Ароматические углеводороды – соединения углерода и водорода, в молекуле которых имеется бензольное кольцо. Важнейшими представителями ароматических углеводородов являются бензол и его гомологи – продукты замещения одного или более атомов водорода в молекуле бензола на углеводородные остатки.

Строение молекулы бензола

Первое ароматическое соединение – бензол – было открыто в 1825 г. М. Фарадеем. Была установлена его молекулярная формула – С 6 Н 6. Если сравнить его состав с составом предельного углеводорода, содержащего такое же количество атомов углерода, — гексаном (С 6 Н 14), то можно заметить, что бензол содержит на восемь атомов водорода меньше. Как известно, к уменьшению количества атомов водорода в молекуле углеводорода приводит появление кратных связей и циклов. В 1865 г. Ф. Кекуле предложил его структурную формулу как циклогексантриена – 1, 3, 5.


Таким образом, молекула, соответствующая формуле Кекуле , содержит двойные связи, следовательно, бензол должен иметь ненасыщенный характер, т. е. легко вступать в реакции присоединения: гидрирования, бромирования, гидратации и т. д.

Однако данные многочисленных экспериментов показали, что бензол вступает в реакции присоединения только в жестких условиях (при высоких температурах и освещении), устойчив к окислению. Наиболее характерными для него являются реакции замещения, следовательно, бензол по характеру ближе к придельным углеводородам.

Пытаясь объяснить эти несоответствия, многие ученые предлагали различные варианты структуры бензол. Окончательно строение молекулы бензола было подтверждено реакцией его образования из ацетилена. В действительности углерод — углеродные связи в бензоле равноценны, и их свойства не похожи на свойства ни одинарных, ни двойных связей.

В настоящее время бензол обозначают или формулой Кекуле, или шестиугольником, в котором изображают окружность.

Так в чем же особенность структуры бензола? На основании данных исследователей и расчетов сделан вывод о том, что все шесть углеродных атомов находятся в состоянии sp 2 -гибридизации и лежат в одной плоскости. Негибридизированные p -орбитали атомов углерода, составляющие двойные связи (формула Кекуле), перпендикулярны плоскости кольца и параллельны друг другу.

Они перекрываются между собой, образуя единую π-систему. Таким образом, система чередующихся двойных связей, изображенных в формуле Кекуле, является циклической системой сопряженных, перекрывающихся между собой -связей. Эта система представляет собой две тороидальные (похожие на бублик) области электронной плотности, лежащие по обе стороны бензольного кольца. Так, изображать бензол в виде правильного шестиугольника с окружностью в центре (π -система) более логично, чем в виде циклогексатриена-1,3,5.

Американский ученый Л. Полинг предложил представлять бензол в виде двух граничных структур, отличающихся распределением электронной плотности и постоянно переходящих друг в друга, т. е. считать его промежуточным соединением, «усреднением» двух структур.

Данные измерения длин связей подтверждают эти предположения. Выяснено, что все С-С связи в бензоле имеют одинаковую длину (0,139 нм). Они несколько короче одинарных С-С связей (0,154 нм) и длиннее двойных (0,132 нм).

Существуют также соединения, молекулы которых содержат несколько циклических структур.

Изомерия и номенклатура

Для гомологов бензола характерна изомерия положения нескольких заместителей . Простейший гомолог бензола - толуол (метилбензол) — не имеет таких изомеров; следующий гомолог представлен в виде четырех изомеров:


Основой названия ароматического углеводорода с небольшими заместителями является слово бензол . Атомы в ароматическом кольце нумеруют, начиная от старшего заместителя к младшему:


По старой номенклатуре положения 2 и 6 называют ортоположениями , 4 - пара- , а 3 и 5 - метаположениями.

Физические свойства
Бензол и его простейшие гомологи в обычных условиях весьма токсичные жидкости с характерным неприятным запахом. Они плохо растворяются в воде, но хорошо - в органических растворителях.

