Электронная таблица Microsoft Excel . Средства и методы решения уравнений.

Цель работы: Освоить численный метод решения уравнения ивстроенные средства решения уравнений..

Содержание

1 Численный метод решения нелинейных уравнений . 1

1.1 Область локализации корней . 1

1.2 Критерии сходимости при решении уравнений . 2

1.3 Метод дихотомии (половинного деления) 3

Пример решения уравнения методом дихотомии . 4

2 Решение уравнений, используя “Подбор параметра” . 6

2.1 Пример решения уравнения, используя “Подбор параметра” . 6

3 Решение уравнений и систем уравнений, используя надстройку “Поиск решения” . 9

3.1 Пример решения уравнения, используя надстройку “Поиск решения” . 10

Задание 1. Решение уравнений численным методом .. 12

Задания 2. Решение уравнений встроенными средствами “Подбор параметра” и “Поиск решения” 12

Контрольные вопросы .. 13

1 Численный метод решения нелинейных уравнений

1.1 Область локализации корней

В общем виде любое уравнение одной переменной принято записывать так , при этом корнем (решением) называется такое значение x*, что оказывается верным тождеством. Уравнение может иметь один, несколько (включая бесконечное число) или ни одного корня. Как легко видеть, для действительных корней задача отыскания решения уравнения легко интерпретируется графически: корень есть такое значение независимой переменной, при котором происходит пересечение графика функции, стоящей в левой части уравнения f ( x ) , с осью абсцисс.

Например , для уравнения выполним преобразование и приведем его к виду f(x)=0 т.е. . График этой функции представлен на рисунке 1. Очевидно, что данное уравнение имеет два действительных корня – один на отрезке [-1, 0] , а второй – .


Рисунок 1. График функции

Таким образом, можно приблизительно определять область локализации корней уравнения. Заметим, что отделить корень можно не единственным образом: если корень отделён на каком-либо отрезке, то годится и любой меньший отрезок, содержащий этот корень. Вообще говоря, чем меньше отрезок, тем лучше, но при этом не следует забывать о том, что на отделение корня на меньших отрезках также тратятся вычислительные усилия, и, быть может, весьма значительные. Таким образом, часто для начала довольствуются весьма широким отрезком, на котором корень отделён.

Некоторые виды уравнений допускают аналитическое решение. Например, степенные алгебраические уравнения степени n приn ≤ 4. Однако, в общем виде, аналитическое решение , как правило, отсутствует. В этом случае, применяются численные методы . Все численные методы решения уравнений представляют собой последовательного приближения к корню уравнения. То есть, выбирается начальное приближение к корню x 0 и затем с помощью итерационной формулы генерируется последовательность x 1 , x 2 , …, x k сходящаяся к корню уравнения .

1.2 Критерии сходимости при решении уравнений

Ø Абсолютная погрешность - абсолютное изменение приближения на соседних шагах итерации

Ø Относительная погрешность - относительное изменение приближения на соседних шагах итерации

Ø Близость к нулю вычисленного значения левой части уравнения (иногда это значение называют невязкой уравнения, так как для корня невязка равна нулю)

1.3 Метод половинного деления (метод дихотомии)

Метод половинного деления основан на последовательном делении отрезка локализации корня пополам.

Для этого выбирается начальное приближение к отрезку [ a , b ], такое, что f ( a ) × f ( b )<0 , затем определяется знак функции в точке - середине отрезка [ a , b ]. Если он противоположен знаку функции в точке a , то корень локализован на отрезке [ a , c ], если же нет – то на отрезке [ c , b ]. Схема метода дихотомии приведен на рис у нке 2.

Рисунок 2. Последовательное деление отрезка пополам и приближение к корню

Алгоритм метода дихотомии можно записать так:

1. представить решаемое уравнение в виде

2. выбрать a, b и вычислить

3. если f(a) × f(с )<0, то a=a; b = c иначе a = c; b=b

4. если критерий сходимости не выполнен, то перейти к п. 2

Пример решения уравнения методом дихотомии

Найти решение заданного уравнения методом дихотомии с точностью до 10 -5 .

Пример создания расчетной схемы на основе метода дихотомии на примере уравнения: на отрезке

Данный метод заключается в проверке на каждой итерации условия:

если f ( a ) × f (с)<0 и выбор соответствующего отрезка для следующей итерации.


a)

b)

Рисунок 3. Последовательность итераций метода дихотомии при поиске корня уравнения на отрезке

a ) схема расчета (зависимые ячейки); b) режимотображения формул;

Для нашего примера итерационная последовательность для нахождения решения принимает вид:


Точность до пятой значащей цифры достигается за 20 итераций.

Скорость сходимости этого метода является линейной.

При выполнении начального условия он сходится к решению всегда.

Метод половинного деления удобен при решении физически реальных уравнений, когда заранее известен отрезок локализации решения уравнения.


2 Решение уравнений , используя “Подбор параметра

Используя возможности Excel можно находить корни нелинейного уравнения вида f(x)= 0 в допустимой области определения переменной. Последовательность операцийнахождения корней следующая:

1. Производится табулирование функции в диапазоне вероятного существования корней;

2. По таблице фиксируются ближайшие приближения к значениям корней;

3. Используя средство Excel Подбор параметра, вычисляются корни уравнения с заданной точностью.

