После того, как мы научились составлять и различать множества, можно приступить к определению и других операций над ними.

Естественно, что два множества могут иметь одинаковые элементы (их можно выделить в отдельное множество), из всех элементов двух множеств можно составить одно новое множество, также можно рассмотреть отдельно элементы одного множества, которых во втором множестве нет.

Например, А – множество наклеек (марок), которые есть у Пети, В – множество наклеек, которые собрал Вася. Можно выделить множество наклеек, которые есть у обоих ребят; коллекцию различных наклеек, собранных ими вместе; множество наклеек Пети, которых нет у Васи.

Таким образом, мы проделали операции пересечения, объединения и разности двух множеств.

Опр.2.3.1. Пересечением множеств А и В называется множество С, состоящее из всех тех и только тех элементов, которые принадлежат каждому из данных множеств: С={х |хÎА и хÎВ}. Обозначается, А∩В.

Примеры. 1) Пусть A = {1; 2; 3}, B = {2; 3; 4; 5}, D = {10; 11}, тогда A B = {2; 3}, A D = Æ.

2) А = {2n: n Î N } - множество чисел, делящихся на 2, B = {3n: n Î N} - множество чисел, делящихся на 3, тогда A B = {6n | n Î N} - множество чисел, делящихся на 6.

3) А - отрезок , В - отрезок , тогда A B - отрезок .

4) Студент, сдавший все экзамены на «отлично» получает повышенную стипендию. Сессия состоит из четырех экзаменов. Пусть Аi – множество студентов, сдавших i -й экзамен на «отлично» (i = 1, 2, 3,4), тогда:

I – множество студентов, получающих повышенную стипендию.

Опр. 2.3.2. Объединением множеств А и В называется множество С, которое состоит из всех элементов данных множеств А и В и только из них: С={х |хÎА или хÎВ}. Обозначается, А UВ.

Примеры. 1) A = {1; 2; 3}, B = {2; 3; 4; 5}, тогда C = A U B == {1; 2; 3; 4; 5}.

2) A = (–∞, 2], B = (1, +∞), тогда C = A U B = R .

3) А = , В = , тогда A U B = .

3) Если А – множество студентов, не сдавших первый экзамен, В – второй, то А U В – множество студентов – задолжников после двух экзаменов (не исключено, что кто-то не сдал оба экзамена).

Опр.2.3.3. Разностью множеств А и В называется множество С, состоящее из всех элементов множества А, не принадлежащих множеству В: С={х | х Î А и х Ï В}. Обозначается, А\В.

Примеры 1) A = {1; 2; 3}, B = {2; 3; 4; 5}, тогда А\В={1}, В\А={4, 5}.

2) R \ Q – множество иррациональных чисел.

3) Q \ R = Æ.

Опр.2.3.4 . Симметричной разностью множеств А и В называется множество С, состоящее из всех элементов множества А, не принадлежащих множеству В и всех элементов множества В, не принадлежащих множеству А: С={х | (х Î А и х Ï В) или (х Î В и х Ï А) }. Обозначается, А∆В.



Пример. А={1,2,3,4,5}, В={4,5,6,7}, А∆В= {1,2,3,6,7}

В каждом отдельном случае мы рассматриваем всевозможные подмножества одного и того же множества. Например, в начальной школе дети учатся работать (выполнять основные арифметические операции) сначала с числами из первого десятка натуральных чисел, затем из первой сотни и т.д. Но их действия не выходят за рамки натуральных чисел (отрицательные и дробные числа они будут проходить позже). Аналогично, учитель может работать с некоторыми группами учеников, которые будут являться подмножествами определенного множества обучаемых данным учителем школьников. Каждый человек носит различные комбинации вещей, но только из своего личного гардероба. Это основное множество (свое в каждом отдельном случае) называется универсальным множеством.

Опр.2.3.5. Универсальным множеством называется множество, подмножества которого (и только они) в данный момент рассматриваются. Обозначают, Е (или U в разной литературе).

При работе с числовыми множествами, если не дается дополнительных указаний, в качестве основного (универсального) множества будем считать множество R действительных чисел.

Опр.2.3.6. Дополнением множества А называется разность Е \А. Обозначается, А’ или и читается «не-А». Иначе, дополнением множества А называется множество А’, состоящее из всех элементов, не принадлежащих множеству А.

Примеры. 1) Е ={ множество студентов в группе}, A ={ множество студентов, сдавших первый экзамен}, то А’ ={ множество студентов, не сдавших первый экзамен}.

