Живая клетка любого организма состоит из органических компонентов на 25–30%.

К органическим составляющим относятся как полимеры, так и сравнительно некрупные молекулы – пигменты, гормоны, АТФ и пр.

Клетки живых организмов различаются между собой по структуре, функциям и по своему биохимическому составу. Однако каждая группа органических веществ имеет сходное определение в курсе биологии и выполняет одни и те же функции в любом типе клеток. Основные составляющие компоненты - это жиры, белки, углеводы и нуклеиновые кислоты.

Липиды

Липидами называются жиры и жироподобные вещества . Эта биохимическая группа отличается хорошей растворимостью в органических веществах, но при этом нерастворима в воде.

Жиры могут иметь твёрдую или жидкую консистенцию. Первая более характерна для животных жиров, вторая – для растительных.

Функции жиров заключаются в следующем:

Углеводы

Углеводы – это органические мономерные и полимерные вещества, которые в своём составе содержат углерод, водород и кислород. При их расщеплении клетка получает значительное количество энергии.

По химическому составу различают следующие классы углеводов:

По сравнению с животными клетками , растительные содержат в своём составе большее количество углеводов. Это объясняется способностью растительных клеток воспроизводить углеводы в процессе фотосинтеза .

Основными функциями углеводов в живой клетке являются энергетическая и структурная.

Энергетическая функция углеводов сводится к накоплению запасов энергии и высвобождению их по мере необходимости. Растительные клетки накапливают в вегетационный период крахмал, который откладывается в клубнях и луковицах. В организмах животных такую роль выполняет полисахарид гликоген, который синтезируется и накапливается в печени.

Структурную функцию углевод выполняют в растительных клетках. Практически вся клеточная стенка растений состоит из полисахарида целлюлозы.

Белки

Белки – органические полимерные вещества , которые занимают ведущее место как по количеству в живой клетке, так и по своему значению в биологии. Вся сухая масса животной клетки состоит из белка примерно наполовину. Этот класс органических соединений отличается поразительным многообразием. Только в организме человека насчитывается около 5 млн различных белков. Они не только отличаются между собой, но и имеют различия с белками других организмов. И все это колоссальное многообразие белковых молекул строится всего из 20 разновидностей аминокислот.

Если на белок воздействуют термические или химические факторы, в молекулах происходит разрушение водородных и бисульфидных связей. Это приводит к денатурации белка и изменению структуры и функций клеточной мембраны.

Все белки можно условно разделить на два класса: глобулярные (к ним относятся ферменты, гормоны и антитела), и фибриллярные – коллаген, эластин, кератин.

Функции белка в живой клетке:

Нуклеиновые кислоты

Нуклеиновые кислоты имеют важное значение в структуре и правильном функционировании клеток. Химическое строение этих веществ таково, что позволяет сохранять и передавать по наследству информацию о белковой структуре клеток. Эта информация передаётся дочерним клеткам и на каждом этапе их развития формируется определённый вид белков.

Поскольку подавляющее большинство структурных и функциональных особенностей клетки обусловлено их белковой составляющей, очень важна стабильность, которой отличаются нуклеиновые кислоты. В свою очередь, от стабильности структуры и функций отдельных клеток зависит развитие и состояние организма в целом.

Различают две разновидности нуклеиновых кислот – рибонуклеиновая (РНК) и дезоксирибонуклеиновая (ДНК).

ДНК представляет собой полимерную молекулу, которая состоит из пары спиралей нуклеотидов . Каждый мономер молекулы ДНК представлен в виде нуклеотида. В состав нуклеотидов входят азотистые основания (аденин, цитозин, тимин, гуанин), углевод (дезоксирибоза) и остаток фосфорной кислоты.

Все азотистые основания соединяются между собой строго определённым образом. Аденин всегда располагается всегда против тимина, а гуанин – против цитозина. Такое избирательное соединение называется комплементарностью и играет очень важное значение в формировании структуры белка.

Все соседние нуклеотиды между собой связываются остатком фосфорной кислоты и дезоксирибозой.

Рибонуклеиновая кислота имеет большое сходство с дезоксирибонуклеиновой. Различие заключается в том, что вместо тимина в структуре молекулы присутствует азотистое основание урацил. Вместо дезоксирибозы это соединение содержит углевод рибозу.