При подборе параметра Excel использует итерационный (циклический) процесс. Количество итераций и точность устанавливаются в меню Сервис/Параметры/вкладка Вычисления . Если Excel выполняет сложную задачу подбора параметра, можно нажать кнопку Пауза в окне диалога Результат подбора параметра и прервать вычисление, а затем нажать кнопку Шаг , чтобы выполнить очередную итерацию и просмотреть результат. При решении задачи в пошаговом режиме появляется кнопка П родолжить - для возврата в обычный режим подбора параметра.

2.1 Пример решения уравнения, используя “Подбор параметра”

Например , найдем все корни уравнения 2x 3 -15sin(x)+0,5x-5=0 на отрезке [-3 ; 3].

Для локализации начальных приближений необходимо определить интервалы значений Х, внутри которых значение функции пересекает ось абсцисс, т.е. функция меняет знак. С этой целью табулируем функцию на отрезке [–3; 3] с шагом 0,2, получим табличные значения функции. Из полученной таблицы находим, что значение функции трижды пересекает ось Х, следовательно, исходное уравнение имеет на заданном отрезке все три корня.


Рисунок 4. Поиск приближенных значений корней уравнения

Выполните команду меню Сервис/Параметры, во вкладке Вычисления установите относительную погрешность вычисленийE=0,00001, а число итераций N=1000, установите флажок Итерации.

Выполните команду меню Сервис/Подбор параметра . В диалоговом окне (рисунок 9) заполните следующие поля:

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«САМАРСКИЙ ГОСУДАРСТВЕННЫЙ

АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ»

Кафедра прикладной математики и вычислительной техники

Excel и Mathcad

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению лабораторных работ

по дисциплине «Вычислительная математика»

Решение нелинейных уравнений в Excel и Mathcad : Метод. указ. / Сост. , - Самара: СГАСУ, 20с.

Методические указания разработаны в соответствии с Государственным образовательным стандартом изучения дисциплины «Вычислительная математика».

Рассмотрена реализация численных методов при решении нелинейных уравнений и систем уравнений в Excel и MathCad. Приведены варианты заданий для индивидуального выполнения и вопросы для самоконтроля и тестирования.

Предназначены для студентов специальности 230201 – «Информационные системы и технологии» всех форм обучения.

Рецензент к. ф-м. н.

Ó , составление, 2012

ã СГАСУ, 2012

1.2 Отделение корней

1.5 Метод хорд

1.6 Метод Ньютона (касательных)

1.7 Комбинированный метод

1.8 Метод итераций

2.2 Решение систем нелинейных уравнений методом Ньютона

3 Задания к лабораторным работам

Лабораторная № 1. Отделение корней и стандартные инструменты решения нелинейного уравнения

Лабораторная № 2. Сравнение методов уточнения корней нелинейного уравнения

Лабораторная № 3. Решение систем нелинейных уравнений

Лабораторная № 4. Программирование методов решения нелинейных уравнений и систем

4 Вопросы и тесты для самоконтроля


1 Решение нелинейного уравнения

1.1 Общие сведения о решении нелинейного уравнения

Как правило, нелинейное уравнения общего вида f(х)=0 невозможно решить аналитически. Для практических задач достаточно найти приближенное значение x , в определенном смысле близкое к точному решению уравнения хточн .

В большинстве случаев поиск приближенного решения включает два этапа. На первом этапе отделяют корни, т. е. находят такие отрезки, внутри которых находится строго один корень. На втором этапе уточняют корень на одном из таких отрезков, т. е. находят его значение с требуемой точностью.

Достигнутая точность может оцениваться либо «по функции» (в найденной точке x , функция достаточно близка к 0, т. е. выполняется условие |f(x)|≤ e f , где e f требуемая точность по оси ординат), либо «по аргументу» (найден достаточно маленький отрезок [ a, b] , внутри которого находится корень, т. е. | b– a|≤ e x , где e x требуемая точность по оси абсцисс).

1.2 Отделение корней

Отделение корней может производиться сочетанием графического и аналитического исследования функции. Такое исследование опирается на теорему Вейерштрасса, в соответствии с которой для непрерывной на отрезке [ a, b] функции f(х ) и любого числа y , отвечающего условию f(a)≤y≤ f(b) , существует на этом отрезке точка x , в которой функция равна y . Следовательно, для непрерывной функции достаточно найти отрезок, на концах которого функция имеет разные знаки, и можно быть уверенным, что на этом отрезке есть корень уравнения f(х)=0 .

Для ряда методов уточнения желательно, чтобы найденный на первом этапе отрезок содержал только один корень уравнения. Это условие выполняется, если функция на отрезке монотонна. Монотонность, можно проверить либо по графику функции, либо по знаку производной.

Пример Найти с точностью до целых все корни нелинейного уравнения y(x)= x3 ‑ 10 x + 7=0 а) построив таблицу и б) построив график. Найти корень уравнения на выделенном отрезке, используя опции «Подбор параметра» и «Поиск решения».