Химические свойства бензола

Реакции замещения . Ароматические углеводороды вступают в реакции замещения.
1. Бромирование. При реакции с бромом в присутствии катализатора, бромида железа (ΙΙΙ), один из атомов водорода в бензольном кольце может замещаться на атом брома:

2. Нитрирование бензола и его гомологов . При взаимодействии ароматического углеводорода с азотной кислотой в присутствии серной (смесь серной и азотной кислот называют нитрующей смесью) происходит замещение атома водорода на нитрогруппу -NO 2:

Восстановлением образовавшегося в этой реакции нитробензола получают анилин — вещество, которое применяется для получения анилиновых красителей:

Эта реакция носит имя русского химика Зинина.
Реакции присоединения. Ароматические соединения могут вступать и в реакции присоединения к бензольному кольцу. При этом образуются циклогексан или его производные.
1. Гидрирование . Каталитическое гидрирование бензола протекает при более высокой температуре, чем гидрирование алкенов:

2. Хлорирование. Реакция идет при освещении ультрафиолетовым светом и является свободнорадикальной:

Гомологи бензола

Состав их молекул отвечает формуле С n H 2 n-6 . Ближайшие гомологи бензола:

Все следующие за толуолом гомологи бензола имеют изомеры. Изомерия может быть связана как с числом и строением заместителя (1, 2), так и с положением заместителя в бензольном кольце (2, 3, 4). Соединения общей формулы С 8 Н 10:

По старой номенклатуре, употребляемой для указания относительного расположения двух одинаковых или разных заместителей в бензольном кольце, используют приставки орто — (сокращенно о-) – заместители расположены у соседних атомов углерода, мета- (м -) – через один атом углерода и пара — (п -) – заместители друг против друга.
Первые члены гомологического ряда бензола – жидкости со специфическим запахом. Они легче воды. Являются хорошими растворителями.

Гомологи бензола вступают в реакции замещения (бромирование, нитрирование). Толуол окисляется перманганатом при нагревании:

Гомологи бензола используются как растворители, для получения красителей, средств для защиты растений, пластмасс, лекарств.




















Ароматические углеводороды (Арены) – это органические соединения, в молекулах которых имеется одно или несколько бензольных колец. Бензольное кольцо, или ядро, – циклическая группа атомов углерода с особым характером связей.

Общая формула - C n H 2n-6

1. Представители:

МОНОЯДЕРНЫЕ

1. С 6 H 6 – бензол, родоначальник гомологического ряда аренов


2. С 6 H 5 – CH 3 – толуол (метилбензол)


3. С 6 H 5 – CH =С H 2 – стирол (винилбензол)

4. Ксилол (орто-, пара- , мета-ксилол)

МНОГОЯДЕРНЫЕ (КОНДЕНСИРОВАННЫЕ)

1. Нафталин


2. Антрацен

2. Строение ароматических углеводородов :

Первую структурную формулу бензола предложил в 1865 г. немецкий химик Ф.А.Кекуле:

Атомы С в молекуле бензола образуют правильный плоский шестиугольник, хотя часто его рисуют вытянутым.

Приведенная формула правильно отражает равноценность шести атомов С, однако не объясняет ряд особых свойств бензола. Например, несмотря на ненасыщенность, он не проявляет склонности к реакциям присоединения: не обесцвечивает бромную воду и раствор перманганата калия, т.е. ему не свойственны типичные для непредельных соединений качественные реакции .

В структурной формуле Кекуле – три одинарные и три двойные чередующиеся углерод-углеродные связи. Но такое изображение не передает истинного строения молекулы. В действительности углерод-углеродные связи в бензоле равноценны. Это объясняется электронным строением его молекулы.