Все нуклеотиды в цепочке РНК соединяются через фосфорный остаток и рибозу.

По своей структуре РНК может быть одно- и двухцепочечным . У ряда вирусов двухцепочечные РНК выполняют функции хромосом – они являются носителями генетической информации. С помощью одноцепочечной РНК происходит перенос информации о составе белковой молекулы.

Органические вещества

Химический состав клетки

В земной коре встречается около 100 химических элементов, но только 16 из них необходимы для жизни. Наиболее распространены в живых организмах четыре элемента: водород, углерод, кислород и азот (на их долю приходится около 98% массы клеток. Важные функции в клетке выполняют такие элементы, как натрий, кальций, хлор, фосфор, сера, железо, магний. На их долю приходится около 1% массы клетки – это макроэлементы . Остальные элементы, такие как цинк, медь, йод, фтор содержатся в живых организмах в очень малых количествах (не более 0,02%) и относятся к группе микроэлементов.

Все химические элементы в организме находятся в виде ионов или входят в состав неорганических или органических веществ.

Неорганические вещества

Из неорганических соединений больше всего в организме находится воды – от 60 до 95% общей массы (содержание воды зависит от типа клеток: в клетках эмали зубов около 10%, а в клетках медузы до 98%) . В среднем, в клетках многоклеточного организма вода составляет около 80% массы тела.

Вода является хорошим растворителем и большинство химических реакций в клетке протекает между растворенными в воде веществами. Проникновение веществ в клетку и выведение продуктов метаболизма возможно только в растворенном виде.

Большая часть неорганических веществ в клетке находится в виде ионов или солей. Важнейшее значение в жизнедеятельности клетки имеют такие ионы как К + , Na + , Са 2+ . Нерастворимые минеральные соли, например соли кальция и кремния, обеспечивают прочность костной ткани позвоночных и раковин моллюсков.

Органические вещества

Органические вещества составляют в среднем 20-30% массы клетки живого организма. К ним относятся биологические полимеры – белки, нуклеиновые кислоты, углеводы, жиры, а также целый ряд небольших молекул – гормонов, витаминов, пигментов, аминокислот, АТФ и др.

Белки

Белки составляют 50-80% сухой массы клетки. Несмотря на свое разнообразие, все белки построены всего из 20 различных аминокислот.

По своему составу белки делятся на простые и сложные. Простые белки состоят только из аминокислот. Сложные белки помимо аминокислот имеют в своем составе другие органические соединения: белки содержащие нуклеиновые кислоты называются нуклеопротеиды, липиды – липопротеиды, углеводы – гликопротеиды

Функции белков:

1. Строительная функция: белки входят в состав всех клеточных мембран и органоидов клетки.

2. Каталитическая (ферментативная) функция: практически все химические реакции, протекающие в клетке, катализируются ферментами. По своей природе все ферменты являются белками и, таким образом, именно белки определяют течение всех химических реакций, необходимых для существования организма.

3. Двигательная функция живых организмов обеспечивается специальными сократительными белками (мерцание ресничек, биение жгутиков, сокращение мышц).

4. Транспортная функция белков заключается в переносе химических элементов или биологически активных веществ к различным тканям и органам (белки переносчики обеспечивают перенос необходимых клетке веществ через мембрану, гемоглобин переносит кислород с током крови по всему организму).

5. Защитная функция белков заключается в связывании и обезвреживании чужеродных организму веществ. Например, при поступлении в организм чужеродных веществ или микроорганизмов белые кровяные тельца (лейкоциты) образуют специальные белки – антитела, способные к обезвреживанию чужеродных агентов.

6. Энергетическая функция: белки служат источником энергии в клетке. При расщеплении 1 г белка выделяется 17,6 кДж энергии, необходимой для большинства жизненно важных процессов, протекающих в клетке.

7. Регуляторная функция: некоторые гормоны имеют белковую природу (инсулин, тироксин). Гормоны оказывают влияние на обмен веществ в организме, развитие тканей и органов. На клеточном уровне многие процессы регулируются специальными регуляторными белками.

8. Токсическая функция: биологические яды (токсины), имеют белковую природу. Токсины вырабатываются некоторыми микроорганизмами, растениями и животными (змеиный яд, дифтерийный токсин).

Углеводы

Углеводы построены всего из трех элементов – О, С, Н.

