественного отбора. Интересно, что по этой причине, концепцию Кимуры некоторое время считали противоречащей классическому дарвинизму. Однако сейчас очевидно, что никакого противоречия нет.

Дело в том, что отбор преимущественно действует на уровне строения белковых молекул. Ведь для того, чтобы организм нормально существовал, его белки должны правильно работать, а это невозможно в случае, если белковые молекулы накопят слишком много структурных изменений. Следовательно, организмы, синтезирующие дефектные белки, погибают, а выживают только те, чьи белковые молекулы нормально функционируют и не содержат критического количества перестроек. Но, как оказывается, отсутствие различий в белковых молекулах видов вовсе не говорит о том, что этих различий нет в последовательностях ДНК.

Генетический аппарат клетки устроен таким образом, что непосредственно на структуру белков (а, следовательно, на фенотипические проявления признаков, подвергающиеся действию отбора) влияют далеко не все последовательности ДНК. Сейчас хорошо известно, что в среднем у эукариотических организмов количество структурных генов может колебаться от 10% до 40% от всего генома. Остальные последовательности представлены межгенными спейсерами, регуляторными участками, мобильными элементами и гетерохроматиновыми повторами, мутации в которых далеко не всегда отражаются на фенотипе особи и в массе своей оказываются именно нейтральными.

Разумеется, эти представления появились не сразу. В 30-е годы XX века считалось, что в хромосомах нет ничего, кроме генов, линейно соединенных между собой наподобие бусин на нити. Эти соображения были особенно популярны в период активного изучения политенных хромосом дрозофилы, которым присуща характерная поперечная исчерченность. Поперечные полоски на таких хромосомах, как раз и считали некоторое время генами, наблюдаемыми непосредственно в световой микроскоп. К 60-м годам становится ясно, что между генами содержится множество нуклеотидных последовательностей, которые тогда считались «мусорными», ну а к середине 70-х годов стало ясно, что и сама тонкая структура гена такова, что не все его участки непосредственно влияют на фенотипическое проявление признака (рис. 2). Ведь гены содержат экзоны (кодирующие участки) и интроны (участки, удаляющиеся в ходе процессинга пре-мРНК). Вполне естественно, что скорости изменения функционально разных последовательностей должны отличаться, поскольку важные для нормального существования организма регионы генома естественным образом окажутся более консервативными, а менее значимые участки будут накапливать изменения интенсивнее.

Рисунок 2. Эволюция представлений о строении гена. а - 30-е годы. Хромосомы - это цепочки из генов. б - 60-е годы. Гены в хромосомах разделены спейсерами и гетерохроматиновыми участками. в - Наши дни. Гены содержат интроны, которые удаляются из пре-мРНК в результате сплайсинга.

Молекулярные часы: множество стрелок и все идут с разной скоростью!

В 80-е годы c накоплением данных о ДНК-последовательностях геномов разных организмов число противоречий относительно методики молекулярных часов возросло. В 1986 году в своей работе Бриттен заключил, что разные группы живых организмов могут накапливать молекулярные изменения с разной скоростью . В частности, он пришел к выводу, что грызуны, а именно мыши и крысы, эволюционировали заметно быстрее, чем прочие группы млекопитающих, а, например, человекообразные обезьяны, наоборот, характеризовались низкой скоростью молекулярной эволюции (нейтральные замены накапливались медленнее). Сам Бриттен склонен был объяснять это тем, что у данных групп могли быть различия в системе репарации ДНК, что и привело к расхождению в скорости накопления нейтральных мутаций. Однако эти исследования показывали, что скорость нуклеотидных замен пропорциональна скорее количеству поколений, сменившихся с момента дивергенции исследуемых таксонов, чем абсолютному времени, прошедшему с тех пор, что усложняло применение метода молекулярных часов в исследованиях, поскольку вносило дополнительные неточности.

Примерно в это же время ученые с короткими фамилиями Ву и Ли сделали предположение о том, что в линиях грызунов и человекообразных обезьян могут по каким-то причинам различаться количества синонимичных (не приводящих к замене аминокислоты и, следовательно, не отражающихся на фенотипе) и несинонимичных нуклеотидных замен . Им даже удалось подтвердить это в своей работе, в которой они показали, что число синонимичных замен у грызунов в два раза больше, чем в линии наших предков. Эти данные подтверждали необходимость сравнивать не абсолютные промежутки времени, а количество поколений, прошедших с момента дивергенции.

