Цели количественного анализа . Методы количественного анализа . Химические методы анализа. Гравиметрический и титриметрический методы анализа. Инструментальные методы анализа . Фотометрия и спектрофотометрия . Атомно-абсорбционная спектроскопия . Атомно-эмисионная спектроскопия. А бсорбцион но- спектральный метод. Нефелометрический метод определения вещества . Эмиссионная пламенная фотометрия. Люминесцентный метод. Хроматографический анализ. Электрохимические методы. Потенциометрия. Поля рография. Кондуктометрия.

Количественный анализ - раздел аналитической химии, в задачу которого входит определение количества (содержания) элементов (ионов), радикалов, функциональных групп, соединений или фаз в анализируемом объекте.

Количественный анализ позволяет установить элементный и молекулярный состав исследуемого объекта или содержание отдельных его компонентов. В зависимости от объекта исследования различают неорганический и органический анализ. В свою очередь их разделяют на элементарный анализ, задача которого - установить, в каком количестве содержатся элементы (ионы) в анализируемом объекте, на молекулярный и функциональный анализы, дающие ответ о количественном содержании радикалов, соединений, а также функциональных групп атомов в анализируемом объекте.

Количественный анализ проводят в определенной последовательности, в которую входит отбор и подготовка проб, проведения анализа, обработка и расчет результатов анализа.

Количественный анализ широко используется для изучения состава руд, металлов, неорганических и органических соединений. В последние годы особое внимание обращается на определение содержания токсичных веществ в воздухе, водоемах, почвах, в продуктах: питания, различных товарах.

Классификация методов количественного анализа. Все методы количественного анализа можно разделить на две большие группы: химические и инструментальные. Это разделение условно, так как многие инструментальные методы основаны на использовании химических законов и свойств веществ.

Классическими методами химического количественного анализа являются гравиметрический (весовой) анализ и титриметрический (объемный) анализ .

Гравимитрический метод. Сущность метода заключается в получении труднорастворимого соединения, в которое входит определенный компонент. Для этого навеску вещества растворяют в том или ином растворителе, обычно в воде, осаждают с помощью реагента, образующего с анализируемым соединением малорастворимое соединение с низким значением ПР. Затем после фильтрования осадок высушивают, прокаливают и взвешивают. По массе вещества находят массу определяемого компонента и проводят расчет его массовой доли в анализируемой навеске.

Имеются разновидности гравиметрического метода. В методе отгонки анализируемый компонент выделяют в виде газа, который взаимодействует с реактивом. По изменению массы реактива судят о содержании определяемого компонента в навеске. Например, содержание карбонатов в породе можно определить путем воздействия на анализируемый образец кислотой, в результате которого выделяется СО 2 . Количество выделившегося С0 2 можно определить по изменению массы вещества, например СаО, с которым реагирует С0 2 .

Одним из основных недостатков гравиметрического метода является его трудоемкость и относительно большая продолжительность. Менее трудоемким является электрогравиметрический метод, при ко­тором определяемый металл, например медь, осаждают на катоде (платиновой сетке)

Сu 2+ + 2е = Сu

По разности массы катода до и после электролиза определяют массу металла в анализируемом растворе. Однако этот метод пригоден лишь для анализа металлов, на которых не выделяется водород (медь, серебро, ртуть).

Титриметрический анализ. Сущность метода заключается в измерении объема раствора того или иного реагента, израсходованного на реакцию с анализируемым компонентом. Для этих целей используют так называемые титрованные растворы, концентрация которых (обычно титр раствора) известны. Титром называется масса вещества, содержащегося в 1 мл (1 см 3) титрованного раствора (в г/мл и г/см 3). Определение проводят способом титрования, т.е. постепенного приливания титрованного раствора к раствору анализируемого вещества, объем которого точно измерен. Титрование прекращается при достижении точки эквивалентности, т.е. достижения эквивалентности реагента титруемого раствора и анализируемого компонента.

Существует несколько разновидностей титриметрического анализа: кислотно-основное титрование, осадительное титрование, комплексонометрическое титрование и окислительно-восстановительное титрование.

В основе кислотно-основного титрования лежит реакция нейтрализации

Н + + OН - ↔ Н 2 0

Метод позволяет определить концентрацию кислоты или катионов, гидролизирующихся с образованием ионов водорода, титрованием раствором щелочи или определить концентрацию оснований, в том числе анионов, гидролизирующихся с образованием гидроксид-ионов титрованием растворами кислот. Точка эквивалентности устанавливается при помощи кислотно-основных индикаторов, изменяющих окраску в определенном интервале рН. Например, методом кислотно-основного титрования можно определить карбонатную жесткость воды, т.е. концентрацию HCO 3 - в воде путем титрования ее раствора НСl в присутствии индикатора метилового оранжевого

HCO 3 - + H + →Н 2 0 + С0 2

В точке эквивалентности желтая окраска индикатора переходит в бледно-розовую. Расчет производится по уравнению закона эквивалентов/

Cэк, HC О3 ,V 1 = Cэк, HCl V 2,

где V 1 и V 2 - объемы анализируемого и титрованного растворов; С эк HCl - нормальная концентрация эквивалентов вещества НСl в титрованном растворе, с экНС03 - - определяемая молярная концентрация эквивалентов ионов НС0 3 - в анализируемом растворе.

При осадительном титровании анализируемый раствор титруется реагентом, образующим с компонентом титрованного раствора малорастворимое соединение. Точка эквивалентности определяется с помощью индикатора, образующего с реагентом окрашенное соединение, например, красный осадок Ag 2 Cr0 4 при взаимодействии индикатора К 2 Cr0 4 с избытком ионов Ag + при титровании раствора хлорида раствором нитрата серебра.

Комплексонометрическое титрование . При комплексонометрическом титровании определяемый компонент в растворе титруется раствором комплексона, чаще всего этилендиаминотетрауксуснои кислоты (ЕДТА, комплексона II) или ее двунатриевой соли (комплексона III или трилона Б). Комплексоны являются лигандами и образуют со многими катионами комплексы. Индикаторами точки эквивалентности обычно служат лиганды, образующие с анализируемым ионом окрашенное комплексное соединение. Например, индикатор хромоген черный с кальцием и магнием образует комплексы [Са Ind] - и - красного цвета. В результате титрования раствора винно-красного цвета, содержащего ионы кальция, магния и индикатор, раствором комплексона III кальций связывается в более прочный комплекс с комплексоном, в точке эквивалентности анионы индикатора освобождаются и придают раствору синюю окраску. Этот метод комплексонометрического титрования используется, например, для определения общей жесткости воды.

Окислительно-восстановительное титрование . Данный способ заключается в титровании раствора восстановителя титрованным раствором окислителя или в титровании раствора окислителя титрованным раствором восстановителя. В качестве титрованных растворов окислителей нашли применение растворы перманганата калия КМn0 4 (перманганатометрия), дихромата калия К 2 Сг 2 0 7 (дихроматометрия), иода I 2 (иодометрия).

При перманганатометрическом титровании в кислой среде Мn (VII) (малиновая окраска) переходит в Мn (II) (бесцветный раствор). Например, перманганатометрическим титрованием можно определить содержание нитритов в растворе

2KMn0 4 + 5KN0 2 + 3H 2 S0 4 = 2MnS0 4 + K 2 S0 4 + 5KN0 3 + ЗН 2 0

При дихроматометрическом титровании индикатором служит дифениламин, окрашивающий раствор в синий цвет при избытке дихромат-ионов. При иодометрическом титровании индикатором служит крахмал. Иодометрическое титрование используется для анализа растворов окислителей, в этом случае титрованный раствор содержит иодид-ион. Например, медь можно определить титрованием ее растворов раствором иодида

2Си 2+ + 4Г = 2CuI +I 2

Затем образующийся раствор титруется титрованным раствором тиосульфата натрия Na 2 S 2 0 3 с индикатором крахмалом, добавляемым в конце титрования

2Na 2 S 2 0 3 +I 2 = 2NaI + Na 2 S 4 0 6

Методы количественного анализа. Количественный анализ предназначен для определения количественного состава анализируемого вещества. Существуют химические, физические и физико-химические методы количественного анализа. Основой всякого количественного исследования является измерение. Химические методы количественного анализа основаны на измерении массы и объема. Количественные исследования позволили ученым установить такие основные законы химии, как закон сохранения массы вещества, закон постоянства состава, закон эквивалентов и др. законы, на которых основана химическая наука. Принципы количественного анализа являются основной для химико-аналитического контроля производственных процессов различных отраслей промышленности и составляют предмет т. н. технического анализа. Различают 2-ва основных метода количественного химического анализа: весовой или гравиметрический и объемный или титриметрический.