2) Е={буквы русского алфавита}, А={множество гласных букв}, тогда

А’={множество согласных букв и букв ь и ъ}.

3) Пусть Е – множество сотрудников школы, A – множество сотрудников старше 30 лет, B – множество сотрудников мужского пола, C – множество сотрудников занимающих должности вспомогательного персонала.

Тогда В – множество женщин; А’ÇВÇC – множество мужчин занимающих должности вспомогательного персонала младше 30 лет; А È(В ÇС ’) – множество сотрудников старше 30 лет или мужчин не занимающих должности вспомогательного персонала; B \C – множество мужчин, не являющихся вспомогательным персоналом; C \B – множество сотрудников вспомогательного персонала – женщин.

4) Даны множества А={2, 3, 5, 8, 13, 15}, В={1, 3, 4, 8, 16}, С={12, 13, 15, 16}, D={0, 1, 20}. Найти АUВ, СUD, В∩С, А∩D, А\С, D\В, АUВUС, А∩В∩С, ВUD∩С, А∩С\D.

Решение : Будем пользоваться определениями соответствующих операций и учтем, что сначала должна выполняться операция пересечения множеств, а затем уже объединение или разность.

Получим АUВ={1, 2, 3, 4, 5, 8, 13, 15, 16};

СUD={0, 1, 12, 13, 15, 16, 20};

А\С={2, 3, 5, 8};

АUВUС={1, 2, 3,4, 5, 8, 12, 13, 15, 16};

А∩В∩С=Æ;

ВUD∩С={1, 3, 4, 8, 16};

А∩С\D={13, 15}.

5) Пусть Е={1, 2, 3, 4, 5, 6, 7, 8,9}, A={1, 2, 3, 5}, B={2, 4, 6, 8}, C={1, 3, 5, 7}, D={4, 5, 7, 8}. Выразить через заданные множества A, B, C, D следующие множества: 1) К={1,2,3,4,5,7,8}, 2) L={4, 7 ,8}, 3) F={2, 5}, 4) G={5, 7, 9}.

Решение : 1) K={1,2,3,4,5,7,8}=AUD.

2) L={4, 7 ,8}=D\A.

б) A\(C\D)={2, 5}.

б) AUB={1, 2, 3, 4, 5, 6, 8},

в) (AUB)’={7, 9},

г) (A∩D)U((AUB)’)={5, 7, 9}.

Свойства операций над множествами:

Таблица 2.3.1.

Свойства операции пересечения: 1) А∩А=А; 2) А∩Ø=Ø; 3) А∩А’= Ø; 4) А∩Е =А; 5) А∩В=В∩А. Свойства операции объединения: 1) АUА=А; 2) АU Ø =А; 3) АUА’=Е ; 4) АUЕ =Е ; 5) АUВ=ВUА.
Свойства операции разности:
1) А\А=Ø; 2) А\ Ø =А; 3) А\А’= А; 4) А\Е =Ø; 5) Е \А=А’; 6) Ø \А=Ø; 7) А\В ≠ В\А.

§ 2.4. Диаграммы Эйлера-Венна, таблицы вхождения элементов, координатная плоскость.

Для наглядного представления (графического изображения) множеств и результатов операций над ними удобно пользоваться так называемыми диаграммами Эйлера-Венна (кругами Эйлера).

При этом множества изображаются на плоскости в виде замкнутых кругов, а универсальное множество в виде прямоугольника. Элементы множества – точки внутри соответствующего круга.

Таблица 2.4.1.

Объединение АВ:

Пересечение А∩В:

Разность: А\В

Примеры: Изобразить следующие множество с помощью диаграммы Венна

1) (АUВ)\(С∩А):

Таблица 2.4.2.

1)(АUВ)

2) (С∩А)

3) (АUВ)\(С∩А)

2) А∩В∩С;

а) А∩В б) А∩В∩С
а) АUС
2. В∩С 3.(А∩В)U(В∩С)

Есть и другой способ проиллюстрировать операции над множествами. Это, так называемая, таблица вхождения элементов в множества , в которой рассматриваются все возможные случаи вхождения выбранного элемента в множества А и В и их комбинации. Результат принадлежности этого элемента множествам А и В отмечают в первых двух столбцах таблицы по правилу: 1 – если элемент входит в данное множество, 0 – если не входит. Получится четыре случая или четыре строчки в таблице. Столбцы, соответствующие операциям A U B , A B , A \ B , заполняются согласно определений этих операций (табл. 1).