Каждый атом С в молекуле бензола находится в состоянии sp 2 -гибридизации. Он связан с двумя соседними атомами С и атомом Н тремя σ -связями. В результате образуется плоский шестиугольник, где все шесть атомов С и все σ -связи С–С и С–Н лежат в одной плоскости (угол между связями С–С равен 120 o).

Рис. Схема образования -связей в молекуле бензола.

Третья p-орбиталь атома углерода не участвует в гибридизации. Она имеет форму гантели и ориентирована перпендикулярно плоскости бензольного кольца. Такие p-орбитали соседних атомов С перекрываются над и под плоскостью кольца.

Рис. Негибридные 2p-орбитали углерода в молекуле бензола

В результате шесть p-электронов (всех шести атомов С) образуют общее π -электронное облако и единую химическую связь для всех атомов С.

Рис. Молекула бензола. Расположение π -электронного облака

π -Электронное облако обусловливает сокращение расстояния между атомами С.

В молекуле бензола они одинаковы и равны 0,139 нм. В случае простой и двойной связи эти расстояния составили бы соответственно 0,154 и 0,134 нм. Значит, в молекуле бензола нет чередования простых и двойных связей, а существует особая связь – “полуторная” – промежуточная между простой и двойной, так называемая ароматическая связь. Чтобы показать равномерное распределение p-электронного облака в молекуле бензола, корректнее изображать ее в виде правильного шестиугольника с окружностью внутри (окружность символизирует равноценность связей между атомами С):


3. Изомерия, номенклатура

Изомерия обусловлена изомерией углеродного скелета имеющихся радикалов и их взаимным положением в бензольном кольце. Положение двух заместителей указывают с помощью приставок: орто- (о-), если они находятся у соседних углеродных атомов (положение 1, 2-), мета- (м-) для разделенных одним атомом углерода (1, 3-) и пара- (п-) для находящихся напротив друг друга (1, 4-).

Например, для диметилбензола (ксилола):

орто-ксилол (1,2-диметилбензол)


мета-ксилол (1,3-диметилбензол)

пара-ксилол (1,4-диметилбензол)

Радикалы ароматических углеводородов называют арильными радикалами . Радикал С 6 Н 5 - называется фенил.

Цели урока:

  • дать понятие об ароматической связи, её особенностях, установить взаимосвязь между строением бензола и его свойствами;
  • закрепить умение сравнивать состав и строение углеводородов различных рядов;
  • познакомить с физическими свойствами бензола;
  • показать токсическое воздействие аренов на здоровье человека.

План лекции

  1. Вывод молекулярной и структурной формулы бензола.
  2. История открытия бензола.
  3. Формула Кекуле.
  4. Строение бензола.
  5. Понятие “ароматичности”.
  6. Возникновение термина “ароматические соединения”.
  7. Физические свойства бензола.
  8. Токсическое воздействие аренов на организм человека.
  9. Закрепление пройденного материала.
  10. Домашнее задание.

В начале урока предлагаю учащимся решить задачу на вывод формулы вещества.

Задача. При сжигании 2,5 г вещества выделилось 8,46 г углекислого газа и 1,73 г воды. Масса 1 л вещества составляет 3,5 г. Определите молекулярную и возможную структурную формулы вещества.

Решая задачу, учащиеся выводят молекулярную формулу вещества – С 6 Н 6 . Возникает проблемная ситуация: “Какое строение может иметь молекула бензола?” Опираясь на знание о непредельных углеводородах, учащиеся предлагают возможные структурные формулы для него:

НС С-СН 2 -СН 2 - С СН

Н 2 С = СН -С С-СН = СН 2 и другие.

Учащиеся делают вывод о том, что бензол является сильно ненасыщенным соединением, вспоминают качественные реакции на непредельность.

Предлагаю учащимся проверить гипотезу о непредельности бензола в ходе выполнения эксперимента. Проведя реакции бензола с бромной водой и раствором перманганата калия, ученики приходят к выводу, что бензол, являясь ненасыщенной системой, не даёт качественных реакций на непредельность, следовательно, его нельзя отнести к классу непредельных углеводородов.