Однако эти заключения были подвергнуты сомнению в работе Эстила , в которой утверждалось, что причиной расхождений в скоростях накопления мутаций была неверная оценка времени дивергенции общих предков линии грызунов и человекоподобных обезьян. Впрочем, в последующих работах Ли было показано, что есть разница в скорости накопления замен в интронах некоторых генов у обезьян Старого света и их человекоподобных родственников .

Сравнение скоростей молекулярной эволюции различных локусов проводилось и на других объектах. В частности, было показано, что ген алкогольдегидрогеназы у гавайских представителей рода Drosophila изменялся заметно быстрее в сравнении с таким же геном у D. pseudoobscura . Или, например, известно, что структурные гены митохондрий по каким-то причинам изменяются заметно медленнее у рыб, чем у млекопитающих . А недавно с помощью молекулярно-филогенитического анализа удалось не только оценить время, прошедшее с момента дивергенции опсинов, отвечающих за зрение в различных таксонах животного мира, но и доказать сам факт возникновения зрения , насолив тем самым противникам идеи биологической эволюции, считающим, что возникновение новых функций в процессе естественного отбора невозможно по причине нежизнеспособности переходных форм.

26 июня 2000 года произошло очень знаменательное событие, о котором много писалось в прессе. На пресс-конференции с участием президента США и премьер-министра Великобритании представители двух исследовательских коллективов - международного консорциума Human Genome Project и компании Celera Genomics - торжественно объявили о том, что в результате многолетних усилий большого числа ученых и огромного финансирования закончена расшифровка генома человека (точнее, определена полная структура ДНК). Был успешно реализован не имеющий аналогов по масштабам Проект века. Что же человечество узнало и приобрело в результате этого? Как эти новые знания помогают человеку в решении его многих повседневных проблем? Какие тайны хранит человеческий геном?

Обо всем этом и идет речь в настоящей монографии, написанной в популярной форме и предназначенной для самого широкого круга читателей: для школьников старших классов, школьных учителей, студентов и преподавателей вузов и вообще для всех образованных людей, желающих больше знать о самих себе.

Книга:

МОЛЕКУЛЯРНЫЕ ЧАСЫ

<<< Назад
Вперед >>>

МОЛЕКУЛЯРНЫЕ ЧАСЫ

Вы говорите - время идет.

Безумцы - это вы проходите.

Талмуд

Достаточно твердо установлено, что большинство из происходящих точечных мутаций в геноме не представляются ни полезными, ни вредными для человека, то есть являются нейтральными. Скачки скорее всего не свойственны эволюции. Частоты возникновения точечных мутаций невысоки (порядка 10 –8 на генерацию) и относительно постоянны. Расчеты показывают, что при размере диплоидного генома человека около 7х10 9 п. н. в нем происходит в среднем 175 новых мутаций на генерацию (25 лет). Накопление мутаций можно сравнить с перетеканием песчинок в песочных часах, которые служат мерой времени. Но на практике ученые применили не песочные, а «молекулярные часы». Поскольку большинство мутаций никак не сказываются на самом организме, они могут спокойно сохраняться в эволюции на протяжении длительного времени. Именно за эти факты и ухватились ученые, когда создавали новый подход, названный «молекулярными часами».

На первом этапе была проведена «юстировка» этих часов. Для этой цели были использованы данные о скорости изменения ДНК разных видов организмов, для которых время расхождения в эволюции было надежно установлено по палеонтологическим и археологическим данным. И только после этого началось «чтение» разных эволюционных глав Энциклопедии человека.