Решение Создадим в Excel таблицу, содержащую аргументы и значения функции и по ней построим точечную диаграмму . На рисунке 1 приведен снимок решения.

На графике видно, что уравнение имеет три корня, принадлежащие отрезкам [-4, -3], и . Эти отрезки можно выявить и наблюдая за сменой знаков функции в таблице. По построенному графику можно сделать вывод, что на указанных отрезках функция f (x ) монотонна и, следовательно, на каждом из них содержится только по одному корню.

Такой же анализ может быть выполнен и в пакете Mathcad. Для этого достаточно набрать определение функции f (x ) , используя оператор присваивания (:=) и естественные общепринятые обозначения математических операций и стандартных функций, задать цикл для изменения аргумента, например, а затем вывести на экран таблицу значений функции (располо­жен­ными в одной строке командами x = f (x )= ) и график. Цикл можно задать, например, командой x :=-5,-4.5…5 . Шаг цикла формируется путем задания начального и следующего за ним значений переменной, а перед конечным значением переменной ставится точка с запятой, которая будет визуально отображена на экране в виде многоточия.

https://pandia.ru/text/78/157/images/image002_56.jpg" width="640" height="334">

Рисунок 1 – Таблица и график для отделения корней нелинейного уравнения

1.3 Уточнение корней стандартными средствами Excel и Mathcad

Во всех методах уточнения корней необходимо задать начальное прибли­же­ние, которое затем и будет уточняться. Если уравнение имеет несколько кор­ней, в зависимости от выбранного начального приближения будет найден один из них. При неудачно выбранном начальном приближении решение может и не быть найдено. Если в результате первого этапа расчетов уже выделен отрезок, содержа­щий единственный корень уравнения, в качестве начального приближения можно взять любую точку этого отрезка.

В Excel для уточнения значений корней можно использовать опции «Подбор параметра» и «Поиск решения». Пример оформления решения приведен на рисунках 2 и 3.

https://pandia.ru/text/78/157/images/image004_31.jpg" width="501" height="175 src=">

Рисунок 3 – Результаты использования средств решения уравнения в Excel

В Mathcad для уточнения корней уравнения можно использовать функцию root (….) или блок решения . Пример использования функции root(…) приведен на рисунке 4, а блока решения на рисунке 5. Следует обратить внимание, что в блоке решения (после заголовка блока Given ) между левой и правой частями уравнения должен стоять жирный знак равенства (тождества), который можно получить выбором из соответствующей палитры инструментов, либо нажатием одновременно клавиши Ctrl и = .


243" height="31">

Рисунок 5 – Решение уравнения с использованием блока решения в Mathcad

Как видим, каждый стандартный инструмент находит решение уравнения с определенной точностью. Эта точность зависит от метода, используемого в пакете и, в определенной степени, настроек пакета. Управлять точностью результата здесь достаточно сложно, а часто и невозможно.

В то же время, очень просто построить собственную таблицу или написать программу, реализующие один из методов уточнения корней. Здесь можно использовать критерии точности расчета, задаваемые пользователем. При этом достигается и понимание процесса расчетов без опоры на принцип Митрофанушки: «Извозчик есть, довезет».

Далее рассмотрены несколько наиболее распространенных методов. Отметим очевидный момент: при прочих равных условиях тот метод уточнения корней будет более эффективен, в котором результат с той же погрешностью найден с меньшим числом вычислений функции f(x) (при этом достигается и максимальная точность при одинаковом числе вычислений функции).

1.4 Метод деления отрезка пополам

В этом методе на каждом шаге отрезок делится на две равные части. Затем сравнивают знаки функции на концах каждой из двух половинок (например, по знаку произведения значений функций на концах), определяют ту из них, в которой содержится решение (знаки функции на концах должны быть разные), и. сужают отрезок, перенося в найденную точку его границу (а или b ). Условием окончания служит малость отрезка, где содержится корень («точность по x »), либо близость к 0 значения функции в средине отрезка («точность по y»). Решением уравнения считают середину отрезка, найденного на последнем шаге.

Пример . Построить таблицу для уточнения корня уравнения x 3 –10 x +7=0 на отрезке [-4, -3] методом деления отрезка пополам. Определить сколько шагов надо сделать методом деления отрезка пополам и какая при этом достигается точность по х, для достижения точности по y , равной 0,1; 0,01; 0, 001.

Решение Для решения можно использовать табличный процессор Excel, позволяющий автоматически продолжать строки. На первом шаге заносим в таблицу значения левого и правого концов выбранного начального отрезка и вычисляем значение середины отрезка с =(a +b )/2, а затем вводим формулу для вычисления функции в точке a (f (a )) и растягиваем (копируем) её для вычисления f (c ) и f (b ). В последнем столбца вычисляем выражение (b -a )/2, характеризующего степень точности вычислений. Все набранные формулы можно скопировать во вторую строку таблицы.