Какое же строение имеет молекула бензола, и к какому классу углеводородов его можно отнести?

Прежде, чем ответить на этот вопрос, знакомлю учеников с историей открытия бензола, которая весьма интересна. В 1812 – 1815 годах в Лондоне впервые появилось газовое освещение. Светильный газ, добывавшийся из жира морских животных, доставлялся в железных баллонах. Эти баллоны помещались обычно в подвале дома, из них газ по трубкам распределялся по всему помещению. Вскоре было замечено крайне неприятное обстоятельство – в сильные холода газ терял способность давать при горении яркий свет. Владельцы газового завода в 1825 г. обратились за советом к Фарадею, который нашёл, что те составные части, которые способны гореть ярким пламенем, собираются на дне баллона в виде прозрачного жидкого слоя. При исследовании этой жидкости Фарадей открыл новый углеводород – бензол. Название этому веществу дал Либих – (суффикс –ол указывает на его маслянистый характер, от латинского oleum – масло).

В 1865 г. немецким учёным Кекуле была предложена структура молекулы бензола, которая приснилась ему в виде змеи, укусившей себя за хвост:

Но эта формула, соответствуя элементарному составу бензола, не отвечает многим его особенностям:

  • бензол не даёт качественных реакций на непредельность;
  • для бензола характерны реакции замещения, а не присоединения;
  • формула Кекуле не в состоянии объяснить равенства расстояний между углеродными атомами, что имеет место в реальной молекуле бензола.

Чтобы выйти из этого затруднения, Кекуле допустил, что в бензоле происходит непрерывное перемещение двойных связей.

Использование современных физических и квантовых методов исследования дало возможность создать исчерпывающее представление о строении бензола.

Атомы углерода в молекуле бензола находятся во втором валентном состоянии (sp 2). Каждый атом углерода образует -связи с двумя другими атомами углерода и одним атомом водорода, лежащими в одной плоскости. Валентные углы между тремя -связями равны 120°. Таким образом, все шесть атомов углерода лежат в одной плоскости, образуя правильный шестиугольник (рис. 1):

Рис. 1. Схема образования -связей
в молекуле бензола

Каждый атом углерода имеет одну негибридную р-орбиталь. Шесть таких орбиталей располагаются перпендикулярно плоскости -связей и параллельно друг другу (рис. 2). Все шесть р-электронов взаимодействуют между собой, образуя единое -электронное облако. Таким образом, в молекуле бензола осуществляется круговое сопряжение. Наибольшая -электронная плотность в этой сопряженной системе располагается над и под плоскостью кольца (рис. 3):

В результате такого равномерного перекрывания 2р-орбиталей всех шести углеродных атомов происходит “выравнивание” простых и двойных связей – длина связи составляет 0,139 нм. Эта величина является промежуточной между длиной одинарной связи в алканах (0,154 нм) и длиной двойной связи в алкенах (0,133 нм). То есть, в молекуле бензола отсутствуют классические двойные и одинарные связи.

Круговое сопряжение дает выигрыш в энергии 150 кДж/моль. Эта величина составляет энергию сопряжения – количество энергии, которое нужно затратить, чтобы нарушить ароматическую систему бензола.

Такое электронное строение объясняет все особенности бензола. В частности, почему бензол трудно вступает в реакции присоединения – это приводит к нарушению сопряжения. Такие реакции возможны в жёстких условиях.

В настоящее время нет единого способа графического изображения молекулы бензола с учётом его реальных свойств. Но, чтобы подчеркнуть выравненность -электронной плотности в молекуле бензола, прибегают к помощи следующих формул:

Используют и формулу Кекуле, помня при этом о её недостатках.