Например, вторая строка в табл. 1 читается так: если элемент входит в A , но не входит в B , то он входит в А U В , не входит в А В , но входит в A \B .

Примеры. 1) С помощью таблицы вхождения элементов определите верно ли следующее равенство UВ) = А В


Из таблицы вхождения элементов в множества видно, что при различных вариантах вхождения элемента в множества А , В он входит или не входит в левую и правую части рассматриваемого равенства одновременно (см. четвертый и седьмой столбцы). Значит UВ) = А В ’.

2) С помощью таблицы вхождения элементов определите верно ли следующее равенство (В UС ) \ В = С.


Второй и четвертый столбцы не совпадают, поэтому это равенство неверное.

На координатной прямой множества изображаются в виде отрезка, концы которого показываются кружками: закрашенным кружком, если координата конца отрезка принадлежит множеству, в противном случае – не закрашенным кружком. Например, множество A = {x: − 2 < x ≤ 3} на координатной прямой можно показать так:


Примеры : Даны множества:

1) A = {x: − 5 ≤ x ≤ 6}, B = {x: − 3 < x < 8},

2) A = {х: −3 < х ≤ 2} и B = {х: 0 ≤ х < 5},

3) C = {х: 2 < х < 4} и D = {х: 3 ≤ х ≤ 5},

4) E = {х: −3 ≤ х ≤ 2} и F = {х: 2 < х ≤ 5}.

Найдите пересечения множеств и покажите их на координатной прямой.

Решение:

1)Изобразим на координатной прямой множества А и В:

D = {х: 3 ≤ х ≤ 5}:

C, з начит, пересечению множеств С и D будут принадлежать все точки полуинтервала ?

Решение.

Построим геометрические образы числовых множеств A и B :

Граничные точки заданных множеств разбивают числовую прямую на следующие множества: (−∞, −4) , {−4} , (−4, −2) , {−2} , (−2, 1) , {1} , (1, 3) , {3} , (3, 5) , {5} , (5, +∞) .

Несложно заметить, что числовое множество A можно «собрать» из только что записанных множеств, объединив {−2} , (1, 3) , {3} и (3, 5) . Для нахождения пересечения множеств A и B достаточно проверить, включены ли последние множества в множество B . Те из них, которые включены в B , и будут составлять искомое пересечение. Выполним соответствующую проверку.

Очевидно, {−2} входит в множество B (так как точка с координатой −2 является внутренней точкой отрезка [−4, 3]) . Интервал (1, 3) тоже входит в B (над ним есть штриховка). Множество {3} также входит в B (точка с координатой 3 является граничной и невыколотой множества B ). А интервал (3, 5) не входит в числовое множество B (над ним нет штриховки). Отметив сделанные выводы на чертеже, он примет такой вид

Таким образом, искомое пересечение двух исходных числовых множеств A и B представляет собой объединение следующих множеств {−2} , (1, 3) , {3} , которое можно записать как {−2}∪(1, 3] .

Ответ:

{−2}∪(1, 3] .

Остается лишь обговорить, как находить пересечение и объединение трех и большего количества числовых множеств. Эту задачу можно свести к последовательному нахождению пересечения и объединения двух множеств: сначала первого со вторым, дальше полученного результата с третьим, дальше полученного результата с четвертым и так далее. А можно использовать алгоритм, аналогичный уже озвученному. Единственное его отличие в том, что проверку вхождения промежутков и множеств, состоящих из отдельных чисел, нужно проводить не по двум, а по всем исходным множествам. Рассмотрим пример нахождения пересечения и объединения трех множеств.

Пример.

Найдите пересечение и объединение трех числовых множеств A=(−∞, 12] , B=(−3, 25] , D=(−∞, 25)∪{40} .

Решение.

Сначала, как обычно, изображаем числовые множества на координатных прямых, и ставим слева от них фигурную скобку, обозначающую пересечение, и квадратную скобку для объединения, а снизу изображаем координатные прямые с отмеченными штрихами граничными точками числовых множеств:

Так координатная прямая оказывается представлена числовыми множествами (−∞, −3) , {−3} , (−3, 12) , {12} , (12, 25) , {25} , (25, 40) , {40} , (40, ∞) .

Начинаем поиск пересечения, для этого по очереди смотрим, входят ли записанные множества в каждое из множеств A , B и D . Во все три исходных числовых множества входит интервал (−3, 12) и множество {12} . Они и составляют искомое пересечение множеств A , B и D . Имеем A∩B∩D=(−3, 12] .