На втором шаге нужно автоматизировать процесс поиска той половины отрезка, где содержится корень. Для этого испльзуется логическая функция ЕСЛИ (Меню : ВставкаФункцияЛогические). Для нового левого края отрезка мы проверяем истинность условия f (a )*f (c )>0, если оно верно, то мы в качестве нового значения левого конца отрезка берем число c a , c a . Аналогично, для нового правого края отрезка мы проверяем истинность условия f (c )* f (b )>0, если оно верно, то мы в качестве нового значения правого конца отрезка берем число c (т. к. это условие показывает, что корня на отрезке [c , b ] нет), иначе оставляем значение b .

Вторую строку таблицы можно продолжить (скопировать) на необходимое число последующих строк.

Итерационный процесс завершается, когда очередное значение в последнем столбце становится меньшим, чем заданный показатель точности ex. При этом, значение середины отрезка в последнем приближении, принимается в качестве приближенного значения искомого корня нелинейного уравнения. На рисунке 6 приведен снимок решения. Для построения аналогичного процесса в Mathcad можно использовать бланк, подобный приведенному на рисунке 7. Число шагов N может варьиро­вать­ся до достижения в таблице результатов требуемой точности. При этом таблица будет автоматически удлиняться или укорачиваться.

Итак, одним из трех корней нелинейного уравнения x 3 – 10x + 7=0, найденным с точностью e=0,0001, является x = - 3,46686. Как мы видим, он действительно принадлежит отрезку [-4; -3].

https://pandia.ru/text/78/157/images/image018_6.jpg" width="563" height="552 src=">

Рисунок 7 – Уточнение корня методом деления отрезка пополам в Mathcad

1.5 Метод хорд

В этом методе нелинейная функция f(x) на отделенном интервале [а, b ] заменяется линейной – уравнением хорды, т. е. прямой соединяющей граничные точки графика на отрезке. Условие применимости метода – монотонность функции на начальном отрезке, обеспечивающая единственность корня на этом отрезке. Расчет по методу хорд аналогичен расчету методом деления отрезка пополам, но теперь на каждом шаге новая точка x внутри отрезка [a , b ] рассчитывается по любой из следующих формул:

(х) > 0 ), или правая его граница: x0 = b (если f(b) f"(х)>0 ). Расчет нового приближения на следующем шаге i +1 производится по формуле:

https://pandia.ru/text/78/157/images/image021_4.jpg" width="596" height="265 src=">

Рисунок 8 – Уточнение корня методом касательных в E xcel

Расчеты в Mathcad выполняются аналогично. При этом значительное облегчение доставляет наличие в этом пакете оператора, автоматически вычисляющего производную функции.

Наиболее трудоемким элементом расчетов по методу Ньютона является вычисление производной на каждом шаге.

При определенных условиях может использоваться упрощенный метод Ньютона , в котором производная вычисляется только один раз – в начальной точке. При этом используется видоизмененная формула

.

Естественно, что упрощенный метод, как правило, требует большего числа шагов.

Если вычисление производной связано с серьезными трудностями (например, если функция задана не аналитическим выражением, а вычисляющей ее значения программой) используется модифицированный метод Ньютона, получивший название – метод секущих . Здесь производная приближенно вычисляется по значениям функции в двух последовательных точках, то есть используется формула

.

В методе секущих необходимо задаться не одной, а двумя начальными точками – x 0 и x 1 . Точка x1 обычно задается сдвигом x0 к другой границе отрезка на малую величину, например, на 0.01.

1.7 Комбинированный метод

Можно показать, что если на начальном отрезке у функции f(x) сохраняются неизменными знаки первой и второй производных, то методы хорд и Ньютона приближаются к корню с разных. В комбинированном методе для повышения эффективности на каждом шаге использует оба алгоритма одновременно. При этом интервал, где содержится корень, сокращается с обеих сторон, что обусловливает другое условие окончания поиска. Поиск можно прекратить, как только в середине интервала, полученного на очередном шаге значение функции станет по модулю меньшим, чем предварительно заданной погрешности e f .

Если, в соответствии со сформулированным выше правилом, метод Ньютона применяется к правой границе отрезка, для вычислений используются формулы:

https://pandia.ru/text/78/157/images/image025_10.gif" width="107" height="45 src=">.

Если метод Ньютона применяется к левой границе, – в предыдущих формулах меняются местами обозначения a и b .

1.8 Метод итераций

Для применения этого метода исходное уравнение f(x)=0 преобразуют к виду: x =y (х) . Затем выбирают начальное значение х0 и подставляют его в левую часть уравнения, получая, в общем случае, x 1 = y (х0) ¹ х0 ¹ y (х1) , поскольку х0 взято произвольно и не является корнем уравнения. Полученное значение х1 рассматривают как очередное приближение к корню. Его снова подставляют в правую часть уравнения и получают следующее значение х2= y (х1) ). Расчет продолжают по формуле хi+1= y (хi) . Получающаяся таким образом последовательность: х0, х1, х2, х3 х4,... при определенных условиях сходиться к корню хточн .

Можно показать, что итерационный процесс сходится при условии
|y (x ) | < 1 на [a , b ].

Существуют различные способы преоб­ра­зо­вания уравнения f(x) = 0 к виду y (х) = х , причем в конкретном случае одни из них приведут к сходящемуся, а другие – к расходящемуся процессу вычислений.