«Молекулярные часы» довольно строго показывают, как часто за миллион лет (в среднем) в ДНК того или иного гена или генома в целом происходят мутации. На этой основе по различиям в ДНК можно судить о том, как давно два разных вида организмов, время возникновения которых не известно, были одним видом, когда произошла их дивергенция, то есть расхождение на две разные ветви эволюции. Таким же путем можно сравнивать человеческие популяции или даже ДНК отдельных людей и судить об общности их происхождения или родственных связях. В частности, по «молекулярным часам» удалось оценить более точно время отделения человека от обезьян. Согласно молекулярной оценке, это произошло примерно 5 млн. лет назад. Это внесло существенную поправку в данные палеонтологов, которые долгое время полагали, что разделение человека и обезьян произошло около 25 млн. лет назад. Массовый анализ митДНК из разных рас показал, что одни митДНК отличаются от других числом замен одних нуклеотидов другими, то есть числом мутаций. Были определены такие показатели, как количество индивидуальных мутаций, их расположение и тип. Эти получившие широкую известность данные выявили общность происхождения всех ныне живущих людей по женской линии. Если читатель не прекратит знакомство с книгой в этом месте, то более подробный рассказ об этих интереснейших исследованиях он найдет далее.

Метод «молекулярных часов», применяемый к ДНКовым текстам, очень похож по своему смыслу на метод глоттохронологии, используемый в лингвистике при установлении родства разных языков. Это специальный статистический метод определения возраста родственных языков, т. е. давности их разделения, по количеству слов, имеющих в этих языках одинаковое происхождение. Ведь язык человека, как и геном человека, все время меняется. Если племя или народ, говорящий на одном языке, по какой-то причине разделится на две части, которые потеряют связь между собой, то язык, как и геном, каждого из этих двух новых племен или народов будет меняться по-своему. Чем больше времени пройдет после разделения двух народов, тем меньше общего сохранится в их языках и геномах, но они по-прежнему останутся родственными. По степени сходства можно судить о том, когда произошло разделение. Лингвисты установили, что за 1000 лет в так называемом базовом словаре (он включает те слова, которые есть в любом языке, - «дом», «земля», «небо», названия частей тела и т. д.) сохраняется 86 % слов, т. е. каждый из языков двух народов, обособившихся 1000 лет назад, имеет 86 % общих слов с предковым языком. В результате, друг с другом эти языки имеют 74 % (86 % от 86 %) общих слов. При сопоставлении эволюционного древа популяций человека с лингвистическим анализом выяснилось, что в большинстве случаев языки генетически родственных популяций принадлежат к одной лингвистической группе. Вывод ученых гласит: чем раньше разделились две популяции, тем дольше они эволюционировали независимо и тем больше накопилось замен, как в их ДНК, так и в их языках. Конечно, языки напрямую не зависят от генов, и корреляции генетического и лингвистического родства определяются лишь историческими обстоятельствами. Но для нас важно, что здесь одно исследование довольно часто подтверждает другое.

проект «геном человека»

Согласно ЦЕНТРАЛЬНОЙ ДОГМЕ МОЛЕКУЛЯРНОЙ БИОЛОГИИ,

основная программа химических процессов, происходящих в любом организме (в том числе организме человека), записана в последовательности пар оснований молекулы ДНК. В некотором смысле, если вы узнаете последовательность пар оснований, то она расскажет вам все о химических реакциях и наследственной информации данного вида. В 1986 году группа ученых в США начала работу над проектом, позднее названным «Геном человека». Цель этого проекта заключалась в том, чтобы представить в виде карты полную последовательность (геном) ДНК человека. Однако в 1980-е годы технологии были слишком примитивными для решения этой задачи. Предполагалось, что стоимость проекта составит миллионы долларов и что задача будет решена не ранее 2005 года.

В то время среди биологов было много противников этого проекта, которые предчувствовали, что его реализация будет сопровождаться вторжением некой корпоративной структуры, или Большой Науки, в их область, для которой прежде были типичны небольшие исследовательские группы, работавшие под руководством ведущего ученого лаборатории. Биологи всерьез опасались, что их всех заставят бесконечное количество раз выполнять скучные операции с ДНК человека. Как сказал мне один юный кандидат наук: «Я не хочу положить свою жизнь на то, чтобы определить последовательность 12-й хромосомы от 100 000-й до 200 000-й пары оснований». Такие опасения рассеялись после появления новых технологий, позволивших передать машинам рутинную работу по определению последовательности.

1990-е годы вошли в историю как годы уверенного совершенствования наших возможностей определять последовательность полных геномов. Так, в 1985 году Институтом изучения генома в Роквилле, штат Мэриленд, была опубликована первая полная последовательность ДНК живого организма - бактерии Haemophilus influenzae. На определение всей последовательности у ученых ушло несколько лет.