Совокупность свойств бензола принято называть ароматичностью. В общем виде явление ароматичности было сформулировано немецким физиком Хюккелем: соединение должно проявлять ароматические свойства, если в его молекуле содержится плоское кольцо с (4n+2) -электронами, где n может принимать значения 0, 1, 2, 3 и т. д. Согласно этому правилу, системы, содержащие 6, 10, 14 -электронов, являются ароматическими.

Примерами таких соединений являются нафталин (n=2) и антрацен (n=3).

После рассмотрения строения бензола с учащимися обсуждаем ответы на вопросы:

  1. Можно ли отнести бензол к непредельным углеводородам? Ответ обоснуйте.
  2. К какому классу углеводородов относится бензол?
  3. Что подразумевается под понятием “ароматическое соединение”?
  4. Какие углеводороды называются ароматическими?

Далее знакомлю учащихся с происхождением термина “ароматические соединения”. Сообщаю, что это название возникло в начальный период развития химии. Было замечено, что соединения бензольного ряда получаются при перегонке некоторых приятно пахнущих (ароматических) веществ – природных смол и бальзамов. Однако большинство ароматических соединений не имеют запаха или пахнут неприятно. Но данный термин сохранился в химии. Ароматическими углеводородами (аренами) называются вещества, в молекулах которых содержится одно или несколько бензольных колец – циклических групп атомов углерода с особым характером связей.

Далее учащиеся знакомятся с физическими свойствами бензола, работая с учебной литературой. Им известно, что бензол – это жидкость, может находиться и в парообразном состоянии (при исследовании запаха). Знакомлю учащихся с бензолом в твёрдом виде. Температура плавления бензола 5,5°С. Основываясь на этом сведении, демонстрирую превращение жидкого бензола в белую кристаллическую массу. Для этого 4-5 мл бензола, находящегося в пробирке, опускаю в сосуд, наполненный снегом или льдом. Через несколько минут учащиеся наблюдают изменение агрегатного состояния бензола. На основании наблюдений учащиеся высказывают предположение о том, что у этого вещества должна быть молекулярная кристаллическая решетка.

Обращаю внимание учащихся на то, что бензол является сильно токсичным веществом. Вдыхание его паров вызывает головокружение и головную боль. При высоких концентрациях бензола возможны случаи потери сознания. Его пары раздражают глаза и слизистую оболочку.

Жидкий бензол легко проникает в организм через кожу, что может привести к отравлению. Поэтому работа с бензолом и его гомологами требует особой осторожности.

Материал темы “Бензол” использую для объяснения вреда курения. Исследования дёгтеобразного вещества, полученного из табачного дыма показали, что в нём содержатся, помимо никотина, ароматические углеводороды типа бензпирена,

обладающие сильными канцерогенными свойствами, т. е. эти вещества действуют как возбудители рака. Табачный дёготь при попадании на кожу и в лёгкие вызывает образование раковых опухолей. Курильщики чаще заболевают раком губы, языка, гортани, пищевода. Они намного чаще страдают стенокардией, инфарктом миокарда. Отмечаю, что около 50% ядовитых веществ курильщик выделяет в окружающее пространство, создавая вокруг себя кольцо “пассивных курильщиков”, у которых быстро появляется головная боль, тошнота, общее недомогание, а затем могут развиваться и хронические заболевания.

В конце урока провожу фронтальный опрос по вопросам:

Домашнее задание : стр.55-58, стр. 61 №1, 2 по учебнику Э. Е. Нифантьева, Л. А. Цветкова “Химия 10-11”.

ОПРЕДЕЛЕНИЕ

Бензол (циклогексатриен – 1,3,5) – органическое вещество, простейший представитель ряда ароматических углеводородов.

Формула – С 6 Н 6 (структурная формула – рис. 1). Молекулярная масса – 78, 11.

Рис. 1. Структурные и пространственная формулы бензола.