Весовым анализом наз-ся метод количественного анализа, в котором точно измеряют только массу. Объемный анализ - основан на точном измерении массы веществ и объема раствора реактива известной концентрации, реагирующего с определенным количеством анализируемого вещества. Особым видом кол-го анализа является анализ газов и газовых смесей, т.н. газовый анализ, выполняемый тоже путем измерения объема или массы анализируемой смеси или газа. Определение одного и того же вещества можно выполнить весовым или объемным методами анализа. Выбирая метод определения, аналитик должен учитывать необходимую точность результата, чувствительность реакции и быстроту выполнения анализа, а в случае массовых определений - доступность и стоимость применяемых реактивов.

В связи с зтим различают макро-, микро-, полумикро-, ультрамикрометоды кол-го анализа, при помощи которых можно проводить анализ минимальных количеств анализируемого вещества. В настоящее время простые химические методы все больше вытесняются физическими и физико-химическим методами, для работы с которыми необходимы дорогостоящие приборы и оборудование. Оптические, электрохимические, хроматографические, различные спектро- и фотометрические исследования (инфракрасная, атомноадсорбционная, пламенная и т.д.), потенциометрия, полярография, масс-спектрометрия, ЯМР исследования. С одной стороны эти методы ускоряют получение результатов, повышают их точность и чувствительность измерений: предел обнаружения (1-10 -9 мкг) и предельная концентрация (до 10 -15 г/мл), селективность (можно определять составные компоненты смеси без их разделения и выделения), возможность их компьютеризации и автоматизации.

Но с другой стороны все более удаляют от химии, снижают знание химических методов анализа у аналитиков, что и привело к ухудшению преподавания химии в школах, отсутствию хороших учителей-химиков, оснащенных школьных химических лабораторий, снижению знаний по химии у школьников. К недостаткам следует отнести сравнительно большую ошибку определения (от 5 до 20 %, в то время как химический анализ дает ошибку обычно от 0,1 до 0,5 %), сложность аппаратуры и ее высокую стоимость. Требования, предъявляемые к реакциям в количественном анализе. Реакции должны протекать быстро, до конца, по возможности, - при комнатной температуре. Исходные вещества, вступающие в реакцию, должны реагировать в строго определенных количественных соотношениях (стехиометрически) и без побочных процессов. Примеси не должны мешать проведению количественного анализа. При проведении измерений не исключены ошибки, погрешности измерений и расчетов. Для исключения ошибок, сведения их к минимуму, измерение проводят в повторностях (параллельных определениях), не менее 2-х и проводят метрологическую оценку результатов (имеется в виду правильность и воспроизводимость результатов анализа).

Классификация химических методов количественного анализа:

Титриметрический метода. Измерение объема израсходованного на реакцию раствора реактива точно известной концентрации.

Гравиметрический. Измерение массы определяемого вещества или его составных частей, выделяемых в виде соответствующих соединений.

Важнейшими характеристиками методов анализа является их чувствительность и точность. Чувствительностью метода анализа называют наименьшее количество вещества, которое можно достоверно определить данным методом. Точностью анализа называют относительную ошибку определения, которая представляет собой отношение разности найденного (х 1) и истинного (х) содержания вещества к истинному содержанию вещества и находят по формуле:

Отн. ош.= (х 1 -х)/ х, для выражения в процентах умножают на 100. За истинное содержание принимают среднеарифметическое содержание вещества, найденное при анализе пробы в 5 -7 определениях.

Весовым (гравиметрическим) анализом называют метод количественного анализа, при котором количественный состав анализируемого вещества устанавливают на основании измерений масс, путем точного взвешивания массы устойчивого конечного вещества известного состава, в которое полностью переведен данный определяемый компонент. Например, гравиметрическое определение серной к-ты в водном растворе осуществляется с помощью водного раствора соли бария: ВаС1 2 + Н 2 SО 4 > ВаSО 4 v +2 НСl. Осаждение проводят в таких условиях, в которых практически весь сульфат-ион переходит в осадок ВаSО 4 с наибольшей полнотой - количественно, с минимальными потерями, вследствие незначительной, но все же имеющейся растворимости сульфата бария.

Далее осадок отделяют от раствора, промывают для удаления растворимых примесей, высушивают, прокаливают, для удаления летучих сорбированных примесей и взвешивают на аналитических весах в виде чистого безводного сульфата бария. А затем рассчитывают массу серной кислоты. Классификация методов гравиметрического анализа. Методы осаждения, отгонки, выделения, термогравиметрические методы (термогравиметрия). Методы осаждения - определяемую составную часть количественно связывают в такое химическое соединение, в виде которого она может быть выделена и взвешена. Состав этого соединения должен быть строго определенным, т.е. точно выражаться химической формулой, и оно не должно содержать каких-либо посторонних примесей. Соединение, в виде которого определяемую составную часть взвешивают, называют весовой формой.

Пример, определение Н 2 SО 4 (выше), определение массовой доли железа в его растворимых солях, основанное на осаждении железа (111) в форме гидроксида Fе(ОН) 3 хН 2 О с последующим его отделением и прокаливанием до оксида Fе 2 О 3 (весовая форма). Методы отгонки. Определяемый компонент выделяют из анализируемой пробы в виде газообразного вещества и измеряют либо массу отогнанного вещества (прямой метод), либо массу остатка (косвенный метод). Прямой метод широко используется для определения содержания воды в анализируемых веществах путем ее отгонки из взвешенного образца и конденсации, а затем измеряют объем конденсированной воды в приемнике. По плотности пересчитывают объем воды на массу и, зная массу образца и воды, рассчитывают содержание воды в анализируемой пробе. Косвенный метод отгонки широко применяют для определения содержания летучих веществ (включая слабосвязанную воду) по изменению массы образца до и после высушивания до постоянного веса в термостате (в сушильном шкафу) при постоянной температуре.

Условия проведения таких испытаний (температура, время сушки) определяются природой образца и конкретно указываются в методических руководствах. Методы выделения основаны на выделении из раствора определяемого компонента путем электролиза на одном из электродов (электрогравиметрический метод). Затем электрод с выделевшимся веществом промывают, высушивают и взвешивают. По увеличению массы электрода с веществом находят массу выделившегося на электроде вещества (сплавы золота, меди переводят в раствор). Термогравиметрические методы не сопровождаются отделением исследуемого вещества, а исследуется сам образец поэтому эти методы условно относят к гравиметрическим методам анализа. Методы основаны на измерении массы анализируемого вещества при его непрерывном нагревании в заданном температурном интервале на специальных приборах - дериватографах.

По полученным термогравиграммам при их расшифровке можно определить содержание влаги и других составляющих анализируемого вещества. Основные этапы гравиметрического определения: расчет массы навески анализируемой пробы и объема (или массы) осадителя; взвешивание (взятие) навески образца; растворение навески анализируемого образца; осаждение, т.е. получение осаждаемой формы определяемого компонента; фильтрование (отделение осадка от маточного раствора); промывание осадка; высушивание и (при необходимости) прокаливание осадка до постоянной массы, т. е. получение гравиметрической формы; взвешивание гравиметрической формы; расчет результатов анализа, их статистическая обработка и представление. Каждая из этих операций имеет свои особенности. При расчете оптимальной массы навески анализируемого вещества учитывают возможную массовую долю определяемого компонента в анализируемой пробе и в гравиметрической форме, массу гравиметрической формы, систематическую ошибку взвешивания на аналитических весах (обычно 0,0002), характер получаемого осадка - аморфный, мелкокристаллический, крупнокристаллический. Расчет исходной навески ведут исходя из того, что масса гравиметрической навески должна быть не меньше 0,1 г.

В общем случае нижний предел оптимальной массы m исходной навески анализируемого вещества (в граммах) рассчитывают по формуле:

m = 100m (ГФ) F/ W(X),

где m(ГФ) - масса гравиметрической формы в граммах; F - гравиметрический фактор, фактор пересчета, аналитический множитель); W(X) - массовая доля (в %) определяемого компонента в анализируемом веществе. Гравиметрический фактор F численно равен массе определяемого компонента в граммах, соответствующий одному грамму гравиметрической формы.