Заэтой бактерийвскоре последовалидругие организмы. В 1996 году был определен первый геном эукариотической клетки (т.е. сложно-организованной клетки, ДНК которой заключена в ядре) - клетки дрожжей Saccharomyces cerevisiae. Этим открытием увенчались совместные усилия шестисот ученых из Европы, Северной Америки и Японии. В 1998 году была опубликована первая последовательность ДНК многоклеточного организма - плоского червя Caenorhabditis elegans. Каждое такое достижение требовало определения все более и более длинной последовательности и было важной вехой на пути к определению собственно генома человека.

Важной фигурой в этом процессе стал Крейг Вентер (Craig Venter), основавший позднее частную корпорацию «Целерон» (Celeron). Вентер внедрил в науку метод определения последовательности ДНК, позднее названный «методом беспорядочной


стрельбы». Суть метода в том, что определяемую ДНК организма разбивают на множество небольших фрагментов, каждый из которых вводят в автомат, определяющий последовательность ДНК. Нечто похожее получится, если разодрать книгу по страницам и раздать их разным читателям. После того как будут определены последовательности каждого фрагмента, в действие вводят сложнейшие компьютерные программы, заново собирающие исходную последовательность. Такое интенсивное использование информационных технологий объясняет, почему многие ученые называют новую область исследований генома биоинформационной, а не биомолекулярной революцией.

В июне 2000 года Крейг Вентер и Фрэнсис Коллин (Francis Collins), руководитель проекта «Геном человека», осуществлявшегося в национальных институтах здоровья США, объявили о событии, названном ими «первой сборкой генома человека». По существу, это была первая реконструкция полного генома человека, выполненная методом беспорядочной стрельбы. Несколькими месяцами позже, в феврале 2001 года, был опубликован первый предварительный набросок генома человека. Обнаружились некоторые удивительные факты.

Например, давно было известно, что большая часть ДНК человека не входит в состав генов. Новые результаты показали, что ДНК человека содержит удивительно небольшое количество генов - порядка 30 000-50 00. (Я говорю «удивительно», потому что ученые ожидали значительно более высоких требований к генетической структуре такого сложного организма, каким является человек). Однако эти гены не организованы в одну длинную последовательность, а состоят из кодирующих участков, называемых экзонами, с вкраплениями случайных последовательностей - инт-ронов. Выясняется, что аппарат, осуществляющий сборку белка, закодированного геном с последовательностью описанного типа, осуществляет выбор между несколькими вариантами компоновки белка. Так, каждый ген человека кодирует приблизительно три различных белка, а не один белок, как можно было предположить, основываясь на центральной догме молекулярной биологии.

Можно считать, что на первом этапе проекта «Геном человека» была расшифрована книга жизни. На следующем этапе предстоит выяснить, что представляют собой все гены и как кодируемые ими белки объединяются, образуя биологический портрет человека. По оценкам ученых, на то, чтобы добыть все данные и понять все механизмы реализации генома человека, потребуется еще одно столетие.

Я полагаю, что эта оценка очень пессимистична - возможно потому, что я верю в способность этих людей справляться со сложными задачами, ведущими к открытиям, больше, чем они сами. Так или иначе, мы продвигаемся к пониманию полного генетического портрета человека, и это будет иметь грандиозные последствия для медицины и благоденствия человека.

Молекулярные часы

Наряду с радиоуглеродной и калиево-аргоновой датировкой существует ещё один метод, позволяющий определить, когда одна группа животных отделилась от другой, - молекулярные часы. В 1962 году легендарный молекулярный биолог Лайнус Полинг (лауреат двух Нобелевских премий) и Эмиль Цукеркандль одними из первых начали использовать молекулярные методы при построении дерева эволюционных взаимосвязей между организмами. Это были первые доказательства эволюции, добытые из наших собственных клеток и ДНК. Полинг и Цукеркандль заметили: количество различий аминокислот в молекулах гемоглобина не просто соответствует разделению эволюционных ветвей исследуемых животных; количество изменений пропорционально тому, как давно два организма отделились друг от друга. Год спустя ещё один из родоначальников молекулярной биологии, Эмануэль Марголиаш, отмечал:

Представляется, что количество остаточных различий между цитохромами-с двух любых биологических видов в основном обусловлено тем, как давно разошлись эволюционные линии, к которым относятся оба вида. Если эта гипотеза верна, цитохром-с всех млекопитающих должен в равной мере отличаться от цитохрома-с всех птиц. Поскольку рыбы отделились от основного эволюционного древа позвоночных раньше, чем птицы и млекопитающие, цитохром-с у птиц и млекопитающих должен в равной мере отличаться от цитохрома-с у рыб. Аналогично цитохром-с всех позвоночных должен в равной степени отличаться от белка дрожжей.