В животных клетках углеводы составляют всего 1-5%, тогда как в растительных их содержание может достигать 90% сухой массы (клубни картофеля).

Углеводы подразделяются на простые и сложные. Простые углеводы называются моносахаридами . Если в одной молекуле объединяются два моносахарида, то такое соединение называют дисахаридом . К дисахаридам относится сахар, состоящий из двух молекул – глюкозы и фруктозы. Сложные углеводы, образованные многими моносахаридами, называются полисахаридами. Мономером таких полисахаридов как крахмал, гликоген, целлюлоза, является моносахарид – глюкоза.

Функции углеводов:

1. Строительная. Например, целлюлоза образует стенки растительных клеток, сложный полисахарид хитин – структурный компонент наружного скелета членистоногих.

2. Энергетическая. Углеводы играют роль основного источника энергии в клетке (при окислении 1 г углеводов освобождается 17,6 кДж энергии). Такие полисахариды как крахмал и гликоген откладываются в клетках в качестве запасных веществ и служат энергетическим резервом.

Общая функция Углевод Функция углевода
Энергетическая Глюкоза Служит источником энергии для клеточного дыхания.
Мальтоза Служит источником энергии в прорастающих семенах.
Сахароза Основной продукт фотосинтеза в растениях (источник энергии).
Фруктоза Обеспечивает энергией многие биологические процессы, протекающие в организме.
Структурная (пластическая) Целлюлоза Обеспечивает устойчивость оболочек растительных клеток.
Хитин Обеспечивает прочность покровных структур грибов и членистоногих.
Рибоза и дезоксирибоза Являются структурными элементами нуклеиновых кислот ДНК, РНК.
Защитная Гепарин Препятствует свертыванию крови в животных клетках.
Камедь и слизь У растений образуются при повреждении тканей, выполняют защитную функцию.
Запасающая Лактоза Входит в состав молока млекопитающих.
Крахмал Образует запасные вещества в тканях растений.
Гликоген Образует запас полисахаридов в животных клетках.

Липиды

Липиды (жиры) – это соединения высокомолекулярных жирных кислот и трехатомного спирта глицерина. Жиры не растворяются в воде – они гидрофобны. Содержание жиров в клетке составляет 5-15% от массы сухого вещества (в клетках жировой ткани до 90%).

К молекулам липидов могут присоединяться функциональные группировки: остатки фосфорной кислоты (фосфолипиды), углеводы (гликолипиды), белки (липопротеиды). Вещества близкие по свойствам к липидам, но не содержащие жирных кислот, называют липоидами. К ним относятся стероиды (входят в состав желчи, выполняют функции половых гормонов) и терпены (входят в состав эфирных масел растений, хлорофилла и др.).

Функции липидов:

1. Строительная функция: липиды являются основой клеточных мембран (75-95% из них составляют фосфолипиды).

2. Энергетическая функция: накапливаясь в клетках жировой ткани животных, в семенах и плодах растений, жиры служат запасным источником энергии. При расщеплении 1 г жира освобождается 38,9 кДж.

3. Запасающая функция (в пустыне для многих животных жиры – источник воды: при окислении 100 г жира выделяется 107 г воды).

4. Функция терморегуляции. Жир обладает плохой теплопроводностью. У некоторых животных (тюлени, киты) он откладывается в подкожной жировой ткани и защищает организм от переохлаждения.

5. Регуляторная функция: некоторые липиды принимают участие в регуляции обменных процессов (витамины, предшественники гормонов).

Биология Лекция 4-5

Строение клетки

Все живые существа состоят из клеток, либо являются одноклеточными организмами. Слово «клетка» - это перевод с латинского слова cellula (клетка, комната). Термин ввел Р. Гук для обозначения ячеек, которые он наблюдал под микроскопом в срезе пробки. Лишь позднее клетками стали называть живое содержимое таких ячеек.

Клетка – это элементарная структурная и функциональная единица живых организмов, потому, что в природе нет более мелких систем, которым были бы присущи все без исключения признаки живого:

· Обмен веществ

· Рост, развитие

· Воспроизведение себе подобных

· Реагирование на внешние воздействия (раздражимость)

· Способность к движению

Таким образом, клетка является низшей ступенью организации живой материи.