Гравиметрический фактор рассчитывают по формуле как отношение молярной массы М(Х) определяемого компонента Х к молярной массе гравиметрической формы М(ГФ), умноженное на число n молей определяемого компонента, из которого получается один моль гравиметрической формы:

F = n M(X) / M (ГФ).

Так, если из 2-х молей Fе С1 3 6Н 2 О получается один моль гравиметрической формы Fе 2 О 3 , то n = 2. Если из одного моля Ва(NО 3) 2 получают один моль гравиметрической формы ВаСrО 4 , то n = 1.

Задача количественного анализа состоит в получении информации о содержании элементов (ионов), радикалов, функциональных групп, соединений или фаз в анализируемом объекте, а также в разработке методов, с помощью которых получают эту информацию. При количественном анализе измеряют интенсивность аналитического сигнала, т.е. находят численное значение оптической плотности раствора, расхода раствора на титрование, массы прокаленного осадка и т.п. По результатам количественного измерения сигнала рассчитывают содержание определяемого компонента в пробе. Результаты определений обычно выражают в массовых долях, %.

С помощью количественного анализа находят массовые соотношения между элементами в соединениях, определяют количество растворенного вещества в определенном объеме раствора, иногда узнают содержание какого-нибудь элемента в однородной смеси веществ, например углерода в нефти или в природном газе. В сельскохозяйственной практике чаще всего определяют содержание того или иного компонента в неоднородных веществах, например: азота, Р 2 О 5 или К 2 О - в азотных, фосфорных или калийных удобрениях, микроэлементов - в почве, cсахаров - в растительном материале и т.п.

Количественный анализ нужен при оценке месторождений полезных ископаемых, для, металлургии и химической промышленности, имеет значение для биологии и агрохимии, почвоведения, физиологии растений и др.

Новые проблемы перед количественным анализом ставит развивающееся народное хозяйство - промышленность и земледелие; таковы, например, разработка методов разделения и количественного определения «редких» или рассеянных элементов (урана, титана, циркония, ванадия, молибдена, вольфрама и др.); определение ничтожно малых количеств примесей некоторых элементов (мышьяка, фосфора и др.) во многих металлах и микроэлементов в биологическом материале, в почвах.

Количественный анализ позволяет биологам получить необходимые сведения о составе организмов животных и растений, изучить влияние отдельных элементов на их рост, развитие и продуктивность.

Основные объекты количественного исследования в сельском хозяйстве - это почва, растения, удобрения, сельскохозяйственные яды, корма и т.п. Почвы анализируют для того, чтобы определить степень обеспеченности растений питательными веществами. Количественный анализ минеральных удобрений служит для проверки содержания в них полезных для сельскохозяйственных культур компонентов (азота, Р 2 О 5 , К 2 О), а анализ сельскохозяйственных ядов - для нахождения количества действующего начала. Состав кормов необходимо знать, чтобы правильно составить рационы животных. Анализируют также продукцию животноводства и растениеводства.

В последнее время из-за повышенного содержания нитратов в почвах, питьевой воде и продуктах растениеводства возникла необходимость контроля пищевых продуктов. Определяют содержание нитратов ионометрическим или фотометрическим методами.

Современные методы количественного анализа классифицируют по измеряемым свойствам, таким, как масса вещества, объем раствора реактива, интенсивность спектральных линий элементов, поглощение видимого, инфракрасного или ультрафиолетового излучения, рассеивание света суспензиями, вращение плоскости поляризации, адсорбционные свойства сорбентов, электрическая проводимость раствора, электродный потенциал, сила диффузного тока, число радиоактивных частиц и т.п.

Методы количественного анализа подразделяют на химические, физические и физико-химические.

К химическим методам относят гравиметрический, титриметрческий и газоволюметрический анализы.

Физические и физико-химические методы анализа условно называют инструментальными.

Кроме того, существуют так называемые методы разделения смесей веществ (или ионов). К ним, помимо различных видов хроматографии, относят экстракцию органическими растворителями, возгонку (и сублимацию), дистилляцию (т.е. отгонку летучих компонентов), химические методы фракционного осаждения и соосаждения.

Разумеется, приведенная классификация не охватывает все методы, используемые современным количественным анализом; в ней перечислены только наиболее распространенные из них.

2. ОПРЕДЕЛЕНИЕ КОНСТАНТЫ ДИССОЦИАЦИИ

Электролитическая диссоциация - обратимый процесс, приводящий к равновесию между недиссоциированными молекулами и ионами, поэтому к ней применим закон действующих масс. Ионизация слабого электролита протекает по схеме

АВ « А + + В —

Если обозначить равновесную концентрацию недиссоциированных молекул [АВ], а концентрации ионов - соответственно [А + ] и [В — ], то константа равновесия примет вид

[А + ][В]/[АВ] = К (*)

Величину К называют константой диссоциации электролита . Она характеризует его склонность к ионизации. Чем; больше величина К, тем сильнее диссоциирует слабый электролит и тем выше концентрация его ионов в растворе при равновесии. Величину константы, диссоциации вычисляют, исходя из молярной концентрации раствора и степени ионизации слабого электролита (при постоянной температуре).

Между константой и степенью диссоциации слабого электролита существует взаимосвязь, которую можно выразить математически. Для этого обозначим молярную концентрацию электролита, распадающегося на два иона, через с , а степень его диссоциации - α . Тогда концентрация каждого из образующихся ионов будет равна с(1 – α), а концентрация недиссоциированных молекул с (1 - α ). Подставив эти обозначения в уравнение (*), получим

Это уравнение - математическое выражение закона разбавления Оствальда, который устанавливает зависимость между степенью диссоциации слабого электролита и его концентрацией.

У достаточно слабых электролитов в не слишком разбавленных растворах степень диссоциации а очень мала, а величина (1 - α) близка к единице. Поэтому для них

Рассмотренные закономерности позволяют вычислять константы диссоциации слабых электролитов по степени их диссоциации, найденной экспериментально, и наоборот.

Константой диссоциации, как и степенью диссоциации, характеризуют силу -кислот и оснований. Чем больше величина константы, тем сильнее электролит диссоциирован в растворе. Поскольку константа диссоциации не зависит от концентрации раствора, она лучше характеризует склонность электролита к распаду на ионы, чем степень диссоциации. Экспериментально доказано, что закон разбавления справедлив только для слабых электролитов.

В растворах многоосновных кислот, диссоциирующих по нескольким ступеням, устанавливается и несколько равновесий. Каждую такую степень характеризует своя константа диссоциации.

Используя константы диссоциации важнейших слабых электролитов, вычисляют степени их диссоциации.

а) Выражение константы диссоциации для гидрооксида калия

КОН « К + + ОН —


б) Выражение константы диссоциации уксусной кислоты:

Уравнение диссоциации

СН 3 СООН « Н + + СН 3 СОО —

Тогда константу диссоциации можно записать


в) Выражение константы диссоциации

НСN « H + + CN —

3. СУЩНОСТЬ И МЕТОДЫ ОБЪЕМНОГО АНАЛИЗА. ВЫЧИСЛЕНИЯ В ГРАВИМЕТРИЧЕСКОЙ АНАЛИЗЕ. ОПЕРАЦИИ ГРАВИМЕТРИЧЕСКОГО МЕТОДА АНАЛИЗА

«Классический» метод» – это титриметрический (объемный) анализ. Он основан на измерении объемов реагирующих растворов, причем концентрация раствора реактива должна быть точно известна. В объемном анализе реактив приливают к исследуемому раствору до того момента, когда прореагируют эквивалентные количества веществ. Определяют этот момент с помощью индикаторов или другими способами. Зная концентрацию и объем реактива, израсходованного на реакцию, вычисляют результат определения.

По типу используемых химических реакций методы титриметрического (объемного) анализа разделяют на три группы: 1) методы, основанные на реакциях соединения ионов; 2) методы, основанные на реакциях окисления - восстановления; 3) методы, основанные на реакциях комплексообразования. К первой группе относят методы кислотно-основного и осадительного титрования, ко второй - различные методы окислительно-восстановительного титрования и к третьей - методы комплексометрического (хелатометрического) титрования.

Метод кислотно-основного титрования (или нейтрализации) основан на взаимодействии кислот с основаниями.

Метод позволяет определять в растворах не только концентрацию кислот или оснований, но также и концентрацию гидролизующихся солей.

Для определения в растворах концентрации оснований или солей, дающих при протолизе щелочную реакцию, используют титрованные растворы кислот. Эти определения называют ацидиметрией.

Концентрацию кислот или гидролитически кислых солей определяют с помощью титрованных растворов сильных оснований. Такие определения относятся к алкалиметрии.