В свою очередь искомое объединение будут составлять множества (−∞, −3) (входит в A ), {−3} (входит в A ), (−3, 12) (входит в A ), {12} (входит в A ), (12, 25) (входит в B ), {25} (входит в B ) и {40} (входит в D ). Таким образом, A∪B∪D=(−∞, 25]∪{40} .

Ответ:

A∩B∩D=(−3, 12] , A∪B∪D=(−∞, 25]∪{40} .

В заключение заметим, что пересечение числовых множеств частенько является пустым множеством. Это отвечает случаям, когда исходные множества не имеют элементов, одновременно принадлежащих всем им.

(10, 27) , {27} , (27, +∞) . Ни одно из записанных множеств одновременно не входит в четыре исходных множества, а это означает, что пересечение множеств A , B , D и E есть пустое множеств.

Ответ:

A∩B∩D∩E=∅.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.

Данная тема содержит немало терминологии, поэтому я добавлю содержание темы, которое позволит легче ориентироваться в материале.

Начнём с того, что же, собственно, понимать под словом "множество". На интуитивном уровне под множеством понимают некую совокупность объектов, именуемых элементами множества . Например, можно говорить о множестве груш на столе, множестве букв в слове "множество" и так далее. Георг Кантор (немецкий математик, основатель современной теории множеств) писал, что под "множеством я понимаю вообще всё то многое, которое возможно мыслить как единое, т.е. такую совокупность определённых элементов, которая посредством одного закона может быть соединена в одно целое". Некоторое время понятие множества, введённое Кантором, полагалось довольно очевидным и не требующим дополнительных пояснений. Казалось, что появление работ Больцано, а затем и Кантора в конце 19 - начале 20 века, положит конец многим вопросам (например, окончательно разрешит апории Зенона, разрешит проблему бесконечности и т.д.) и станет началом новой математики. Гениальный немецкий математик Давид Гильберт отмечал, что "Никто не изгонит нас из рая, созданного Кантором".

Однако появление парадоксов (Рассел, Бурали-Форти) положило конец "канторовскому раю". Одна из формулировок парадокса Рассела, известная под названием "парадокс брадобрея" звучит так: в некотором селе брадобрей бреет тех и только тех жителей села, которые не бреются сами. Кто же тогда бреет самого брадобрея? Допустим, он бреет себя самостоятельно. Т.е. он принадлежит к тем жителям села, которые бреются сами, - а ведь согласно условию этих жителей брадобрей не имеет права брить. Следовательно, допущение о том, что брадобрей бреется сам, приводит к противоречию. Попробуем иначе: пусть брадобрей не бреется сам. Если он сам не бреется, то согласно условию его обязан брить брадобрей - вновь противоречие! Были предприняты попытки разрешить противоречия теории множеств, предложенной Кантором. Саму канторовскую теорию множеств математики назвали "наивной". Целью многих математических трудов стало построение такой системы аксиом, в которой подобные парадоксы были бы невозможны. Но задача оказалась не столь уж проста. На данный момент, насколько мне известно, единой аксиоматики теории множеств нет. Наиболее распространенной считается система аксиом Цермело-Френкеля (ZFC), в которой особняком стоит так называемая "аксиома выбора". Есть и вариации этой системы: например, автор B-метода Жан-Раймонд Абриал предложил типизированную теорию множеств, на основании которой создал формальный метод разработки программ.

Обозначение множеств. Принадлежность элемента множеству. Пустое множество.

Обычно множества записываются в фигурных скобках. Например, множество всех гласных букв русского алфавита будет записано так:

$$\{а, е, ё, и, о, у, ы, э, ю, я \} $$

А множество всех целых целых чисел, больших 8, но меньших 15, будет таким:

$$\{9,10,11,12,13,14 \} $$

Множество может вообще не содержать ни одного элемента. В этом случае его именуют пустым множеством и обозначают как $\varnothing$.

Чаще всего в математической литературе множества обозначаются с помощью больших букв латинского алфавита. Например:

$$A=\{0, 5, 6, -9 \},\; B=\{\Delta, +, -5, 0\}.$$

Есть и устоявшиеся обозначения определённых множеств. Например, множество натуральных чисел принято обозначать буквой $N$; множество целых чисел - буквой $Z$; множество рациональных чисел - буквой $Q$; множество всех действительных чисел - буквой $R$. Есть и иные устоявшиеся обозначения, но к ним мы станем обращаться по мере необходимости.