Один из способов, заключается в применении формулы

https://pandia.ru/text/78/157/images/image027_10.gif" width="188" height="44 src=">

где М = max |y (x )| на [a , b ].

2 Решение систем нелинейных уравнений

2.1 Общие сведения о решении систем нелинейных уравнений

Систему n нелинейных уравнений с n неизвестными x1, x2 , ..., xn записывают в виде:

где F1, F2 ,…, Fn – функции независимых переменных, среди которых есть нелинейные.

Как и в случае систем линейных уравнений, решением системы является такой вектор X *, который при подстановке обращает одновременно все уравнения системы в тождества.

https://pandia.ru/text/78/157/images/image030_8.gif" width="191" height="56">

Начальные значения x 0 и y 0 определяются графически. Для нахождения каждого последующего приближения (xi +1 , yi +1 ) используют вектор значений функций и матрицу значений их первых производных, рассчитанные в предыдущей точке (xi , yi ) .

https://pandia.ru/text/78/157/images/image032_5.gif" width="276" height="63 src=">

Для расчета новых приближений на шаге i+1 используется матричная формула

https://pandia.ru/text/78/157/images/image034_4.gif" width="303" height="59 src=">.

Приведенные формулы особенно легко записать в Mathcad, где имеются операторы для вычисления производных и действий с матрицами. Однако при правильном использовании матричных операций эти формулы достаточно просто записываются и в Excel. Правда, здесь придется заранее получить формулы для вычисления производных. Для аналитического вычисления производных также может быть использован Mathcad.

2.3 Решение систем нелинейных уравнений методами итераций

Для реализации этих методов исходную систему уравнений необходимо путем алгебраических преобразований явно выразить каждую переменную через остальные. Для случая двух уравнений с двумя неизвестными новая система будет иметь вид

https://pandia.ru/text/78/157/images/image036_5.gif" width="114" height="57 src=">.

Если одно из решений системы и начальные значения x 0 и y 0 лежат в области D , задаваемой неравенствами: a x b , c y d , то расчет по методу простых итераций сходится при выполнении в области D соотношений:

https://pandia.ru/text/78/157/images/image038_5.gif" width="75 height=48" height="48">< 1.

В методе итераций Зейделя для каждого расчета используют уже найденные наиболее точные значения каждой переменной. Для рассматриваемого случая двух переменных такая логика приводит к формулам

0 " style="border-collapse:collapse;border:none">

Инструмент (опция)

Начальное приближение

Корень x

f(x)

3.Отсортировать полученные результаты по точности решения.

Пусть корень уравнения (1) отделен на отрезке . Требуется найти значение корня с точностью ε .

"Процедура уточнения положения корня заключается в построении последовательности вложенных друг в друга отрезков, каждый из которых содержит корень уравнения. Для этого находится середина текущего интервала неопределенности (6) :

В в качестве следующего интервала неопределенности из двух возможных выбирается тот, на концах которых функция F(x)=0 имеет разные знаки"[8 ]. "Точность будет достигнута, если:

Корень уравнения вычисляется по формуле x=(a n +b n)/2 (7) "[1 ].

Пусть дана задача следующего характера: Уточнить корни уравнения cos(2x)+x-5=0 методом половинного деления с точностью до 0,00001, используя:

1. Mathcad ;

Для того чтобы уточнить корни уравнения cos(2x)+x-5=0 методом половинного деления, используя Excel, необходимо выполнить следующие действия:

1. Заполнить ячейки A1:H1 последовательно следующим образом: a, b, c=(a+b)/2, f(a), f(b), f(c), |b-a|<=2*e, e.

2. Ввести в ячейку A2 число 5, в ячейку B2 - число 6.

3. В ячейку B2 ввести формулу: =(A2+B2)/2.

4. В ячейку D2 ввести формулу: =cos(2*A2)+A2-5, скопировать эту формулу в ячейки E2:F2.

5. Ввести в ячейку G2 формулу: =ЕСЛИ(ABS(B2-A2)<=2*$H$2;C2;"-").

6. Ввести в ячейку H2 число 0,00001.

7. В ячейку A3 ввести формулу: =ЕСЛИ(D2*F2<0;A2;C2).

8. В ячейку B3 ввести формулу: =ЕСЛИ(D2*F2<0;C2;B2).

9. Диапазон ячеек C2:G2 скопировать в диапазон ячеек C3:G3.

10. Выделить диапазон ячеек A3:G3 и с помощью маркера заполнения заполнить все нижестоящие ячейки до получения результата в одной из ячеек столбца G (это ячейки A3:G53).

В итоге получаем следующее:

Ответ: Корень уравнения cos(2x)+x-5=0 равен 5,32977.