Точку эквивалентности при нейтрализации определяют по изменению окраски индикатора (метилового оранжевого, метилового красного, фенолфталеина).

Метод осадительного титрования . Определяемый элемент, взаимодействуя с титрованным раствором, может осаждаться в виде малорастворимого соединения. Последнее, изменяя свойства среды, позволяет тем или иным способом определить, точку эквивалентности.

Титриметрическим методам осаждения дают названия в зависимости от того, что служит титрантом.

Метод комплексометрического титрования объединяет титриметрические определения, основанные на образовании малоионизирующихся комплексных ионов (или молекул).

С помощью этих методов определяют различные катионы и анионы, обладающие свойством вступать в реакции комплексообразо-вания. В последнее время получили распространение методы анализа, основанные на взаимодействии катионов с органическими реактивами - комплексонами. Такое титрование называют комплексопометрическим или хелатометрическим.

Методы окислительно-восстановительного титрования (редоксметоды) основаны на окислительно-восстановительных реакциях между анализируемый веществом и титрованным раствором.

Используют их для количественного определения в растворах различных восстановителей или окислителей.

Гравиметрическим методом определяют, кроме того, кристаллизационную воду в солях, гигроскопическую воду в почве, удобрениях, растительном материале. Гравиметрически определяют содержание сухого вещества в плодах и овощах, клетчатки, а также «сырой» золы в растительном материале.

В ходе гравиметрического, определения различают следующие операции: 1) отбор средней пробы вещества и подготовку ее к анализу; 2) взятие навески; 3) растворение; 4) осаждение определяемого элемента (с пробой на полноту осаждения); 5) фильтрование; 6) промывание осадка (с пробой на полноту промывания); 7) высушивание и прокаливание осадка; 8) взвешивание; 9) вычисление результатов анализа.

Успешное выполнение определения требует помимо теоретических знаний хорошего владения техникой отдельных операций.

Перечисленные операции относятся к так называемым методам осаждения, широко используемым в гравиметрии.

Но в гравиметрии используют и другие методы.

Метод выделения основан на выделении определяемого компонента из анализируемого вещества и точном взвешивании его (например, золы из твердого топлива).

В методе отгонки определяемый компонент выделяют в виде летучего соединения действием кислоты или высокой температуры на анализируемое вещество. Так, определяя содержание оксида углерода (IV) в карбонатной породе, обрабатывают ее образец хлороводородной кислотой, выделившийся газ пропускают через поглотительные трубки со специальными реактивами и по увеличению их массы делают вычисление.

Обычно результаты гравиметрических определений выражают в массовых долях (%). Для этого нужно знать величину навески анализируемого вещества, массу полученного осадка и его химическую формулу.

Гравиметрические определения преследуют различные цели. В одних случаях необходимо определить содержание элемента в химически чистом веществе, например содержание бария в хлориде бария ВаС1 2 *2Н 2 О. В других случаях требуется найти содержание действующего начала в каком-нибудь техническом продукте или вообще в веществе, имеющем примеси. Например, приходится определять содержание хлорида бария ВаС1 2 *2Н 2 О в продажном хлориде бария. Техника определений в обоих случаях может оставаться одинаковой, но вычисления при этом различны. Рассмотрим ход вычислений на примерах.

Нередко для вычислений в гравиметрическом анализе используют факторы пересчета, называемые также аналитическими факторами. Фактор пересчета (Ф) представляет собой отношение молярной массы (или Мг) определяемого вещества к молярной массе вещества, находящегося в осадке:

М определяемого вещества___

М вещества, находящегося в осадке

Фактор пересчета показывает, сколько граммов определяемого вещества содержит 1 г осадка.

В практике технического и сельскохозяйственного анализа вычисления, как правило, производят по готовым формулам. При всех расчетах со сложными числами следует пользоваться микроЭВМ.

Большое значение имеют записи в лабораторном журнале. Они являются документом, подтверждающим выполнение анализа. Поэтому количественное определение кратко оформляют непосредственно на занятии. В журнал записывают дату, название анализа, методику определения (со ссылкой на учебник), данные всех взвешиваний или других измерений, вычисление результата.

СПИСОК ЛИТЕРАТУРЫ

    Крешков А.П. Основы аналитической химии.–М.: Химия, 1991.

    Аналитическая химия занимается исследованием экспериментальных методов определения состава веществ. Определение состава веществ включает выявление природы компонентов, из которых состоит исследуемое вещество, и установление количественных соотношений этих компонентов.

    Сначала устанавливают качественный состав исследуемого объекта, т.е. решают вопрос, из чего он состоит, а затем приступают к определению количественного состава, т.е. узнают, в каких количественных соотношениях обнаруженные составные части находятся в объекте исследования.

    Качественный анализ вещества можно проводить химическими, физическими, физико-химическими методами.

    Химические методы анализаоснованы на применении характерных химических реакций для установления состава анализируемого вещества.

    Химический анализ вещества проводят двумя способами: «сухим путем» или «мокрым путем». Анализ сухим путем - это химические реакции, происходящие с веществами при накаливании, сплавлении и окрашивании пламени.

    Анализ мокрым способом - это химические реакции, протекающие в растворах электролитов. Анализируемое вещество предварительно растворяют в воде или других растворителях. В зависимости от массы или объема взятого для анализа вещества, от применяемой техники различают макро-, полумикро- и микрометоды.

    Макрометод. Для проведения анализа берут 1-2 мл раствора, содержащего не менее 0,1 г вещества, и добавляют не менее 1 мл раствора реактива. Реакции проводят в пробирке, осадок отделяют фильтрованием. Осадок на фильтре промывают от примесей.

    Полумикрометод . Для анализа берут в 10-20 раз меньше вещества (до 0,01 г). Так как в этом методе работают с малыми количествами вещества, то пользуются микропробирками, часовыми или предметными стеклами. Для отделения осадка от раствора применяют центрифугирование.

    Микрометод. При выполнении анализа данным методом берут одну-две капли раствора, а сухого вещества - в пределах 0,001г. Характерные реакции проводят на часовом стекле или фарфоровой пластинке.

    При проведении анализа пользуются следующими операциями: нагревание и выпаривание, осаждение, центрифугирование, проверка полноты осаждения, отделение раствора (центрифуга) от осадка, промывание и растворение осадка.

    Нагревание растворов можно вести непосредственно пламенем газовой горелки, на асбестовой сетке или водяной бане. Небольшое количество раствора нагревают до температуры, не превышающей 100°С, на водяной бане, вода в которой должна кипеть равномерно.

    Для концентрирования растворов применяют водяную баню. Выпаривание раствора до сухого остатка проводят в фарфоровых чашках или тиглях, нагревая их на асбестовой сетке. Если сухой остаток после выпаривания необходимо прокалить для удаления летучих солей, то тигель ставят на фарфоровый треугольник и нагревают пламенем газовой горелки.


    Осаждение. Реакцию осаждения проводят в конических колбах или цилиндрической пробирках. В исследуемый раствор приливают пипеткой реактив-осадитель. Осадитель берут в избытке. Смесь тщательно перемешивают стеклянной палочкой и потирают о внутренние стенки пробирки, это ускоряет процесс образования осадка. Осаждение часто ведут из горячих растворов.

    Центрифугирование. Осадок отделяют от раствора центрифугированием, используя ручную или электрическую центрифугу. Пробирку с раствором и осадком помещают в гильзу. Центрифуга должна быть загружена равномерно. При быстром вращении центробежная сила отбрасывает частицы осадка на дно и уплотняет его, а раствор (центрифугат) становится прозрачным. Время вращения составляет от 30 с до нескольких минут.

    Проверка полноты осаждения. Пробирку осторожно вынимают из центрифуги и добавляют по стенке 1-2 капли реактива-осадителя к прозрачному раствору. Если раствор не мутнеет, значит осаждение полное. Если же наблюдается помутнение раствора, то в пробирку еще добавляют осадитель, содержимое перемешивают, нагревают и вновь центрифугируют, затем повторяют проверку полноты осаждения.

    Отделение раствора (центрифугата) от осадка. Убедившись в полноте осаждения, отделяют раствор от осадка. Раствор от осадка отделяют капельной пипеткой. Пипетку закрывают указательным пальцем и осторожно вынимают из пробирки. Если отобранный раствор необходим для анализа, то его переносят в чистую пробирку. Для полного отделения операцию повторяют несколько раз. При центрифугировании осадок может плотно осесть на дно пробирки, тогда раствор отделяют декантацией (осторожно сливают).