Множество, которое содержит конечное количество элементов, именуют конечным множеством . Если множество содержит бесконечное количество элементов, его называют бесконечным .

Например, указанное выше множество $A=\{0, 5, 6, -9 \}$ - конечное множество, ибо содержит 4 элемента (т.е. конечное число элементов). Множество натуральных чисел $N$ является бесконечным. Вообще говоря, мы не всегда можем сразу с уверенностью сказать, бесконечно некое множество или нет. Например, пусть $F$ - множество простых чисел.

Что такое простое число : показать\скрыть

Простыми числами именуют такие натуральные числа большие 1, которые делятся лишь на 1 или на самое себя. Например, 2, 3, 5, 7 и так далее. Для сравнения: число 12 не является простым числом, так как оно делится не только на 12 и 1, а ещё и на иные числа (например, на 3). Число 12 является составным.

Возникает вопрос: бесконечно множество $F$ или нет? Существует ли наибольшее простое число? Для ответа на этот вопрос понадобилась целая теорема, доказанная Эвклидом, о том, что множество простых чисел - бесконечно.

Под мощностью множества для конечных множеств понимают количество элементов данного множества. Мощность множества $A$ обозначается как $|A|$.

Например, так как конечное множество $A=\{0, 5, 6, -9 \}$ содержит 4 элемента, то мощность множества $A$ равна 4, т.е. $|A|=4$.

Если нам известно, что некий объект $a$ принадлежит множеству $A$, то записывают это так: $a\in A$. Например, для вышеуказанного множества $A$ можно записать, что $5\in A$, $-9\in A$. Если же объект $a$ не принадлежит множеству $A$, то обозначается это следующим образом: $a\notin A$. Например, $19\notin A$. Кстати, сказать, элементами множеств могут быть и иные множества, например:

$$ M=\{-9,1,0, \{ a, g\}, \varnothing \} $$

Элементами множества $M$ являются числа -9, 1, 0, а также множество $ \{ a,\; g\}$ и пустое множество $\varnothing$. Вообще, для упрощения восприятия множество можно представлять как портфель. Пустое множество - пустой портфель. Эта аналогия пригодится чуть далее.

Подмножество. Универсальное множество. Равенство множеств. Булеан.

Множество $A$ называют подмножеством множества $B$, если все элементы множества $A$ являются также элементами множества $B$. Обозначение: $A\subseteq B$.

Например, рассмотрим множества $K=\{ -9,5\}$ и $T=\{8,-9,0,5,p, -11\}$. Каждый элемент множества $K$ (т.е. -9 и 5) является также элементом множества $T$. Следовательно, множество $K$ есть подмножество множества $T$, т.е. $K\subseteq T$.

Так как все элементы любого множества $A$ принадлежат самому множеству $A$, то множество $A$ является подмножеством самого множества $A$. Пустое множество $\varnothing$ является подможеством любого множества. Т.е. для произвольного множества $A$ верно следующее:

$$A\subseteq A; \; \varnothing\subseteq A.$$

Введём ещё одно определение - универсальное множество.

Универсальное множество (универсум) $U$ обладает тем свойством, что все иные множества, рассматриваемые в данной задаче, являются его подмножествами.

Иными словами, универсум содержит в себе элементы всех множеств, которые рассматриваются в рамках некоей задачи. Например, рассмотрим такую задачу: проводится опрос студентов некоей академгруппы. Каждому студенту предлагается указать мобильных операторов РФ, сим-карты которых он использует. Данные этого опроса можно представить в виде множеств. Например, если студент Василий использует сим-карты от МТС и Life, то можно записать следующее:

$$ Vasilij=\{MTC, Life \} $$

Подобные множества можно составить для каждого студента. Универсумом в этой модели будет множество, в котором перечислены все операторы России. В принципе, в качестве универсума можно взять также множество, в котором перечислены все операторы СНГ, а также множество всех мобильных операторов мира. И это не будет противоречием, ибо любой оператор России входит в множество операторов как СНГ, так и всего мира. Итак, универсум определяется только в рамках некоей конкретной задачи, при этом зачастую можно рассмотреть несколько универсальных множеств.

Множества $A$ и $B$ называются равными , если они состоят из одних и тех же элементов. Иными словами, если каждый элемент множества $A$ является также элементом множества $B$, и каждый элемент множества $B$ является также элементом множества $A$, то $A=B$.