К началу 19 в. представления о клеточном строении получили широкое распространение и признание. В 30-х годах 19 в. Роберт Броун – шотландский ученый обнаружил в растительных клетках ядро. Затем ядра были обнаружены и в других клетках. Сопоставление наблюдений за растительными и животными клетками обнаружило сходство в их строении и организации. В это же время были сформулированы основные положения клеточной теории.

В настоящее время положения клеточной тео рии формулируются так:

1. Клетка является основной структурной и функциональной единицей жизни. Все организмы состоят из клеток, жизнь организма обусловлена взаимодействием составляющих его клеток.

2. Клетки всех организмов сходны по своему химическому составу, строению и функциям

3. Все новые клетки образуются путем деления исходных клеток.

4. Все клетки состоят из 3-х основных частей:

· Клеточная мембрана

· Цитоплазма

· Клеточное ядро или его функциональный аналог.

Существуют два основных типа клеточного строения, которые отличаются друг от друга рядом фундаментальных признаков. Это прокариотические и эукариотические клетки.

Микроорганизмы, имеющие истинное ядро называются эукариоты. К ним относят микроскопические грибы, дрожжи, водоросли и простейшие. Микроорганизмы, не имеющие четко выраженного ядра, называются прокариотами. К ним относятся бактерии и сине-зеленые водоросли (цианобактерии).

Органические соединения.

Органические вещества – важные и необходимые компоненты клетки, они являются поставщиками энергии, без которой невозможно проявление любой формы жизнедеятельности; они образуют структуры клетки.

Белки - полимеры аминокислот.

Существует 20 независимых аминокислот, входящих в белки.

Функции белков:

Строительная

Каталитическая

Сигнальная

Энергетическая

Защитная

Двигательная

Транспортная

Белки - обязательная составная часть всех клеток. В жизни всех организмов белки имеют первостепенное значение. В состав белка входят углерод, водород, азот, некоторые белки содержат еще и серу. Роль мономеров в белках играют аминокислоты. У каждой аминокислоты имеется карбоксильная группа (-СООН) и аминогруппа (-NH2). Наличие в одной молекуле кислотной и основной групп обусловливает их высокую реактивность. Между соединившимися аминокислотами возникает связь называемая пептидной, а образовавшееся соединение нескольких аминокислот называют пептидом. Соединение из большого числа аминокислот называют полипептидом. В белках встречаются 20 аминокислот, отличающихся друг от друга своим строением. Разные белки образуются в результате соединения аминокислот в разной последовательности. Огромное разнообразие живых существ в значительной степени определяется различиями в составе имеющихся у них белков.

В строении молекул белков различают четыре уровня организации:

Первичная структура - полипептидная цепь из аминокислот, связанных в определенной последовательности ковалентными (прочными) пептидными связями.

Вторичная структура - полипептидная цепь, закрученная в виде спирали. В ней между соседними витками возникают мало прочные водородные связи. В комплексе они обеспечивают довольно прочную структуру.

Третичная структура представляет собой причудливую, но для каждого белка специфическую конфигурацию - глобулу. Она удерживается мало прочными гидрофобными связями или силами сцепления между неполярными радикалами, которые встречаются у многих аминокислот. Благодаря их многочисленности они обеспечивают достаточную устойчивость белковой макромолекулы и ее подвижность. Третичная структура белков поддерживается также ковалентными S-S-связями возникающими между удаленными друг от друга радикалами серосодержащей аминокислоты - цистеина.

Благодаря соединению нескольких молекул белков между собой образуется четвертичная структура. Если пептидные цепи уложены в виде клубка, то такие белки называются глобулярными. Если полипептидные цепи уложены в пучки нитей, они носят название фибриллярных белков.

Нарушение природной структуры белка называют денатурацией. Она может возникать под действием высокой температуры, химических веществ, радиации и т.д. Денатурация может быть обратимой (частичное нарушение четвертичной структуры) и необратимой (разрушение всех структур).

Функции белков:

1. каталитическая (ферментативная) - расщепление питательных веществ в пищеварительном тракте, фиксация углерода при фотосинтезе, участие в реакциях матричного синтеза;

2. транспортная - транспорт ионов через клеточные мембраны, транспорт кислорода и углекислого газа гемоглобином, транспорт жирных кислот сывороточным альбумином;

3. защитная - антитела, обеспечивающие иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь;

4. структурная - кератин волос и ногтей, коллаген хрящей, сухожилий, соединительных тканей;

5. сократительная- сократимые белки мышц: актин и миозин;

6. рецепторная - примером могут служить фитохром - светочувствительный белок, регулирующий фотопериодическую реакцию в растениях, и опсин - составная часть родопсина - пигмента, находящегося в клетках сетчатки глаза.