    Промывание осадка . Осадок (если он исследуется) необходимо хорошо отмыть; для этого приливают промывную жидкость, чаще всего дистиллированную воду. Содержимое тщательно перемешивают стеклянной палочкой и центрифугируют, затем промывную жидкость отделяют. Иногда в работе эту операцию повторяют 2-3 раза.

    Растворение осадка. Для растворения осадка в пробирку добавляют растворитель, помешивая стеклянной палочкой. Нередко растворение осадка ведут при нагревании на водяной бане.

    Для определения количественного состава вещества или продукта используются реакции нейтрализации, осаждения, окисления - восстановления, комплексообразования. Количество вещества можно определить по его массе или объему раствора, затраченного на взаимодействие с ним, а также по показателю преломления раствора, его электрической проводимости или интенсивности окраски и т.п.

    По количеству взятого для исследования вещества аналитические методы количественного анализа классифицируются следующим образом: макроанализ - 1-10 г твердого вещества, 10-100 мл анализируемого раствора; полумикроанализ - 0,05-0,5 твердого вещества, 1-10 мл анализируемого раствора; микроанализ - 0,001-1-10- 4 г твердого вещества, 0,1-1 * 10- 4 мл анализируемогораствора. В товароведной практике часто пользуются гравиметрическим (весовым) и титриметрическим (объемным) методами.

    Гравиметрический (весовой) анализ - один из методов количественного анализа, который позволяет определять состав анализируемого вещества путем измерения массы. Измерение массы (взвешивание) выполняется на аналитических весах с точностью 0,0002 г. Этот метод часто используется в пищевых лабораториях для определения влажности, зольности, содержания отдельных элементов или соединений. Анализ может быть выполнен одним из следующих способов.

    1. Определяемую составную часть количественно (полностью, насколько это возможно) выделяют из исследуемого вещества и взвешивают. Так определяют зольность продуктов. Взвешенный на аналитических весах исходный продукт (навеску) сжигают, полученную золу доводят до постоянной массы (прокаливают до тех пор, пока не перестанет изменяться масса) и взвешивают.

    Зольность продукта х (%) рассчитывают по формуле

    где В - масса прокаленной золы, г;

    А - исходная навеска продукта, г.

    2. Из навески исходного вещества полностью удаляют определяемую составную часть и остаток взвешивают. Так определяют влажность продуктов, при этом навеску исходного вещества высушивают в сушильном шкафу до постоянной массы.

    Влажность продукта х (%) рассчитывают по формуле

    где А - исходная навеска продукта, г;

    В - масса навески после высушивания, г.

    Объемный анализ - метод количественного анализа, где искомое вещество определяют по объему реактива с точно известной концентрацией, затраченному на реакцию с этим веществом.

    При определении объемным методом к известному объему раствора определяемого вещества малыми порциями (по каплям) добавляют реактив с точно известной концентрацией до тех пор, пока его количество не будет эквивалентно количеству определяемого вещества. Раствор реактива с точно известной концентрацией называется титрованным, рабочим или стандартным раствором.

    Процесс медленного прибавления титрованного раствора к раствору определяемого вещества называется титрованием. Момент, когда количество титрованного раствора будет эквивалентно количеству определяемого вещества, называется точкой эквивалентности или теоретической точкой конца титрования. Для определения точки эквивалентности пользуются индикаторами, которые вблизи ее претерпевают видимые изменения, выражающиеся в изменении цвета раствора, появлении помутнения или выпадении осадка.

    Важнейшие условия для правильного проведения объемно-аналитических определений: 1) возможность точного измерения объемов растворов; 2) наличие стандартных растворов с точно известной концентрацией; 3) возможность точного определения момента окончания реакции (правильный выбор индикатора).

    В зависимости от того, на какой реакции основано определение, различают следующие разновидности объемного метода:

    · метод нейтрализации

    · метод окисления - восстановления

    · метод осаждения и комплексообразования.

    В основе метода нейтрализации лежит реакция взаимодействия ионов Н + и ОН - . Метод применяется для определения кислот, оснований и солей (которые реагируют с кислотами или основаниями) в растворе. Для определения кислот используют титрованные растворы щелочей КОН или NаОН, для определения оснований - растворы кислот НС1, Н 2 SO 4 .

    Для определения содержания, например, кислоты в растворе точно отмеренный пипеткой объем раствора кислоты в присутствии индикатора титруют раствором щелочи точно известной концентрации. Точку эквивалентности определяют по изменению цвета индикатора. По объему щелочи, израсходованной на титрование, вычисляют содержание кислоты в растворе.

    Метод окисления - восстановления основан на окислительно-восстановительных реакциях, происходящих между стандартным раствором и определяемым веществом. Если стандартный раствор содержит окислитель (восстановитель), то определяемое вещество должно содержать соответственно восстановитель (окислитель). Метод окисления-восстановления подразделяется, в зависимости от используемого стандартного раствора на метод перманганатометрии, метод иодометрии и др.

    В основе метода осаждения лежат реакции, сопровождающиеся выпадением осадка. В отличие от гравиметрического метода обработку осадка здесь не производят, массу исследуемого вещества определяют по объему реактива, израсходованному на реакцию осаждения.

    Количественный анализ. Классификация методов. Гравиметрический анализ. Осажденная и гравиметрическая формы осадков. Расчеты в гравиметрическом анализе.

    Количественный анализ предназначен для установления количественного состава компонентов в анализируемой пробе. Ему предшествует качествен­ный анализ , устанавливающий, какие компоненты (элементы, ионы, молеку­лы) присутствуют в анализируемой пробе.

    Количественный анализ бывает трех видов: полный, частичный, общий. При полном количественном анализе устанавливается полный количествен­ный состав всех компонентов, присутствующих в анализируемой пробе. На­пример, для полного количественного анализа крови необходимо определить содержание 12 компонентов: натрия, калия, кальция, глюкозы, билирубина и т. д. Полный анализ требует больших затрат времени и труда.

    При выполнении частичного анализа определяется содержание лишь за­-

    данных компонентов. Общий анализ устанавливает содержание каждого элемента в анализируе­мом образце независимо от того, в состав каких соединений они входят. Та­кой анализ обычно называют элементным.

    КЛАССИФИКАЦИЯ МЕТОДОВ КОЛИЧЕСТВЕННОГО АНАЛИЗА

    Методы количественного анализа можно разделить на три большие груп­пы: химические, физические, физико-химические.

    Химические методы основаны на использовании количественно протекающих, различных по типу химических реакций: обменных, осадительных, окис­лительно-восстановительных и реакций комплексообразования. К химиче­ским относятся гравиметрический и титриметрический (объемный) методы анализа.

    Гравиметрический метод анализа основан на измерении массы определя­eмoгo компонента после его выделения в виде гравиметрической формы. Метод характеризуется высокой точностью, но длителен и трудоемок. В фармацев­тическом анализе его применяют в основном для определения влажности и зольности лекарственных препаратов.

    Титриметрический метод анализа основан на введении в точно измерен­ный объем раствора анализируемого вещества точно отмеренного объема раствора известной концентрации - титранта. Титрант вводится до тех пор, пока анализируемое вещество полностью прореагирует с ним. Этот момент называют конечной точкой титрования и устанавливают с помощью специ­aльныx химических индикаторов или инструментальными методами. Среди

    химических методов количественного анализа это - самый распространен­ный метод.

    Химические методы анализа, хотя и являются в настоящее время основ­ными в химических лабораториях, во многих случаях не отвечают возросшим требованиям к анализу, таким как высокая чувствительность, экспрессность, селективность, автоматизация и др. Этих недостатков лишены инструменталь­ные методы анализа, которые можно разделить на три большие группы: опти­ческие, электрохимические, хроматографические .

    ГРАВИМЕТРИЧЕСКИЙ АНАЛИЗ

    Гравиметрический метод основан на точном измерении массы вещества известного состава, химически связанного с определяемым компонентом и выделенного в виде соединения или в виде простого вещества. Классическое название метода - весовой анализ. Гравиметрический анализ основан на зако­не сохранения массы вещества при хи­мических превращениях и является наи­более точным из химических методов анализа: предел обнаружения составляет 0,10 %; правильность (относительная ошибка метода) ±0,2 %.

    В гравиметрическом анализе исполь­зуют методы осаждения, отгонки (пря­мой и косвенной), выделения, термогравиметрию, электрогравиметрию.