Определение равенства множеств можно записать и по-иному: если $A\subseteq B$ и $B\subseteq A$, то $A=B$.

Рассмотрим пару множеств: первое будет $\{\Delta, k \}$, а второе - $\{k, \Delta\}$. Каждый элемент первого множества (т.е. $\Delta$ и $k$) является также элементом второго множества. Каждый элемент второго множества (т.е. $k$ и $\Delta$) является также элементом второго множества. Вывод: $\{\Delta, k \}=\{k, \Delta\}$. Как видите, порядок записи элементов в множестве роли не играет.

Рассмотрим ещё пару множеств: $X=\{k, \Delta, k, k,k \}$ и $Y=\{\Delta, k \}$. Каждый элемент множества $X$ является также элементом множества $Y$; каждый элемент множества $Y$ является также элементом множества $X$. Следовательно, $\{k, \Delta, k, k, k \}=\{\Delta, k \}$. С учётом подобных равенств в теории множеств принято одинаковые элементы не повторять в записи дважды. Например, множество цифр числа 1111111555559999 будет таким: $\{1,5,9\}$. Есть, конечно, исключения: так называемые мультимножества . В записи мультимножеств элементы могут повторяться, однако в классической теории множеств повторения элементов не допускаются.

Используя понятие равенства множеств, можно классифицировать подмножества.

Если $A\subseteq B$, при этом $A\neq B$, то множество $A$ называют собственным (строгим) подмножеством множества $B$. Также говорят, что множество $A$ строго включено в множество $B$. Записывают это так: $A \subset B$.

Если же некое подмножество множества $A$ совпадает с самим множеством $A$, то это подмножество называют несобственным . Иными словами, множество $A$ является несобственным подмножеством самого множества $A$.

Например, для рассмотренных выше множеств $K=\{ -9,5\}$ и $T=\{8,-9,0,5,p, -11\}$ имеем: $K\subseteq T$, при этом $K\neq T$. Следовательно, множество $K$ является собственным подмножеством множества $T$, что записывается как $K\subset T$. Можно сказать и так: множество $K$ строго включено в множество $T$. Запись $K\subset T$ более конкретна, нежели $K\subseteq T$. Дело в том, что записывая $K\subset T$ мы гарантируем, что $K\neq T$. В то время как запись $K\subseteq T$ не исключает случая равенства $K=T$.

Примечание относительно терминологии : показать\скрыть

Вообще говоря, тут есть некая путаница в терминологии. Приведённое выше определение несобственных множеств принято в американской и части отечественной литературы. Однако в другой части отечественной литературы есть несколько иная трактовка понятия несобственных множеств.

Если $A\subseteq B$, при этом $A\neq B$ и $A\neq \varnothing$, то множество $A$ называют собственным (строгим) подмножеством множества $B$. Также говорят, что множество $A$ строго включено в множество $B$. Записывают это так: $A \subset B$. Множества $B$ и $\varnothing$ именуются несобственными подмножествми множества $B$.

Иными словами, пустое множество в такой трактовке исключается из собственных подмножеств и переходит в разряд несобственных. Выбор терминологии - дело вкуса.

Множество всех подмножеств некоего множества $A$ называют булеаном или степенью множества $A$. Обозначается булеан как $P(A)$ или $2^A$.

Пусть множество $A$ содержит $n$ элементов. Булеан множества $A$ содержит $2^n$ элементов, т.е.

$$ \left| P(A) \right|=2^{n},\;\; n=|A|. $$

Рассмотрим пару примеров на использование введённых выше понятий.

Пример №1

Из предложенного списка выберите те утверждения, которые являются верными. Ответ аргументируйте.