27 августа 2017

Как известно, все вещества могут быть поделены на две большие категории - минеральные и органические. Можно привести большое количество примеров неорганических, или минеральных, веществ: соль, сода, калий. Но какие типы соединений попадают во вторую категорию? Органические вещества представлены в любом живом организме.

Белки

Важнейшим примером органических веществ являются белки. В их состав входит азот, водород и кислород. Помимо них, иногда в некоторых белках также можно обнаружить атомы серы.

Белки являются одними из важнейших органических соединений, и они наиболее часто встречаются в природе. В отличие от других соединений, белкам свойственны некоторые характерные черты. Главное их свойство - это огромная молекулярная масса. Например, молекулярный вес атома спирта составляет 46, бензола - 78, а гемоглобина - 152 000. По сравнению с молекулами других веществ, белки являются настоящими великанами, содержащими в себе тысячи атомов. Иногда биологи называют их макромолекулами.

Белки являются самыми сложными из всех органических строений. Они относятся к классу полимеров. Если рассмотреть молекулу полимера под микроскопом, то можно увидеть, что она представляет собой цепь, состоящую из более простых структур. Они носят название мономеров и повторяются в полимерах множество раз.

Помимо белков существует большое количество полимеров - каучук, целлюлоза, а также обычный крахмал. Также немало полимеров создано и руками человека - капрон, лавсан, полиэтилен.

Образование белка

Как же образуются белки? Они представляют собой пример органических веществ, состав которых в живых организмах определяется генетическим кодом. При их синтезе в подавляющем большинстве случаев используются различные комбинации 20 аминокислот.

Также новые аминокислоты могут образовываться уже когда белок начинает функционировать в клетке. При этом в нем встречаются только альфа-аминокислоты. Первичная структура описываемого вещества определяется последовательностью остатков аминокислотных соединений. И в большинстве случаев полипептидная цепь при образовании белка закручивается в спираль, витки которой располагаются тесно друг к другу. В результате образования водородных соединений она имеет достаточно прочную структуру.

Видео по теме

Жиры

Другим примером органических веществ могут послужить жиры. Человеку известно немало видов жиров: сливочное масло, говяжий и рыбий жир, растительные масла. В больших количествах жиры образуются в семенах растений. Если очищенную семечку подсолнечника положить на лист бумаги и придавить, то на листе останется маслянистое пятно.

Углеводы

Не менее важными в живой природе являются углеводы. Они содержатся во всех органах растений. К классу углеводов относится сахар, крахмал, а также клетчатка. Богаты ими клубни картофеля, плоды банана. Очень легко обнаружить крахмал в картофеле. При реакции с йодом этот углевод окрашивается в синий цвет. В этом можно убедиться, если капнуть на срез картофелины немного йода.

Также несложно обнаружить и сахара - они все имеют сладкий вкус. Много углеводов этого класса содержится в плодах винограда, арбузов, дыни, яблони. Они представляют собой примеры органических веществ, которые также производятся в искусственных условиях. Например, из сахарного тростника добывается сахар.

А как образуются углеводы в природе? Самым простым примером является процесс фотосинтеза. Углеводы представляют собой органические вещества, в которых содержится цепь из нескольких углеродных атомов. Также в их состав входит несколько гидроксильных групп. В процессе фотосинтеза сахар неорганических веществ образуется из оксида углерода и серы.

Клетчатка

Еще одним примером органических веществ является клетчатка. Больше всего ее содержится в семенах хлопка, а также стеблях растений и их листьях. Клетчатка состоит их линейных полимеров, ее молекулярная масса составляет от 500 тысяч до 2 млн.

В чистом виде она представляет собой вещество, у которого отсутствует запах, вкус и цвет. Применяется оно при изготовлении фотопленки, целлофана, взрывчатки. В организме человека клетчатка не усваивается, однако является необходимой частью рациона, поскольку стимулирует работу желудка и кишечника.