  1. Метод хорд

Берілген әдісті шешу үшін y=F(x) функциясын құру керек

" Для реализации данного метода, нужно построить исходную функциюy=F(x) и найти значения функции на концах отрезка F(a) и F(b) . Затем провести хорду М 1 M 2 c концами в точкахМ 1 (a, F(a)) и M 2 (b, F(b)). Абсцисса точки пересечения хорды М 1 M 2 с осью OX это и есть приближенный кореньx 1 . Далее найти точкуM 3 (X 1 ,F(x 1)) , построить следующую хорду и найти второй приближенный корень x 2 . И так далее. В зависимости от поведения функции возможны два случая :

Для первого случая (Рис. 1) справедлива следующая формула (8) :

и справедливо неравенство: F(a)*F""(a)>0, где x 0 =b.

Для второго случая (Рис. 2) справедлива следующая формула (9) :

и справедливо неравенство: F(b)*F""(b)>0 , где x 0 =a .

Условия сходимости метода секущих аналогичны условиям сходимости метода Ньютона, т. е."[1 ]

Пусть дана задача: Уточнить корни уравнения cos(2x)+x-5=0 методом хорд с точностью до 0,00001, используя:

1. Mathcad ;

Для того чтобы уточнить корни уравнения cos(2x)+x-5=0 методом хорд, используя Excel, необходимо выполнить следующие действия:

1. Выбрать одну из двух предложенных формул для решения задачи, для этого:

o Найти производную первого порядка от функции f(x)=cos(2x)+x-5. Она будет выглядеть следующим образом: f1(x)=-2sin(2x)+1.

o Найти производную второго порядка от функции f(x)=cos(2x)+x-5. Она будет выглядеть следующим образом: f2(x)=-4cos(2x).

o Заполнить ячейки следующим образом:

В ячейку A1 ввести a.

В ячейку A2 ввести цифру 5.

В ячейку B1 ввести b.

В ячейку B2 ввести цифру 6.

В ячейку C1 ввести f(x)=cos(2x)+x-5.

В ячейку C2 ввести формулу =COS(2*A2)+A2-5.

В ячейку D1 ввести f1(x)=-2sin(2x)+1.

В ячейку E1 ввести f2(x)=-4cos(2x).

В ячейку E2 ввести формулу =-4*COS(2*A2).

В ячейку F1 ввести Выбор формулы.

В ячейку F2 ввести формулу =ЕСЛИ(C2*E2>0;"Воспользоваться формулой 8";"Воспользоваться формулой 9").

В ячейку G1 ввести e.

В ячейку G2 ввести цифру 0,00001.

o В итоге получается следующее:

2. Исходя из того, что выбрана формула 9, в Excel необходимо выполнить следующие действия:

o В ячейку A4 ввести xn.

o В ячейку B4 ввести f(xn).

o В ячейку C4 ввести b-xn.

o В ячейку D4 ввести f(xn)*(b-xn).

o В ячейку E4 ввести f(b).

o В ячейку F4 ввести f(b)-f(xn).

o В ячейку G4 ввести xn-f(xn)*(b-xn)/f(b)-f(xn).

o В ячейку H4 ввести |f(xn)|<=e.

o В ячейку A5 ввести цифру 5.

o В ячейку B5 ввести формулу =COS(2*A5)+A5-5.

o В ячейку C5 ввести формулу =$B$2-A5.

o В ячейку D5 ввести формулу =B5*C5.

o В ячейку E5 ввести формулу =COS(2*$B$2)+$B$2-5.

o В ячейку F5 ввести формулу =$E$5-B5.

o В ячейку G5 ввести формулу =A5-(B5*C5/F5).

o В ячейку H5 ввести формулу =ЕСЛИ(ABS(B5)<=$G$2;A5;"-").

o В ячейку A6 ввести формулу =G5.

o Выделить диапазон ячеек B5:D5 и скопировать его методом протягивания в диапазон ячеек B6:D6.

o Выделить диапазон ячеек F5:H5 и скопировать его методом протягивания в диапазон ячеек F6:H6.

o Выделить диапазон ячеек A6:H6 и скопировать его методом протягивания в диапазон ячеек ниже до получения результата в одной из ячеек столбца H (A6:H9).

В итоге получаем следующее:

Ответ: Корень уравнения cos(2x)+x-5=0 равен 5,32976.

Иванов Иван

При прохождении темы численные методы учащиеся уже умеют работать с электронными таблицами и составлять программы на языке паскаль. Работа комбинированного характера.Расчитана на 40 минут. Цель работы повторить и закрепить навыки паботы с программами EXCEL, ABCPascal. Материал содержит 2 файла. Один содержит теоретический материал, так как он и предлагается ученику. Во 2-м файле пример работы ученика Иванова Ивана.

Скачать:

Предварительный просмотр:

Решение уравнений

Аналитическое решение некоторых уравнений, содержащих, например тригонометрические функции может быть получено лишь для единичных частных случаев. Так, например, нет способа решить аналитически даже такое простое уравнение, как cos x=x

Численные методы позволяют найти приближенное значение корня с любой заданной точностью.

Приближённое нахождение обычно состоит из двух этапов:

1) отделение корней, т.е. установление возможно точных промежутков , в которых содержится только один корень уравнения;

2) уточнение приближённых корней, т.е. доведение их до заданной степени точности.