  1. $\{-3,5, 9 \}\subseteq \{-3, 9, 8, 5, 4, 6 \} $;
  2. $\{-3,5, 9 \}\subset \{-3, 9, 8, 5, 4, 6 \} $;
  3. $\{-3,5, 9 \}\in \{-3, 9, 8, 5, 4, 6 \} $;
  4. $\varnothing \subseteq \varnothing$;
  5. $\varnothing=\{\varnothing \}$;
  6. $\varnothing \in \varnothing$;
  7. $A=\{9, -5, 8 \{7, 6 \} \};\; |A|=5$.
  1. Нам заданы два множества: $\{-3,5, 9 \}$ и $\{-3, 9, 8, 5, 4, 6 \}$. Каждый элемент первого множества является также элементом второго множества. Следовательно, первое множество есть подмножество второго, т.е. $\{-3,5, 9 \}\subseteq \{-3, 9, 8, 5, 4, 6 \}$. Утверждение первого пункта - верное.
  2. В первом пункте мы выяснили, что $\{-3,5, 9 \}\subseteq \{-3, 9, 8, 5, 4, 6 \}$. При этом данные множества не равны между собой, т.е. $\{-3,5, 9 \}\neq \{-3, 9, 8, 5, 4, 6 \}$. Значит, множество $\{-3,5, 9 \}$ является собственным (в иной терминологии строгим) подмножеством множества $\{-3, 9, 8, 5, 4, 6 \}$. Этот факт записывается как $\{-3,5, 9 \}\subset \{-3, 9, 8, 5, 4, 6 \} $. Итак, утверждение второго пункта истинно.
  3. Множество $\{-3,5, 9 \}$ не является элементом множества $\{-3, 9, 8, 5, 4, 6 \}$. Утверждение третьего пункта ложно. Для сравнения: утверждение $\{-3,5, 9 \}\in \{9, 8, 5, 4, \{-3,5,9\}, 6 \}$ истинно.
  4. Пустое множество является подможеством любого множества. Поэтому утверждение $\varnothing \subseteq \varnothing$ истинно.
  5. Утверждение ложно. Множество $\varnothing$ не содержит элементов, а множество $\{\varnothing \}$ содержит один элемент, посему равенство $\varnothing=\{\varnothing \}$ неверно. Чтобы это было нагляднее, можно обратиться к той аналогии, что я описал выше. Множество - это портфель. Пустое множество $\varnothing$ - пустой портфель. Множество $\{\varnothing \}$ - портфель, внутри которого лежит пустой портфель. Естественно, что пустой портфель и непустой портфель, внутри которого нечто есть - разные портфели:)
  6. Пустое множество не содержит элементов. Ни единого. Поэтому утверждение $\varnothing \in \varnothing$ ложно. Для сравнения: утверждение $\varnothing\in\{\varnothing \}$ истинно.
  7. Множество $A$ содержит 4 элемента, а именно: 9, -5, 8 и $\{7, 6 \}$. Поэтому мощность множества $A$ равна 4, т.е. $|A|=4$. Следовательно, утверждение о том, что $|A|=5$ - ложно.

Ответ : Утверждения в пунктах №1, №2, №4 - истинны.

Пример №2

Записать булеан множества $A=\{-5,10,9\}$.

Множество $A$ содержит 3 элемента. Иными словами: мощность множества $A$ равна 3, $|A|=3$. Следовательно, множество $A$ имеет $2^3=8$ подмножеств, т.е. булеан множества $A$ будет состоять из восьми элементов. Перечислим все подмножества множества $A$. Напомню, что пустое множество $\varnothing$ является подмножеством любого множества. Итак, подмножества таковы:

$$ \varnothing, \{-5 \}, \{ 10\}, \{ 9\}, \{-5,10 \}, \{-5, 9 \}, \{-10, 9 \}, \{-5, 10, 9 \} $$

Напомню, что подмножество $\{-5, 10, 9 \}$ является несобственным, так как совпадает с множеством $A$. Все остальные подмножества - собственные. Все записанные выше подмножества являются элементами булеана множества $A$. Итак:

$$ P(A)=\left\{\varnothing, \{-5 \}, \{ 10\}, \{ 9\}, \{-5,10 \}, \{-5, 9 \}, \{-10, 9 \}, \{-5, 10, 9 \} \right\} $$

Булеан найден, остаётся лишь записать ответ.

Ответ : $P(A)=\left\{\varnothing, \{-5 \}, \{ 10\}, \{ 9\}, \{-5,10 \}, \{-5, 9 \}, \{-10, 9 \}, \{-5, 10, 9 \} \right\}$.

Способы задания множеств.

Первый способ - это простое перечисление элементов множества. Естественно, такой способ подходит лишь для конечных множеств. Например, с помощью данного способа множество первых трёх натуральных чисел будет записано так:

$$ \{1,2,3\} $$

Часто в литературе можно встретить обозначения такого характера: $T=\{0,2,4,6,8, 10, \ldots \}$. Здесь множество задаётся не перечислением элементов, как кажется на первый взгляд. Перечислить все чётные неотрицательные числа, которые и составляют множество $T$, невозможно, ибо этих чисел бесконечно много. Запись вида $T=\{0,2,4,6,8, 10, \ldots \}$ допускается только тогда, когда не вызывает разночтений.