Вещества органические и неорганические

Можно привести немало примеров образования органических и неорганических веществ. Вторые всегда происходят из минералов - неживых природных тел, которые образуются в глубинах земли. Они входят и в состав различных горных пород.

В естественных условиях неорганические вещества образуются в процессе разрушения минералов либо органических веществ. С другой стороны, из минералов постоянно образуются вещества органические. Например, растения поглощают воду с растворенными в ней соединениями, которые в дальнейшем переходят из одной категории в другую. Живые организмы используют для питания главным образом органические вещества.

Причины разнообразия

Нередко школьникам или студентам нужно ответить на вопрос о том, в чем заключаются причины многообразия органических веществ. Главный фактор состоит в том, что атомы углерода соединяются между собой при помощи двух типов связей - простых и кратных. Также они могут образовывать цепи. Еще одной причиной является разнообразие различных химических элементов, которые входят в органические вещества. Кроме того, многообразие обусловлено и аллотропией - явлением существования одного и того же элемента в различных соединениях.

А как образуются неорганические вещества? Природные и синтетические органические вещества и их примеры изучаются как в старших классах школы, так и в профилированных высших учебных заведениях. Образование неорганических веществ - это не такой сложный процесс, как образование белков или углеводов. Например, соду с незапамятных времен люди добывали из содовых озер. В 1791 году ученый-химик Николя Леблан предложил синтезировать ее в лабораторных условиях с использованием мела, соли, а также серной кислоты. Когда-то всем привычная сегодня сода была достаточно недешевым продуктом. Для проведения опыта было необходимо прокалить поваренную соль вместе с кислотой, а затем образовавшийся сульфат прокалить вместе с известняком и древесным углем.

Другим примером неорганических веществ является марганцовка, или перманганат калия. Это вещество получают в промышленных условиях. Процесс образования заключается в электролизе раствора гидроксида калия и марганцевого анода. При этом анод постепенно растворяется с образованием раствора фиолетового цвета - это и есть всем известная марганцовка.


1 Органические и неорганические вещества

I. Неорганические соединения.

1.Вода, её свойства и значение для биологических процессов.

Вода - универсальный растворитель. Она имеет высокую теплоёмкость и одновременно высокую для жидкостей теплопроводность. Эти свойства делают воду идеальной жидкостью для подержания теплового равновесия организма.

Благодаря полярности своих молекул вода выступает в роли стабилизатора структуры.

Вода - источник кислорода и водорода, она является основной средой где протекают биохимические и химические реакции, важнейшим реагентом и продуктом биохимических реакций.

Для воды характерна полная прозрачность в видимом участке спектра, что имеет значение для процесса фотосинтеза, транспирации.

Вода практически не сжимается, что очень важно для придания формы органам, создания тургора и обеспечения определённого положения органов и частей организма в пространстве.

Благодаря воде возможно осуществление осмотических реакций в живых клетках.

Вода - основное средство передвижения веществ в организме (кровообращение, восходящий и нисходящий токи растворов по телу растения и т.д.).

2. Минеральные вещества.

В составе живых организмов современными методами химического анализа обнаружено 80 элементов периодической системы. По количественному составу их разделяют на три основные группы.

Макроэлементы составляют основную массу органических и неорганических соединений, концентрация их колеблется от 60% до 0.001% массы тела (кислород, водород, углерод, азот, сера, магний, калий, натрий, железо и др.).

Микроэлементы - преимущественно ионы тяжёлых металлов. Содержатся в организмах в количестве 0.001% - 0.000001% (марганец, бор, медь, молибден, цинк, йод, бром).

Концентрация ультрамикроэлементов не превышает 0.000001%. Физиологическая роль их в организмах полностью ещё не выяснена. К этой группе относятся уран, радий, золото, ртуть, цезий, селен и много других редких элементов.

Основную массу тканей живых организмов, населяющих Землю составляют органогенные элементы: кислород, углерод, водород и азот, из которых преимущественно построены органические соединения - белки, жиры, углеводы.

II. Роль и функция отдельных элементов.

Азот у автотрофных растений является исходным продуктом азотного и белкового обмена. Атомы азоты входят в состав многих других небелковых, однако важнейших соединений: пигментов (хлорофилл, гемоглобин), нуклеиновых кислот, витаминов.