Мы будем рассматривать решения уравнений вида f(x)=0. Функция f(x) определена и непрерывна на отрезке [а.Ь]. Значение х 0 называется корнем уравнения если f(х 0 )=0

Для отделения корней будем исходить из следующих положений:

  • Если f(a)* f(b] \a, b\ существует, по крайней мере, один корень
  • Если функция y = f(x) непрерывна на отрезке , и f(a)*f(b) и f "(x) на интервале (a, b) сохраняет знак, то внутри отрезка [а, b] существует единственный корень уравнения

Приближённое отделение корней можно провести и графически. Для этого уравнение (1) заменяют равносильным ему уравнением р(х) = ф(х), где функции р(х) и ф(х] более простые, чем функция f(x). Тогда, построив графики функций у = р(х) и у = ф(х), искомые корни получим, как абсциссы точек пересечения этих графиков

Метод дихотомии

Для уточнения корня разделим отрезок [а, b] пополам и вычислим значение функции f(х) в точке x sr =(a+b)/2. Выбираем ту из половин или , на концах которых функция f(x) имеет противоположные знаки.. Продолжаем процесс деления отрезка пополам и проводим то же рассмотрение до тех пор, пока. длина станет меньше заданной точности . В последнем случае за приближённое значение корня можно принять любую точку отрезка (как правило, берут его середину). Алгоритм высокоэффективен, так как на каждом витке (итерации) интервал поиска сокращается вдвое; следовательно, 10 итераций сократят его в тысячу раз. Сложности могут возникнуть с отделением корня у сложных функций.

Для приближенного определения отрезка на котором находится корень можно воспользоваться табличным процессором, построив график функции

ПРИМЕР : Определим графически корень уравнения . Пусть f1(х) = х , a и построим графики этих функций. (График). Корень находится на интервале от 1 до 2. Здесь же уточним значение корня с точностью 0,001(на доске шапка таблицы)

Алгоритм для программной реализации

  1. а:=левая граница b:= правая граница
  2. m:= (a+b)/2 середина
  3. определяем f(a) и f(m)
  4. если f(a)*f(m)
  5. если (a-b)/2>e повторяем, начиная с пункта2

Метод хорд.

Точки графика функции на концах интервала соединяются хордой. Точка пересечения хорды и оси Ох (х*) и используется в качестве пробной. Далее рассуждаем так же, как и в предыдущем методе: если f(x a ) и f(х*) одного знака на интервале, нижняя граница переносится в точку х*; в противном случае – переносим верхнюю границу. Далее проводим новую хорду и т.д.

Осталось только уточнить, как найти х*. По сути, задача сводится к следующей: через 2 точки с неизвестными координатами (х 1 , у 1 ) и (х 2 , у 2 ) проведена прямая; найти точку пересечения этой прямой и оси Ох.

Запишем уравнение прямой по двум точках:

В точке пересечения этой прямой и оси Ох у=0, а х=х*, то есть

Откуда

процесс вычисления приближённых значений продолжается до тех пор, пока для двух последовательных приближений корня х„ и х п _1 не будет выполняться условие abs(xn-x n-1 ) е - заданная точность

Сходимость метода гораздо выше предыдущего

Алгоритм различается только в пункте вычисления серединной точки- пересечения хорды с осью абсцисс и условия останова (разность между двумя соседними точками пересечения)

Уравнения для самостоятельного решения: (отрезок в excel ищем самостоятельно)

  1. sin(x/2)+1=x^2 (х=1,26)
  1. x-cosx=0 (х=0,739)
  1. x^2+4sinx=0 (х=-1,933)
  1. x=(x+1) 3 (х=-2,325)

В классической математике многое выглядит элементарно. Так, если нужно найти экстремум некоторой функции, то предлагается взять ее производную, приравнять нулю, решить полученное уравнение и т.д. Вне сомнения, что первые два действия в состоянии выполнить многие школьники и студенты. Что касается третьего действия, то позвольте усомниться в его элементарности.

Пусть после взятия производной мы пришли к уравнению tg(x)=1/x . Проведем следующие преобразования:
tg(x)=1/x Ю x tg(x)=1 Ю x2 tg=1 Ю x2= 1 / tg(x) Ю x = ± .

Если в приведённой здесь цепочке преобразований ничто не взволновало вашу мысль, то может быть лучше обучение на этом прекратить и заняться чем-нибудь другим, не требующим уровня знаний выше церковно-приходской школы начала XX века.

В самом деле, мы прекрасно решаем квадратные и биквадратные уравнения, наипростейшие тригонометрические и степенные. Еще водятся "мастодонты", знающие о существовании формул Кардано для кубических уравнений. В общем же случае надежд на простое аналитическое решение нет. Более того, доказано, что даже алгебраическое уравнение выше четвертой степени неразрешимо в элементарных функциях. Поэтому решение уравнения проводят численно в два этапа (здесь разговор идет лишь о вещественных корнях уравнения). На первом этапе производится отделение корней - поиск интервалов, в которых содержится только по одному корню. Второй этап решения связан с уточнением корня в выбранном интервале (определением значения корня с заданной точностью).