    В методе осаждения определяемый компонент вступает в химическую ре­акцию с реагентом, образуя малораство­римое соединение. После проведения ряда аналитических операций (схема 1.1) твердый осадок известного состава взве­шивают и проводят необходимые вычис­ления.

    Последовательность аналитических операций в гравиметрическом методе осаждения

    1Расчет массы навески анализируемого вещества и ее взвешивание

    2 Растворение навески

    3 Создание условий осаждения

    4 Осаждение (получение осаж­денной формы)

    5Отделение осадка фильтрова­нием

    6 Промывание осадка

    7 Получение гравиметриче­ской формы (высушивание, прокаливание до постоян­ной массы)

    8 Взвешивание гравиметриче­ской формы

    9 Расчет результатов анализа

    Методы отгонки могут быть прямые и косвенные. В методе прямой отгонки определяемый компонент выделяют из пробы в виде газообразного продукта, улавливают и затем определяют его мас­су. В методах косвенной отгонки массу газообразного продукта определяют по разности масс анализируемого компонента до и после термической обработ­ки. В практике фармацевтического анализа этот метод широко применяется при опреде-лении влажности лекарственных препаратов, растительного сырья. Для некоторых лекарственных препаратов определение потери массы ∆m при высушивании (температуре высушивания t суш) является одним из обяза­тельных фармакопейных тестов, например: анальгин - t суш = 100...105˚С, Δm < 5,5 %; пиридоксина гидрохлорид (витамин В6) - t суш = 100...105 ˚с, Δm < 0,5 %; парацетамол - t суш = 100...105 ˚, Δ m < 0,5 % и т. п.

    В термогравиметрическом анализе фиксируют изменение массы вещества в процессе нагревания, что позволяет судить о про исходящих превращениях и установить состав образующихся промежуточных продуктов. Термогравиметрический анализ осуществляют при помощи приборов дери­ватографов. В ходе эксперимента фиксируют изменение массы анализируе­мого образца (ось ординат) в зависимости от времени или температуры (ось абсцисс) и представ­ляют в виде термогра­виметрической кри­вой - термоrрави­граммы. Термогравимет­рия широко исполь­зуется для исследова­ния изменения соста­ва вещества и выбора условий высушива­ния или прокалива­ния осадков.

    Электрогравимет­рический анализ осно­ван на электроли­тическом выделении металлов и взвешива­нии полученного на электроде осадка. Основным физическим условием элек­тpoлитичecкoгo разделения металлов является определенное напряжение, при котором осаждаются одни и не выделяются другие металлы.

    В аналитической практике наиболее широкое применение находит грави­-

    метрический метод осаждения, который и будет рассмотрен более подробно.

    МЕХАНИЗМ ОБРАЗОВАНИЯ ОСАДКА И УСЛОВИЯ ОСАЖДЕНИЯ

    Образование осадка происходит в том случае, когда произ­ведение концентраций ионов, входящих в его состав, превышает величину произведения растворимости ПР (KA) малорастворимого электролита:

    К + + Аˉ ↔ КА; [К + ] [Аˉ] > ПР (КA),

    т. е. когда возникает местное (относительное) пересыщение раствора, ко­торое рассчитывают по формуле:

    (Q - S) /S,

    где Q - концентрация растворенного вещества в какой-либо момент време­ни, моль/см 3 ; S - растворимость вещества в момент равновесия, моль/см 3 В этом месте появляется зародыш будущего кристалла (процесс зароды­шеобра-зования). Для этого требуется определенное время, называемое индук­ционным периодом. При дальнейшем прибавлении осадителя более вероятным становится процесс роста кристаллов, а не дальнейшее образование цент­ров кристаллизации, которые соединяются в более крупные агрегаты, состоящие из десятков и сотен молекул (процесс агрегации). Размер частиц при этом увеличивается, и более крупные агрегаты под действием силы тяжести выпа­дают в осадок. На этой стадии отдельные частицы, будучи диполями, ориен­тируются по отношению друг к другу так, что их противоположно заряжен­ные стороны сближаются (процесс ориентации). Если скорость ориентации больше скорости агрегации, то образуется правильная кристаллическая ре­шетка, если же наоборот, выпадает аморфный осадок. Чем меньше раство­римость вещества, тем быстрее образуется осадок и мельче кристаллы. Одни и те же малорастворимые вещества могут быть выделены как в кристалличе­ском, так и в аморфном состоянии, что определяется условиями осаждения.

    Исходя из понятия относительного пересыщения раствора, следует, что чем ниже растворимость осадка S и чем выше концентрация реагирующих веществ Q, тем больше образуется зародышей и тем больше скорость агрега­ции. И наоборот: чем меньше разность (Q – S), то есть, чем выше раствори­мость осадка и ниже концентрация осаждаемого вещества, тем выше скорость ориентации. Следовательно, для получения крупных кристаллов, которые можно легко отфильтровать и промыть, необходимо проводить осаждение из разбавленных растворов медленным прибавлением осадителя и при нагрева­нии (табл. 1.1).

    Условия осаждения кристаллических и аморфных осадков

    Влияющий фактор

    Характер осадка

    кристаллический

    аморфный

    Концентрация растворов вещества и осадителя

    К разбавленному раствору исследуемого вещества прибавляют разбавленный раствор осадителя

    К концентрированному раствору исследуемого вещества прибавляют концентрированный раствор осадителя

    Скорость осаждения

    Раствор осадителя прибавляют по каплям

    Раствор осадителя прибавляют быстро

    Температура

    Осаждение ведут из горячих растворов (70 - 80˚С) горячим раствором осадителя

    Осаждение ведут из горячих растворов (70 - 80˚С)

    Смешивание

    Осаждение производят при непрерывном перемешивании

    Присутствие посторонних веществ

    Добавляют вещества, повышающие растворимость (обычно сильные кислоты)

    Добавляют электролиты-коагулянты

    Время осаждения

    Длительно выдерживают осадок в маточном растворе для «созревания» («старения»)

    Фильтруют сразу после осаждения

    Таблица 1.1

    Чистота кристаллических осадков . Удельная поверхность кристаллических осадков (плошадь осадка, отнесенная к единице массы, см 2 /г) обычно мала, поэтому соосаждение за счет адсорбции незначительно. Однако другие виды соосаждения, связанные с загрязнением внутри кристалла, могут привести к ошибкам.

    Известны два вида соосаждения в кристаллических осадках:

    1) инклюзия - примеси в виде индивидуальных ионов или молекул гомо­генно распределены по всему кристаллу;

    2) окклюзuя - неравномерное распределение многочисленных ионов или молекул примеси, попавших в кристалл из-за несовершенства кристалличе­ской решетки.

    Эффективным способом уменьшения окклюзии является «старение» («созревание»)­ осадка, в ходе которого происходит самопроизвольный рост более крупных кристаллов за счет растворения мелких частиц, совершенствуется кристаллическая структура осадка, сокращается его удельная поверхность, вследствие чего десорбируются и переходят в раствор примеси поглощенных ранее веществ. Время «созревания» осадка можно сократить, нагревая раствор с осадком.

    Чистота аморфных осадков существенно уменьшается в результате процесса адсорбции, так как аморфный осадок состоит из частиц с неупорядоченной структурой, образующих рыхлую пористую массу с большой поверхностью. Наиболее эффективным способом уменьшения в результате процесса адсорбции является переосаждение . В этом случае отфильтрованный осадок растворяют и снова осаждают. Переосаждение существенно удлиняет анализ, но оно неизбежно для гидратированных железа (III ) и алюминия оксидов, цинка и марганца гидроксидов и т. п. Процессом, обратным коагуляции аморфного осадка, является его пептизация явление, в результате которого коагулированный коллоид возвращается в исходное дисперсное состояние. Пептизация часто наблюдается при промывании аморфных осадков дистиллированной водой. Эта ошибка устра­няeтcя при правильном выборе промывной жидкости для аморфного осадка.

    ОСАЖДЕННАЯ И ГРАВИМЕТРИЧЕСКАЯ ФОРМЫ.

    ТРЕБОВАНИЯ К НИМ.