Все шесть атомов углерода в молекуле бензола находятся в sp 2 гибридном состоянии. Каждый атом углерода образует 3σ-связи с двумя другими атомами углерода и одним атомом водорода, лежащие в одной плоскости. Шесть атомов углерода образуют правильный шестиугольник (σ-скелет молекулы бензола). Каждый атом углерода имеет одну негибридизованную р-орбиталь, на которой находится один электрон. Шесть р-электронов образуют единое π-электронное облако (ароматическую систему), которое изображают кружочком внутри шестичленного цикла. Углеводородный радикал, полученный от бензола носит название C 6 H 5 – — фенил (Ph-).

Химические свойства бензола

Для бензола характерны реакции замещения, протекающие по электрофильному механизму:

— галогенирование (бензол взаимодействует с хлором и бромом в присутствии катализаторов – безводных AlCl 3 , FeCl 3 , AlBr 3)

C 6 H 6 + Cl 2 = C 6 H 5 -Cl + HCl;

— нитрование (бензол легко реагирует с нитрующей смесью – смесь концентрированных азотной и серной кислот)

— алкилирование алкенами

C 6 H 6 + CH 2 = CH-CH 3 → C 6 H 5 -CH(CH 3) 2 ;

Реакции присоединения к бензолу приводят к разрушению ароматической системы и протекают только в жестких условиях:

— гидрирование (реакция протекает при нагревании, катализатор – Pt)

— присоединение хлора (протекает под действием УФ-излучения с образованием твердого продукта – гексахлорциклогексана (гексахлорана) – C 6 H 6 Cl 6)

Как и любое органическое соединение бензол вступает в реакцию горения с образованием в качестве продуктов реакции углекислого газа и воды (горит коптящим пламенем):

2C 6 H 6 +15O 2 → 12CO 2 + 6H 2 O.

Физические свойства бензола

Бензол – жидкость без цвета, но обладающая специфическим резким запахом. Образует с водой азеотропную смесь, хорошо смешивается с эфирами, бензином и различными органическими растворителями. Температура кипения – 80,1С, плавления – 5,5С. Токсичен, канцероген (т.е. способствует развитию онкологических заболеваний).

Получение и применение бензола

Основные способы получения бензола:

— дегидроциклизация гексана (катализаторы – Pt, Cr 3 O 2)

CH 3 –(CH 2) 4 -CH 3 → С 6 Н 6 + 4H 2 ;

— дегидрирование циклогексана (реакция протекает при нагревании, катализатор – Pt)

С 6 Н 12 → С 6 Н 6 + 4H 2 ;

— тримеризация ацетилена (реакция протекает при нагревании до 600С, катализатор – активированный уголь)

3HC≡CH → C 6 H 6 .

Бензол служит сырьем для производства гомологов (этилбензола, кумола), циклогексана, нитробензола, хлорбензола и др. веществ. Ранее бензол использовали в качестве присадки к бензину для повышения его октанового числа, однако, сейчас, в связи с его высокой токсичностью содержание бензола в топливе строго нормируется. Иногда бензол используют в качестве растворителя.

Примеры решения задач

ПРИМЕР 1

Задание Запишите уравнения, с помощью которых можно осуществить следующие превращения: CH 4 → C 2 H 2 → C 6 H 6 → C 6 H 5 Cl.
Решение Для получения ацетилена из метана используют следующую реакцию:

2CH 4 → C 2 H 2 + 3Н 2 (t = 1400C).

Получение бензола из ацетилена возможно по реакции тримеризации ацетилена, протекающей при нагревании (t = 600C) и в присутствии активированного угля:

3C 2 H 2 → C 6 H 6 .

Реакция хлорирования бензола с получением в качестве продукта хлорбензола осуществляется в присутствии хлорида железа (III):

C 6 H 6 + Cl 2 → C 6 H 5 Cl + HCl.