1.1. Отделение корней

В общем случае отделение корней уравнения f(x)=0 базируется на известной теореме, утверждающей, что если непрерывная функция f(x) на концах отрезка имеет значения разных знаков, т.е. f(a)ґ f(b)Ј 0 , то в указан-ном промежутке содержится хотя бы один корень. Например, для уравнения f(x)= x 3 -6x+2=0 видим, что при x®Ґ f(x)>0 , при x®-Ґ f(x) , что уже свидетельствует о наличии хотя бы одного корня.

В общем случае выбирают некоторый диапазон, где могут обнаружиться корни, и осуществляют "прогулку" по этому диапазону с выбранным шагом h для обнаружения перемены знаков f(x) , т.е. f(x)ґ f(x+h) .

При последующем уточнении корня на обнаруженном интервале не надейтесь никогда найти точное значение и добиться обращения функции в нуль при использовании калькулятора или компьютера, где сами числа представлены ограниченным числом знаков. Здесь критерием может служить приемлемая абсолютная или относительная погрешность корня. Если корень близок к нулю, то лишь относительная погрешность даст необходимое число значащих цифр. Если же он весьма велик по абсолютной величине, то критерий абсолютной погрешности часто дает совершенно излишние верные цифры. Для функций, быстро изменяющихся в окрестности корня, может быть привлечен и критерий: абсолютная величина значения функции не превышает заданной допустимой погрешности.

1.2. Уточнение корней методом половинного деления (дихотомии)

Самым простейшим из методов уточнения корней является метод половинного деления, или метод дихотомии, предназначенный для нахождения корней уравнений, представленных в виде f(x)=0 .

Пусть непрерывная функция f(x) на концах отрезка имеет значения разных знаков, т.е. f(a)ґ f(b) Ј 0 (), тогда на отрезке имеется хотя бы один корень.

Возьмем середину отрезка с=(a+b)/2 . Если f(a)ґ f(c) Ј 0 , то корень явно принадлежит отрезку от a до (a+b)/2 и в противном случае от (a+b)/2 до b .

Поэтому берем подходящий из этих отрезков, вычисляем значение функции в его середине и т.д. до тех пор, пока длина очередного отрезка не окажется меньше заданной предельной абсолютной погрешности (b-a)e .

Так как каждое очередное вычисление середины отрезка c и значения функции f(c) сужает интервал поиска вдвое, то при исходном отрезке и предельной погрешности e количество вычислений n определяется условием (b-a)/2 n e , или n~log 2 ((b-a)/e ) . Например, при исходном единичном интервале и точности порядка 6 знаков (e ~ 10 -6 ) после десятичной точки достаточно провести 20 вычислений (итераций) значений функции.

С точки зрения машинной реализации () этот метод наиболее прост и используется во многих стандартных программных средствах, хотя существуют и другие более эффективные по затратам времени методы.

1.3. Уточнение корней методом хорд

В отличие от метода дихотомии, обращающего внимание лишь на знаки значений функции, но не на сами значения, метод хорд использует пропорциональное деление интервала ().

Рис. 3. Метод хорд

Здесь вычисляются значения функции на концах отрезка, и строится "хорда", соединяющая точки (a,f(a)) и (b,f(b)) . Точка пересечения ее с осью абсцисс

принимается за очередное приближение к корню. Анализируя знак f(z) в сопоставлении со знаком f(x) на концах отрезка, сужаем интервал до [a,z ] или [z,b ] и продолжаем процесс построения хорд до тех пор, пока разница между очередными приближениями не окажется достаточно малой (в пределах допустимой погрешности) |Z n -Z n-1 |e .

Можно доказать, что истинная погрешность найденного приближения:

Где X * - корень уравнения, Z n и Z n+1 - очередные приближения, m и M - наименьшее и наибольшее значения f(x) на интервале [a,b ].

1.4. Уточнение корней методом касательных (Ньютона)

Обширную группу методов уточнения корня представляют итерационные методы - методы последовательных приближений. Здесь в отличие от метода дихотомии задается не начальный интервал местонахождения корня, а его начальное приближение.

Наиболее популярным из итерационных методов является метод Ньютона (метод касательных) .

Пусть известно некоторое приближенное значение Z n корня X * . Применяя формулу Тейлора и ограничиваясь в ней двумя членами, имеем

откуда

.

Геометрически этот метод предлагает построить касательную к кривой y=f(x) в выбранной точке x=Z n , найти точку пересечения её с осью абсцисс и принять эту точку за очередное приближение к корню ().

Очевидно, что этот метод обеспечивает сходящийся процесс приближений лишь при выполнении некоторых условий (например при непрерывности и знакопостоянстве первой и второй производной функции в окрестности корня) и при их нарушении либо дает расходящийся процесс (), либо приводит к другому корню ().

Очевидно, что для функций, производная от которых в окрестности корня близка к нулю, использовать метод Ньютона едва ли разумно.

Если производная функции мало изменяется в окрестности корня, то можно использовать видоизменение метода

.

Существуют и другие модификации метода Ньютона.

1.5. Уточнение корней методом простой итерации

Другим представителем итерационных методов является метод простой итерации .

Здесь уравнение f(x)=0 заменяется равносильным уравнением x=j (x) и строится последовательность значений