Все эти данные свидетельствуют о том, что молекулярные изменения накапливались со временем, по мере эволюционного расхождения разных групп животных, и что скорость изменения молекул пропорциональна давности разделения эволюционных линий.

Тем временем стали выясняться факты, свидетельствующие, что большая часть ДНК у животных является «мусорной» или как минимум нефункциональной. Огромная часть генома попросту никогда не считывается при экспрессии генов и, следовательно, остаётся невидимой для естественного отбора или адаптивно-нейтральной. Первопроходческие работы японского биохимика Мотоо Кимуры, в частности, показали, что большинство звеньев в ДНК не затрагиваются процессами, происходящими в организме. Эти «адаптивно незаметные» звенья могут спонтанно мутировать, и естественный отбор не будет отсеивать одни их варианты в пользу других. Со временем такие мутации продолжают накапливаться с регулярной скоростью - тикают, как часы. Поскольку естественный отбор не замечает таких изменений, тиканье молекулярных часов становится удобным инструментом для оценки времени расхождения между любыми двумя эволюционными линиями в геологических масштабах. Остаётся лишь откалибровать их, опираясь на хорошо известные моменты основных эволюционных расхождений, зафиксированные в палеонтологической летописи.

Вскоре многие молекулярные биологи стали плотно работать с молекулярными часами, оценивая историю расхождения разных групп животных и выверяя хронометраж. Работы покойного Винсента Сарича и Аллана Уилсона из Университета Беркли вновь и вновь демонстрировали: судя по молекулярным часам, эволюционные линии человека и шимпанзе разошлись лишь от 7 до 5 млн лет назад и не ранее 8 млн лет назад, а не 14 млн лет назад, когда жил рамапитек. Но палеонтологи держали оборону. Они скептически относились к молекулярному методу, как к недоказанному и ненадёжному, поскольку он время от времени выдавал очень странные и смехотворные результаты. (Это по-прежнему случается, и мы не всегда понимаем, почему.)

В 1970-е и 1980-е годы противоречия становились всё острее, авторитетные оппоненты вступали в пикировку на конференциях и вели жаркие споры на страницах научных журналов. Сарич и Уилсон были уверены в надёжности своих данных: наверняка что-то не так с рамапитеком либо с его возрастом. Сарич был дородным, высоченным, импозантным господином с окладистой бородой, обладал громким голосом и был неуступчив в спорах. Он без колебаний задевал и оскорблял людей, если считал нужным. В 1971 году он сказал: «Вы не имеете права называть гоминидом окаменелость старше восьми миллионов лет, плевать, как она выглядит». Разумеется, это удручало исследователей вроде Саймонса и Пилбима, которые продолжали настаивать, что рамапитек опровергает доводы молекулярных биологов.

Патовая ситуация разрешилась после ещё одного открытия, сделанного в Сивалике. В 1982 году Пилбим объявил о находке новых костей рамапитека, среди которых была не только полная нижняя челюсть, но и частично сохранившийся череп. Вместе с черепом это животное гораздо больше напоминало ископаемого орангутана, которого ещё в 1910 году назвал сивапитеком Гай Пилгрим, впервые занявшийся раскопками в Сивалике. Нижняя челюсть рамапитека принадлежала лишь ископаемому родичу орангутана, похожему на гоминин. Вскоре антропологи были вынуждены отступить и признать свою ошибку, а вместе с ней - победу Сарича, Уилсона и молекулярной биологии. Теперь, когда палеонтологи знали, что ископаемых гоминин 14 млн лет назад не существовало, встал вопрос: какой ископаемый предок человека является самым древним? Действительно ли он не старше 8 млн лет, как предсказывали Сарич и Уилсон?