Второй способ - задать множество с помощью так называемого характеристического условия (характеристического предиката) $P(x)$. В этом случае множество записывается в таком виде:

$$\{x| P(x)\}$$

Запись $\{x| P(x)\}$ читается так: "множество всех элементов $x$, для которых высказывание $P(x)$ истинно". Что именно значит словосочетание "характеристическое условие" проще пояснить на примере. Рассмотрим такое высказывание:

$$P(x)="x\; - \;натуральное\; число,\; последняя\; цифра\; которого \;равна\; 7"$$

Подставим в это высказывание вместо $x$ число 27. Мы получим:

$$P(27)="27\; - \;натуральное\; число,\; последняя\; цифра\; которого \;равна\; 7"$$

Это истинное высказывание, так как 27 действительно является натуральным числом, последняя цифра которого равна 7. Подставим в это высказывание число $\frac{2}{5}$:

$$P\left(\frac{2}{5}\right)="\frac{2}{5}\; - \;натуральное\; число,\; последняя\; цифра\; которого \;равна\; 7"$$

Это высказывание ложно, так как $\frac{2}{5}$ не является натуральным числом. Итак, для некоторых объектов $x$ высказывание $P(x)$ может быть ложно, для некоторых - истинно (а для некоторых вообще не определено). Нас будут интересовать лишь те объекты, для которых высказывание $P(x)$ будет истинно. Именно эти объекты и образуют множество, заданное с помощью характеристического условия $P(x)$ (см. пример №3).

Третий способ - задать множество с помощью так называемой порождающей процедуры. Порождающая процедура описывает, как получить элементы множества из уже известных элементов или неких иных объектов (см. пример №4).

Пример №3

Записать множество $A=\{x| x\in Z \wedge x^2 < 10\}$ перечислением элементов.

Множество $A$ задано с помощью характеристического условия. Характеристическое условие в данном случае выражено записью "$x\in Z \wedge x^2 < 10$" (знак "$\wedge$" означает "и"). Расшифровывается эта запись так: "$x$ - целое число, и $x^2 < 10$". Иными словами, в множество $A$ должны входить лишь целые числа, квадрат которых меньше 10. Таких чисел всего 7, т.е.

$$ A=\{0,-1,1,-2,2,-3,3\} $$

Множество $A$ теперь задано с помощью перечисления элементов.

Ответ : $A=\{0,-1,1,-2,2,-3,3\}$.

Пример №4

Описать элементы множества $M$, которое задано такой порождающей процедурой:

  1. $3\in M$;
  2. Если элемент $x\in M$, то $3x\in M$.
  3. Множество $M$ - является подмножеством любого множества $A$, удовлетворяющего условиям №1 и №2.

Давайте пока оставим в покое условие №3 и посмотрим, какие элементы входят в множество $M$. Число 3 туда входит согласно первому пункту. Так как $3\in M$, то согласно пункту №2 имеем: $3\cdot 3\in M$, т.е. $9\in M$. Так как $9\in M$, то согласно пункту №2 получим: $3\cdot 9\in M$, т.е. $27\in M$. Так как $27\in M$, то по тому же пункту №2 имеем: $81\in M$. Короче говоря, построенное множество 3, 9, 27, 81 и так далее - это натуральные степени числа 3.

$$3^1=1; \; 3^2=9; \; 3^3=27; \; 3^4=81;\; \ldots$$

Итак, кажется, что искомое множество задано. И выглядит оно так: $\{3,9,27,81,\ldots \}$. Однако действительно ли условия №1 и №2 определяют только это множество?

Рассмотрим множество всех натуральных чисел, т.е. $N$. Число 3 - натуральное, посему $3\in N$. Вывод: множество $N$ удовлетворяет пункту №1. Далее, для любого натурального числа $x$ множество $N$ содержит также и число $3x$. Например, 5 и 15, 7 и 21, 13 и 39 и так далее. Значит, множество $N$ удовлетворяет условию №2. И, кстати сказать, не только множество $N$ удовлетворяет условиям №1 и №2. Например, множество всех нечётных натуральных чисел $N_1=\{1,3,5,7,9,11, \ldots\}$ тоже подходит под условия пунктов №1 и №2. Как же указать, что нам нужно именно множество $\{3,9,27,81,\ldots \}$?