ПРИМЕР 2

Задание К 39 г бензола в присутствии хлорида железа (III) добавили 1 моль бромной воды. Какое количество вещества и сколько граммов каких продуктов при этом получилось?
Решение Запишем уравнение реакции бромирования бензола в присутствии хлорида железа (III):

C 6 H 6 + Br 2 → C 6 H 5 Br + HBr.

Продуктами реакции являются бромбензол и бромоводород. Молярная масса бензола, рассчитанная с использованием таблицы химических элементов Д.И. Менделеева – 78 г/моль. Найдем количество вещества бензола:

n(C 6 H 6) = m(C 6 H 6) / M(C 6 H 6);

n(C 6 H 6) = 39 / 78 = 0,5 моль.

По условию задачи бензол вступил в реакцию с 1 моль брома. Следовательно, бензол находится в недостатке и дальнейшие расчеты будем производить по бензолу. Согласно уравнению реакции n(C 6 H 6): n(C 6 H 5 Br) : n(HBr) = 1:1:1, следовательно n(C 6 H 6) = n(C 6 H 5 Br) = : n(HBr) = 0,5 моль. Тогда, массы бромбензола и бромоводорода будут равны:

m(C 6 H 5 Br) = n(C 6 H 5 Br)×M(C 6 H 5 Br);

m(HBr) = n(HBr)×M(HBr).

Молярные массы бромбензола и бромоводорода, рассчитанные с использованием таблицы химических элементов Д.И. Менделеева – 157 и 81 г/моль, соответственно.

m(C 6 H 5 Br) = 0,5×157 = 78,5 г;

m(HBr) = 0,5×81 = 40,5 г.

Ответ Продуктами реакции являются бромбензол и бромоводород. Массы бромбензола и бромоводорода – 78,5 и 40,5 г, соответственно.

Первая группа реакций — реакции замещения. Мы говорили, что арены не имеют кратных связей в структуре молекулы, а содержат сопряженную систему из шести электронов, которая очень стабильна и придает дополнительную прочность бензольному кольцу. Поэтому в химических реакциях происходит в первую очередь замещение атомов водорода, а не разрушение бензольного кольца.

С реакциями замещения мы уже сталкивались при разговоре об алканах , но для них эти реакции шли по радикальному механизму, а для аренов характерен ионный механизм реакций замещения.

Первое химическое свойство — галогенирование. Замещение атома водорода на атом галогена — хлора или брома.

Реакция идет при нагревании и обязательно с участием катализатора. В случае с хлором это может быть хлорид алюминия или хлорид железа три. Катализатор поляризует молекулу галогена, в результате чего происходит гетеролитический разрыв связи и получаются ионы.

Положительно заряженный ион хлора и вступает в реакцию с бензолом.

Если реакция происходит с бромом, то катализатором выступает бромид железа три или бромид алюминия.

Важно отметить, что реакция происходит с молекулярным бромом, а не с бромной водой. С бромной водой бензол не реагирует.

У галогенирования гомологов бензола есть свои особенности. В молекуле толуола метильная группа облегчает замещение в кольце, реакционная способность повышается, и реакция идет в более мягких условиях, то есть уже при комнатной температуре.

Важно отметить, что замещение всегда происходит в орто- и пара-положениях, поэтому получается смесь изомеров.

Второе свойство — нитрование бензола, введение нитрогруппы в бензольное кольцо.

Образуется тяжелая желтоватая жидкость с запахом горького миндаля — нитробензол, поэтому реакция может быть качественной на бензол. Для нитрования используется нитрующая смесь концентрированной азотной и серной кислот. Реакция проводится при нагревании.

Напомню, что для нитрования алканов в реакции Коновалова использовалась разбавленная азотная кислота без добавления серной.

При нитровании толуола, также как и при галогенировании, образуется смесь орто- и пара- изомеров.

Третье свойство — алкилирование бензола галогеналканами.