Фосфор входит в состав многих жизненно важных соединений. Фосфор входит в состав АМФ, АДФ, АТФ, нуклеотидов, фосфосфорилированных сахаридов, некоторых ферментов. Многие организмы содержат фосфор в минеральной форме (растворимые фосфаты клеточного сока, фосфаты костной ткани).

После отмирания организмов фосфорные соединения минерализуются. Благодаря корневым выделениям, деятельности почвенных бактерий осуществляется растворение фосфатов, что делает возможным усвоение фосфора растительными, а потом и животными организмами.

Сера участвует в построении серусодержащих аминокислот (цистина, цистеина), входит в состав витамина B1 и некоторых ферментов. Особенно большое значение имеет сера и её соединения для хемосинтезирующих бактерий. Соединения серы образуются в печени как продукты обеззараживания ядовитых веществ.

Калий содержится в клетках только в виде ионов. Благодаря калию цитоплазма имеет определённые коллоидные свойства; калий активирует ферменты белкового синтеза обусловливает нормальный ритм сердечной деятельности, участвует в генерации биоэлектрических потенциалов, в процессах фотосинтеза.

Натрий (содержится в ионной форме) составляет значительную часть минеральных веществ крови и благодаря этому играет важную роль в регуляции водного обмена организма. Ионы натрия способствуют поляризации клеточной мембраны; нормальный ритм сердечной деятельности зависит от наличия в питательной среде в необходимом количестве солей натрия, калия, а также кальция.

Кальций в ионном состоянии является антагонистом калия. Он входит в состав мембранных структур, в виде солей пектиновых веществ склеивает растительные клетки. В растительных клетках часто содержится в виде простых, игловидных или сросшихся кристаллов оксалата кальция.

Магний содержится в клетках в определённом соотношении с кальцием. Он входит в состав молекулы хлорофилла, активирует энергетический обмен и синтез ДНК.

Железо является составной частью молекулы гемоглобина. Оно участвует в биосинтезе хлорофилла, поэтому при недостатке железа в почве у растений развивается хлороз. Основная роль железа - участие в процессах дыхания, фотосинтеза путём перенесения электронов в составе окислительных ферментов - каталазы, ферредоксина. Определённый запас железа в организме животных и человека сохраняется в желесодержащем белке ферритине, содержащемся в печени, селезёнке.

Медь встречается в организмах животных и растений, где она играет важную роль. Медь входит в состав некоторых ферментов(оксидаз). Установлено значение меди для процессов кроветворения, синтеза гемоглобина и цитохромов.

Ежесуточно в организм человека с пищей поступает 2 мг меди. У растений медь входит в состав многих ферментов, которые участвуют в темновых реакциях фотосинтеза и других биосинтезах. У больных недостатком меди животных наблюдается анемия, потеря аппетита, заболевания сердца.

Марганец - микроэлемент, при недостаточном количестве которого у растений возникает хлороз. Большая роль принадлежит марганцу и в процессах восстановления нитратов в растениях.

Цинк входит в состав некоторых ферментов, активизирующих расщепление угольной кислоты.

Бор влияет на ростовые процессы, особенно растительных организмов. При отсутствии в почве этого микроэлемента у растений отмирают проводящие ткани, цветки и завязь.

В последнее время микроэлементы достаточно широко применяются в растениеводстве (предпосевная обработка семян), в животноводстве (микроэлементные добавки к корму).

Другие неорганические компоненты клетки чаще всего находятся в виде солей, диссоциированных в растворе на ионы, или в нерастворённом состоянии (соли фосфора костной ткани, известковые или кремниевые панцири губок, кораллов, диатомовых водорослей и др.).

III. Органические соединения.

Углеводы (сахариды). Молекулы этих веществ построены всего из трёх элементов - углерода, кислорода и водорода. Углероды являются основным источником энергии для живых организмов. Кроме того, они обеспечивают организмы соединениями, которые используются в дальнейшем для синтеза других соединений.

Наиболее известными и распространёнными углеводами являются растворённые в воде моно- и дисахариды. Они кристаллизуются, сладкие на вкус.

Моносахариды (монозы) - соединения, которые не могут гидролизоваться. Сахариды могут полимеризоваться, образуя более высокомолекулярные соединения - ди-, три- , и полисахариды.