    В гравиметрическом методе осаждения существуют понятия осажденной

    и гравиметрической форм вещества. Осажденной формой называют соединение, в виде которого определяемый компонент осаждается из раствора. Гравиметрической (весовой) формой называют соединение, которое взве­шивают. Иначе ее можно определить как осажденную форму после соответ­ствующей аналитической обработки осадка. Представим схемы гравиметрического определения ионов SO­ 4 2 - , Fe 3+ , Мg 2+

    S0­ 4 2 - + Ва 2+ ↔ BaS0­­ 4 ↓ → BaS0­ 4 ↓

    определяемый осадитель осажденная гравиметрическая

    ион форма форма

    Fe 3+ + 3OH‾ ↔ Fe(OH)­­ 3 ↓ → Fe 2 O 3 ↓

    определяемый осадитель осажденная гравиметрическая

    ион форма форма

    Mg 2+ + НРО­­­ 4 2 - + NH 4 ∙H 2 O ↔ Mg NH 4 P0 4 ↓ + H 2 O → Mg 2 P 2 O 7 определ. осадитель осажденная форма гравиметрич. форма

    Из приведенных примеров видно, что не всегда гравиметрическая форма совпадает с осажденной формой вещества. Различны и требования, предъяв­ляемые к ним.

    Осажденная форма должна быть:

    · достаточно малорастворимой, чтобы обеспечить практически полное

    Выделение определяемого вещества из раствора. В случае осаждения

    Бинарных электролитов (AgCl; BaS0 4 ; СаС 2 О 4 и т. п.) достигается

    Практически полное осаждение, так как произведение растворимости этих

    Осадков меньше, чем 10 - 8 ;

    · полученный осадок должен быть чистым и легко фильтрующимся (что определяет преимущества кристаллических осадков);

    · осажденная форма должна легко переходить в гравиметрическую форму.

    После фильтрования и промывания осажденной формы ее высушивают или прокаливают до тех пор, пока масса осадка не станет постоянной, что подтверждает полноту превращения осажденной формы в гравиметрическую и указывает на полноту удаления летучих примесей. Осадки, полученные при осаждении определяемого компонента органическим реагентом (диацет­илдиоксимом, 8-оксихинолином, α-нитрозо-β-нафтолом и т. д.), обычно высуши­вают. Осадки неорганических соединений, как правило, прокаливают

    Основными требованиями к гравиметрической форме являются:

    · точное соответствие ее состава определенной химической формуле;

    · химическая устойчивость в достаточно широком интервале темпера­тур, отсутствие гигроскопичности;

    · как можно большая молекулярная масса с наименьшим содержанием

    В ней определяемого компонента для уменьшения влияния погрешностей

    При взвешивании на результат анализа.

    ВЫЧИСЛЕНИЕ РЕЗУЛЬТАТОВ

    В ГРАВИМЕТРИЧЕСКОМ МЕТОДЕ АНАЛИЗА

    Гравиметрический анализ включает два экспериментальных измерения: определение массы навески m н анализируемого вещества и массы продукта известного состава, полученного из этой навески, то есть массы гравиметри­ческой формы m гр.ф анализируемого вещества.

    На основании этих данных несложно вычислить массовую процентную долю w, % определяемого компонента в навеске:

    w, % = m гр.ф­ ∙ F ∙ 100 / m н ,

    где F - гравиметрический фактор (фактор пересчета, аналитический мно­житель) рассчитывают как отношение молекулярной массы определяемого компонента к молекулярной массе гравиметрической формы с учетом стехио­метрических коэффициентов.

    Значение гравиметрических факторов, рассчитанное с высокой точнос­тью, приводится в справочной литературе.

    Пример 1 . Сколько граммов Fе 2 О 3 можно получить из 1,63 г Fе 3 О 4 ? Рас­считайте гравиметрический фактор.

    Р е ш е н и е. Необходимо допустить, что Fе 3 О 4 количественно превраща­ется в Fе 2 О 3 и для этого имеется достаточное количество кислорода:

    2 Fе 3 О 4 + [О] ↔ 3 Fе 2 О 3

    Из каждого моля Fе 3 О 4 получается 3/2 моля Fе 2 О 3 . Таким образом, число молей Fе 2 О 3 больше, чем число молей Fе 3 О 4 , в 3/2 раза, то есть:

    nM (Fе 2 О 3) = 3/2 nM (Fе 3 О 4);

    m(Fе 2 О 3) / М(Fе 2 О 3) = 3/2 m(Fе 3 О 4) / М(Fе 3 О 4)

    где n - число молей определяемого компонента, из которого получается один моль гравиметрической формы; m - масса вещества, г; М - молярная масса вещества, г/моль.

    Из формулы m(Fе 2 О 3) = 3/2 (m(Fе 3 О 4) ∙ М(Fе 2 О 3)) / М(Fе 3 О 4)

    получаем

    m(Fе 2 О 3) = m(Fе 3 О 4) ∙ 3М(Fе 2 О 3) / 2М(Fе 3 О 4)

    и подставляем в нее численные значения:

    m(Fе 2 О 3) = 1,63 ∙(3 ∙ 159,7) / (2 ∙ 231,5) = 1,687 ≈ 1,69 г.

    Гравиметрический фактор F равен:

    F = 3М(Fе 2 О 3) / 2М(Fе 3 О 4) = 1,035.

    Следовательно, в общем случае гравиметрический фактор определяют по формуле:

    F = (а ∙ М опред.в-во) / (b ∙ М гр.ф),

    где а и b - небольшие целые числа, на которые нужно умножить молекуляр­ные массы, чтобы число молей в числителе и знаменателе было химически эквивалентно.

    Однако не во всех случаях эти расчеты применимы. При косвенном опре­делении железа в Fе 2 (SО 4) 3 , которое заключается в осаждении и взвешивании BaSО 4 (гравиметрическая форма), при расчете аналитического фактора в чис­лителе и знаменателе формулы нет общего элемента. Здесь необходим другой способ выражения химической эквивалентности между этими величинами:

    2 M(Fe 3+ ) ≡≡ l М(Fе 2 (SО 4) 3) ≡≡ 3 M(SO 4 2-) ≡≡ 3 M(BaSО 4).

    Гравиметрический фактор для массовой процентной доли железа будет выражаться:

    F = 2M(Fe 3+ ) / 3M(BaSО 4) .

    Пример 2 . Раствор препарата Nа 3 РО 4 (m н = 0,7030 г) осадили в виде MgNН 4 РО 4 ∙ 6Н 2 О. После фильтрования и промывания осадок прокалили при 1000 ˚С. Масса полученного осадка Mg 2 P 2 О 7 составила 0.4320 г. Рассчитайте массовую процентную долю фосфора в навеске

    Р е ш е н и е.

    m гр.ф (Mg 2 P 2 О 7) = 0,4320 г;

    F = 2М(Р) / М(Mg 2 P 2 О 7) = 0,2782; m н = 0,7030 г;

    W ,% = m гр.ф ∙ F ∙ 100 / m н

    w, %(Р) = 0,4320 ∙ 0,2782 ∙ 100 / 0,7030 = 17,10 %.

    Пример 3 . При прокаливании загрязненного препарата натрия оксалата m н = 1,3906 г получили остаток массой m гр.ф = 1,1436 г. Определите степень чистоты образца. t

    Na 2 C 2 О 4 → Nа 2 СО 3 + СО

    Ре ш е н и е. Следует допустить, что разница между исходной и конечной массами соответствует потере углерода оксида при прокаливании. Анализ основан на измерении этой величины:

    n (СО) = n(Na 2 C 2 O 4),

    следовательно,

    w, %(Na 2 C 2 O 4) = (m н - m гр.ф) ∙ F ∙ 100 / m н;

    F = M(Na 2 C 2 O 4) / M(CO) = 4,784;

    w, %(Na 2 C 2 O 4) = (1 ,3906 – 1 ,1436) ∙ 4 ,784 ∙ 100 / 1 ,3906 = 84 ,97 %.

    ВЫБОР МАССЫ НАВЕСКИ В ГРАВИМЕТРИИ

    Как известно, точность анализа зависит как от массы навески, так и от массы гравиметрической формы, получаемой из нее. Если навеска будет взята с большой точностью, а полученная из нее гравиметрическая форма будет малой величиной, измеренной с большой по­грешностью, то весь анализ будет выполнен с ошибкой, допущенной при взвешивании гравиметрической формы. Поэтому должна быть взята такая навеска, чтобы при ее взвешивании и при взвешивании полученной из нее гравиметрической формы ошибка не превышала ± 0,2 %. Для этого необходи­мо определить минимальную массу, которую еще можно взвесить с точнос­тью ± 0,2 % на аналитических весах с абсолютной ошибкой взвешивания ± 0,0001 г, а минимальная ошибка, учитывая возможный разброс (±), в этом случае будет равной 2 ∙ (±0,000 1) = ±0,0002 г.