Эта реакция позволяет ввести углеводородный радикал в бензольное кольцо и может считаться способом получения гомологов бензола. В качестве катализатора используется хлорид алюминия, способствующий распаду молекулы галогеналкана на ионы. Также необходимо нагревание.

Четвертое свойство — алкилирование бензола алкенами.

Таким способом можно получить, например, кумол или же этилбензол. Катализатор — хлорид алюминия.

2. Реакции присоединения к бензолу

Вторая группа реакций — реакции присоединения. Мы говорили, что эти реакции не характерны, но они возможны при достаточно жестких условиях с разрушением пи-электронного облака и образованием шести сигма-связей.

Пятое свойство в общем списке — гидрирование, присоединение водорода.

Температура, давление, катализатор никель или платина. Таким же образом способен реагировать толуол.

Шестое свойство — хлорирование. Обратите внимание, что речь идет именно о взаимодействии с хлором, поскольку бром в эту реакцию не вступает.

Реакция протекает при жестком ультрафиолетовом облучении. Образуется гексахлорциклогексан, другое название гексахлоран, твердое вещество.

Важно помнить, что для бензола не возможны реакции присоединения галогеноводородов (гидрогалогенирование) и присоединение воды (гидратация).

3. Замещение в боковой цепи гомологов бензола

Третья группа реакций касается только гомологов бензола — это замещение в боковой цепи.

Седьмое свойство в общем списке — галогенирование по альфа-атому углерода в боковой цепи.

Реакция происходит при нагревании или облучении и всегда только по альфа-углероду. При продолжении галогенирования, второй атом галогена снова встанет в альфа-положение.

4. Окисление гомологов бензола

Четвертая группа реакций — окисление.

Бензольное кольцо слишком прочное, поэтому бензол не окисляется перманганатом калия — не обесцвечивает его раствор. Это очень важно помнить.

Зато гомологи бензола окисляются подкисленным раствором перманганата калия при нагревании. И это восьмое химическое свойство.

Получается бензойная кислота. Наблюдается обесцвечивание раствора. При этом, какой бы длинной не была углеродная цепь заместителя, всегда происходит ее разрыв после первого атома углерода и альфа-атом окисляется до карбоксильной группы с образованием бензойной кислоты. Оставшаяся часть молекулы окисляется до соответствующий кислоты или, если это только один атом углерода, до углекислого газа.

Если гомолог бензола имеет больше одного углеводородного заместителя у ароматического кольца, то окисление происходит по тем же правилам — окисляется углерод, находящийся в альфа-положении.

В данном примере получается двухосновная ароматическая кислота, которая называется фталевая кислота.

Особым образом отмечу окисление кумола, изопропилбензола, кислородом воздуха в присутствии серной кислоты.

Это так называемый кумольный способ получения фенола. Как правило, сталкиваться с этой реакцией приходится в вопросах, касающихся получения фенола. Это промышленный способ.

Девятое свойство — горение, полное окисление кислородом. Бензол и его гомологи сгорают до углекислого газа и воды.

Запишем уравнение горения бензола в общем виде.

По закону сохранения массы атомов слева должно быть столько же, сколько атомов справа. Потому что ведь в химических реакциях атомы никуда не деваются, а просто изменяется порядок связей между ними. Так вот молекул углекислого газа будет столько же, сколько и атомов углерода в молекуле арена, поскольку в состав молекулы входит один атом углерода. То есть n молекул CO 2 . Молекул воды будет в два раза меньше, чем атомов водорода, то есть (2n-6)/2, а значит n-3.

Атомов кислорода слева и справа одинаковое количество. Справа их 2n из углекислого газа, потому что в каждой молекуле два атома кислорода, плюс n-3 из воды, итого 3n-3. Слева атомов кислорода столько же — 3n-3, а значит молекул в два раза меньше, потому как в состав молекулы входят два атома. То есть (3n-3)/2 молекул кислорода.

Таким образом, мы составили уравнение сгорания гомологов бензола в общем виде.