Олигосахариды. Молекулы этих соединений построены из 2 - 4 молекул моносахаридов. Эти соединения также могут кристаллизоваться, легко растворимы в воде, сладкие на вкус и имеют постоянную молекулярную массу. Примером олигосахаридов могут быть дисахариды сахароза, мальтоза, лактоза, тетрасахарид стахиоза и др.

Полисахариды (полиозы) - нерастворимые в воде соединения (образуют коллоидный раствор), не имеющие сладкого вкуса, Как и предыдущая группа углеводов способны гидролизоваться (арабаны, ксиланы, крахмал, гликоген). Основная функция этих соединений - связывание, склеивание клеток соединительной ткани, защита клеток от неблагоприятных факторов.

Липиды - группа соединений, которые содержатся во всех живых клетках, они нерастворимы в воде. Структурными единицами молекул липидов могут быть либо простые углеводородные цепи, либо остатки сложных циклических молекул.

В зависимости от химической природы липиды разделяют на жиры и липоиды.

Жиры (триглицериды, нейтральные жиры) являются основной группой липидов. Они представляют собой сложные эфиры трёхатомного спирта глицерина и жирных кислот или смесь свободных жирных кислот и триглицеридов.

Встречаются в живых клетках и свободные жирные кислоты: пальмитиновая, стеариновая, рициновая.

Липоиды - жироподобные вещества. Имеют большое значение, так как благодаря своему строению образуют чётко ориентированные молекулярные слои, а упорядочённое расположение гидрофильных и гидрофобных концов молекул имеет первоочередное значение для формирования мембранных структур с избирательной проницаемостью.

Ферменты. Это биологические катализаторы белковой природы, способные ускорять биохимические реакции. Ферменты не разрушаются в процессе биохимических превращений, поэтому сравнительно небольшое их количества катализируют реакции большого количества вещества. Характерным отличием ферментов от химических катализаторов является их способность ускорять реакции при обычных условиях.

По химической природе ферменты делятся на две группы - однокомпонентные (состоящие только из белка, их активность обусловлена активным центром - специфической группы аминокислот в белковой молекуле (пепсин, трипсин)) и двухкомпонентные (состоящие из белка (апофермента - носителя белка) и белкового компонента (коферментом), причём химическая природа коферментов бывает разной, так как они могут состоять из органических (многие витамины, НАД, НАДФ) или неорганических (атомы металлов: железа, магния, цинка)).

Функция ферментов заключается в снижении энергии активации, т.е. в снижении уровня энергии, необходимой для придания реакционной способности молекуле.

Современная классификация ферментов основывается на типах катализируемых ими химических реакций. Ферменты гидролазы ускоряют реакцию расщепления сложных соединений на мономеры (амилаза (гидролизует крахмал), целлюлаза (разлагает целлюлозу до моносахаридов), протеаза (гидролизует белки до аминокислот)).

Ферменты оксидоредуктазы катализируют окислительно-восстановительные реакции.

Трансферазы переносят альдегидные, кетонные и азотистые группы от одной молекулы к другой.

Лиазы отщепляют отдельные радикалы с образованием двойных связей или катализируют присоединение групп к двойным связям.

Изомеразы осуществляют изомеризацию.

Лигазы катализируют реакции соединения двух молекул, используя энергию АТФ или другого триофасфата.

Пигменты - высокомолекулярные природные окрашенные соединения. Из нескольких сотен соединений этого типа важнейшими являются металлопорфириновые и флавиновые пигменты.

Металлопорфирин, в состав которого входит атом магния, образует основание молекулы зелёных растительных пигментов - хлорофиллов. Если на месте магния стоит атом железа, то такой металлопорфирин называют гемом.

В состав гемоглобина эритроцитов крови человека, всех других позвоночных и некоторых беспозвоночных входит окисное железо, которое и придаёт крови красный цвет. Гемеритрин придаёт крови розовый цвет (некоторые многощетинковые черви). Хлорокруорин окрашивает кровь, тканевую жидкость в зелёный цвет.

Наиболее распространенными дыхательными пигментами крови являются гемоглобин и гемоциан (дыхательный пигмент высших ракообразных, паукообразных, некоторых моллюсков спрутов).

К хромопротеидам относятся также цитохромы, каталаза, пероксидаза, миоглобин (содержится в мышцах и создаёт запас кислорода, что позволяет морским млекопитающим длительное время пребывать под водой).