    100 г - ± 0,2 г

    х - ± 0,0002 г

    х = 0,1 г

    Следовательно, такой минимальной массой m ­ min является 0,1 г. При вели­чине, меньшей чем 0,1 г, ошибка превысит 0,2 %. При расчете массы навески в гравиметрическом анализе масса грави­метрической формы компонента приравнивается к минимальной массе вещества:

    m гр.ф = m min , m н = m min ∙ F ∙ 100 / w , %.

    Если величина массы навески, рассчитанная по указанной формуле, окажется менее 0,1 г, то навеску следует увеличить до 0,1 г. Чаще всего массу исходной навески указывают в методике анализа или же для объемных аморфных осадков массу навески берут около 0,1, а для кристаллических ­от 0,1 до 0,5 г.

    Расчет количества осадителя проводят с учетом возможного содержания определяемого компонента в анализируемой пробе. Для полноты выделения осадка применяют умеренный избыток осадителя. Если осадитель летуч (на­пример, раствор хлороводородной кислоты), берут двух-, трехкратный избы­ток, который впоследствии удаляют при нагревании осадка. Если осадитель нелетуч (растворы бария хлорида, аммония оксалата, серебра нитрата и т. п.), достаточно его полуторакратного избытка.

    АНАЛИТИЧЕСКИЕ ВЕСЫ. ПРАВИЛА ОБРАЩЕНИЯ С НИМИ

    Аналитические весы - это точный физический прибор, пользование кото­рым допускается при строгом соблюдении правил, обеспечивающих необхо­димую воспроизводимость и точность взвешивания.

    Правила обращения с аналитическими весами включают следующие основ­ные требования:

    1. Весы должны быть установлены на жестко закрепленной поверхности,

    зaщищающей их от различных потрясений, и в специально оборудованном помещении - весовой комнате.

    2. Недопустимы резкие колебания температуры, действие прямых сол­нечных лучей, а также воздействие на аналитические весы химических веществ.

    3. Предельно допустимая нагрузка аналитических весов должна быть не более 200 г.

    4. При взвешивании предметов на аналитических весах необходимо, что­бы они имели температуру весовой комнаты.

    5. Взвешиваемое вещество помещают на левую чашку весов в специаль­ной таре (бюксы, тигли, часовое стекло). Гири аналитического разно­веса помещают на правую чашку весов.

    6. Взвешиваемые предметы и гири вносят через боковые дверцы весов (шторки). Взвешивание производят только при закрытых дверцах весов.

    7. Гири аналитического разновеса берут только специально предназна­ченным пинцетом. Все операции со сменой разновеса производят при полном арретировании весов.

    8. До и после каждого взвешивания необходимо проверять нулевую точку весов.

    9. Во избежание перекоса чашек весов гири и взвешиваемые предметы помещают в центр чашек.

    10. Запись результатов взвешивания проводят по пустым гнездам аналити­ческого разновеса и по данным барабанов с десятыми и сотыми доля­ми грамма. Третий и четвертый знаки после запятой снимают со светя­щегося табло.

    11. По окончании взвешивания необходимо убедиться, что весы арретиро­ваны, полностью разгружены и дверцы футляра плотно закрыты.

    12. Для уменьшения ошибки взвешивания необходимо пользоваться ана­литическим разновесом, предназначенным для строго определенных аналитических весов.

    Следует отметить, что даже при соблюдении всех упомянутых правил

    могут возникать ошибки взвешивания, зависящие от различных причин:

    · вызванные неравноплечестью коромысла весов;

    · за счет изменения массы тела в процессе взвешивания;

    · за счет взвешивания в воздухе, а не в вакууме;

    · вызванные несоответствием массы гирь (разновесов) их номинальной

    массе.

    ПРИМЕНЕНИЕ ГРАВИМЕТРИЧЕСКОГО МЕТОДА АНАЛИЗА

    Использование неорганических осадителей позволяет получать в виде гра­виметрической формы либо соли, либо оксиды определяемых веществ. Неор­ганические реагенты не отличаются специфичностью, но в анализе наиболее часто используют: NH 4 ОH (Fе 2 О 3 , SnО 2); H 2 S (C u S, ZnS или ZnSО 4 , As 2 S 3 или As 2 S 5 , Вi 2 S 3); (NH 4) 2 S (HgS); NH 4 H 2 PО 4 (Mg 2 P 2 О 7 , Al 3 PО 4 , Мn 2 Р 2 О 7); H 2 SО 4 (PbSО 4 , BaSО 4 , SrSО 4); Н 2 С 2 О 4 (СаО); НС l (AgCl, Hg 2 Cl 2 , Na в виде NaCl из бутанола); AgNО 3 (AgCl, AgBr, AgI); BaCl 2 (BaSO 4) и пр.

    Иногда в основу гравиметрических определений положено восстановле­ние определяемого компонента до элемента, который служит гравиметриче­ской формой.

    Для гравиметрического определения неорганических веществ предложен ряд органических реагентов, которые, как правило, обладают большей селек­тивностью. Известны два класса органических реагентов. Первые образуют малорас­творимые комплексные (координационные) соединения и содержат не менее двух функциональных групп, имеющих пару неподеленных электронов. Еще их называют хелатообразующими реагентами, например 8-оксихинолин осаж­дает более двадцати катионов:

    N

    OH

    Растворимость оксихинолятов металлов изменяется в широких пределах в зависимости от природы катиона, значения рН среды.

    В 1885 году бьл предложен l-нитрозо-2-нафтол - один из первых селек­тивных органических реагентов, который широко используют для опреде­ления кобальта в присутствии никеля, а также для определения ионов висму­та(3), хрома (III), ртути (II), олова (IV) и т. п.:

    NO

    Диацетилдиоксим (диметилглиоксим) отличается высокой селективностью, и его широко используют для гравиметрического определения малых концентраций никеля:

    CH 3 ─ C ─ C ─ CH 3

    │ │

    OH - N N - OH

    ПОГРЕШНОСТИ ГРАВИМЕТРИИ

    Гравиметрический метод анализа дает наиболее правильный результат, и, несмотря на длительность и трудоемкость, его очень часто применяют как проверочный метод в арбитражных анализах. Систематические методические ошибки в гравиметрии могут быть учтены и уменьшены в ходе выполнения соответствующих операций ( табл. 1.2).

    Методические погрешности гравиметрии

    Гравиметри-ческая операция

    Абсолютная погрешность

    положительная (завышенный результат)

    отрицательная (заниженный результат)

    Выбор осадителя:

    а) природа осадителя

    б) количество осадителя

    Нелетучий, неспецифический осадитель

    Небольшой избыток осадителя, соосаждение посторонних ионов

    Высокая растворимость осаждаемой формы, коллоидообразование

    Недостаток осадителя. Слишком большой избыток осадителя, повышение растворимости осадка в результате комплексообразования или солевого эффекта

    Осаждение

    Соосаждение посторонних ионов

    Недостаточное время созревания (кристаллические осадки). Коллоидообразование (аморфные осадки)

    Фильтрование

    Неправильный выбор фильтра – прохождение частиц осадка через фильтр

    Промывание

    Промывание нелетучей промывной жидкостью

    Избыток промывной жидкости: пептизация аморфного осадка; гидролиз кристаллического осадка. Потери в результате растворимости

    Получение гравиметри-ческой формы

    Температура прокаливания: получение соединения другого состава, гигроскопичность, поглощение СО 2 из воздуха

    Превышение температуры высушивания для осадков органической природы. Превышение температуры прокаливания (получения соединения другого химического состава)

    Таблица 1.2

    Правильность метода объясняется малой систематической ошибкой измерений, связанной с точностью взвешивания на аналитических весах:

    S x / x = √(S a / a ) 2 + 1/n (S m / m ) 2 ,

    где S a – точность взвешивания на аналитических весах (0,0002 г для весов АДВ – 200; 0,00005 г для полумикровесов и т.д.); а – навеска анализи-руемого вещества, г; т - масса гравиметрической формы, г; п - количество прокаливаний или высушиваний для получения постоянной массы.

    Анализ приведенных данных показывает, что выявить вид ошибки можно при рассмотрении методики определения с учетом механизма образования осадка, свойств веществ, используемых и получающихся в ходе анализа.

    В настоящее время значение гравиметрических методов анализа несколь­ко уменьшилось, однако не следует забывать, что, имея достоинства и недо­статки, гравиметрический анализ является оптимальным для решения доста­точно большого количества аналитических задач.