ПРОВЕДЕНИЕ НЕРВНОГО ИМПУЛЬСА

нервного импульса, передача сигнала в виде волны возбуждения в пределах одного нейрона и от одной клетки к другой. П. н. и. по нервным проводникам происходит с помощью электротонических потенциалов и потенциалов действия, которые распространяются вдоль волокна в обоих направлениях, не переходя на соседние волокна (см. Биоэлектрические потенциалы, Импульс нервный). Передача межклеточных сигналов осуществляется через синапсы чаще всего с помощью медиаторов, вызывающих появление потенциалов постсинаптических. Нервные проводники можно рассматривать как кабели, обладающие относительно низким осевым сопротивлением (сопротивление аксоплазмы - ri) и более высоким сопротивлением оболочки (сопротивление мембраны - rm). Нервный импульс распространяется вдоль нервного проводника посредством прохождения тока между покоящимися и активными участками нерва (локальные токи). В проводнике по мере увеличения расстояния от места возникновения возбуждения происходит постепенное, а в случае однородной структуры проводника экспоненциальное затухание импульса, который в 2,7 раза уменьшается на расстоянии l (константа длины). Так как rm и ri находятся в обратном отношении к диаметру проводника, то затухание нервного импульса в тонких волокнах происходит раньше, чем в толстых. Несовершенство кабельных свойств нервных проводников восполняется тем, что они обладают возбудимостью. Основное условие возбуждения - наличие у нервов потенциала покоя. Если локальный ток через покоящийся участок вызовет деполяризацию мембраны, достигающую критического уровня (порога), это приведёт к возникновению распространяющегося потенциала действия (ПД). Соотношение уровня пороговой деполяризации и амплитуды ПД, обычно составляющее не менее 1: 5, обеспечивает высокую надёжность проведения: участки проводника, обладающие способностью генерировать ПД, могут отстоять друг от друга на таком расстоянии, преодолевая которое нервный импульс снижает свою амплитуду почти в 5 раз. Этот ослабленный сигнал будет снова усилен до стандартного уровня (амплитуда ПД) и сможет продолжить свой путь по нерву.

Скорость П. н. и. зависит от быстроты, с которой мембранная ёмкость на участке впереди импульса разряжается до уровня порога генерации ПД, что, в свою очередь, определяется геометрическими особенностями нервов, изменениями их диаметра, наличием узлов ветвления. В частности, тонкие волокна обладают более высоким ri , и большей поверхностной ёмкостью, а потому скорость П. н. и. по ним ниже. В то же время толщина нервных волокон ограничивает возможности существования большого числа параллельных каналов связи. Конфликт между физическими свойствами нервных проводников и требованиями "компактности" нервной системы был разрешен появлением в ходе эволюции позвоночных т. н. мякотных (миелинизированных) волокон (см. Нервы) . Скорость П. н. и. в миелинизированных волокнах теплокровных (несмотря на их малый диаметр - 4-20 мкм) достигает 100-120 м/сек. Генерация ПД происходит только в ограниченных участках их поверхности - перехватах Ранвье, а по межперехватным участкам П. и. и. осуществляется электротонически (см. Сальтаторное проведение). Некоторые лекарственные вещества, например анестетики, сильно замедляют вплоть до полного блока П. н. и. Этим пользуются в практической медицине для обезболивания.

Лит. см. при статьях Возбуждение, Синапсы.

Л. Г. Магазаник.

Большая советская энциклопедия, БСЭ. 2012

Смотрите еще толкования, синонимы, значения слова и что такое ПРОВЕДЕНИЕ НЕРВНОГО ИМПУЛЬСА в русском языке в словарях, энциклопедиях и справочниках:

  • ПРОВЕДЕНИЕ в Энциклопедическом словаре Брокгауза и Евфрона:
    в широком смысле пользование музыкальной мыслью в сочинении, в котором она постоянно проходит в разных голосах, в настоящем виде или …
  • ПРОВЕДЕНИЕ в Энциклопедии Брокгауза и Ефрона:
    ? в широком смысле пользование музыкальной мыслью в сочинении, в котором она постоянно проходит в разных голосах, в настоящем виде …
  • ПРОВЕДЕНИЕ в Полной акцентуированной парадигме по Зализняку:
    проведе"ние, проведе"ния, проведе"ния, проведе"ний, проведе"нию, проведе"ниям, проведе"ние, проведе"ния, проведе"нием, проведе"ниями, проведе"нии, …
  • ПРОВЕДЕНИЕ в словаре Синонимов русского языка:
    выполнение, исполнение, обведение, обманывание, осуществление, оформление, постройка, провод, проводка, произведение, прокладка, прокладывание, прочерчивание, …
  • ПРОВЕДЕНИЕ в Новом толково-словообразовательном словаре русского языка Ефремовой:
    ср. Процесс действия по знач. глаг.: проводить (1*), …
  • ПРОВЕДЕНИЕ в Словаре русского языка Лопатина:
    провед`ение, -я (к …
  • ПРОВЕДЕНИЕ в Полном орфографическом словаре русского языка:
    проведение, -я (к …
  • ПРОВЕДЕНИЕ в Орфографическом словаре:
    провед`ение, -я (к …
  • ПРОВЕДЕНИЕ в Толковом словаре русского языка Ушакова:
    проведения, мн. нет, ср. Действие по глаг. провести в 1, 2, 4, 5, 6 и 7 знач. - проводить 1 …
  • ПРОВЕДЕНИЕ в Толковом словаре Ефремовой:
    проведение ср. Процесс действия по знач. глаг.: проводить (1*), …
  • ПРОВЕДЕНИЕ в Новом словаре русского языка Ефремовой:
  • ПРОВЕДЕНИЕ в Большом современном толковом словаре русского языка:
    ср. процесс действия по гл. проводить I, …
  • САЛЬТАТОРНОЕ ПРОВЕДЕНИЕ
    проведение (лат. saltatorius, от salto - скачу, прыгаю), скачкообразное проведение нервного импульса по мякотным (миелинизированным) нервам, оболочка которых обладает относительно …
  • Ацетилхолин в Справочнике лекарственных средств:
    АЦЕТИЛХОЛИН (Асеtуlchоlinum). Ацетилхолин относится к биогенным аминам - веществам, образующимся в организме. Для применения в качестве лекарственного вещества и для …
  • ЖАН БУРИДАН в Новейшем философском словаре:
    (Buridan) (ок. 1300-ок. 1358) - французский философ и логик, представитель номинализма (в варианте терминизма). С 1328 - преподаватель факультета искусств …
  • СЕБЕСТОИМОСТЬ в Словаре экономических терминов:
    - стоимостная оценка используемых в процессе производства продукции (работ, услуг) , природных ресурсов, сырья, материалов, топлива, энергии, основных фондов, трудовых …
  • РАК МОЛОЧНОЙ ЖЕЛЕЗЫ в Медицинском словаре:
  • РАК МОЛОЧНОЙ ЖЕЛЕЗЫ в Медицинском большом словаре:
    Заболеваемость раком молочной железы значительно увеличилась за последние 10 лет: заболевание возникает у 1 из 9 женщин. Наиболее частая локализация …
  • НЕРВНЫЙ ИМПУЛЬС в Большом энциклопедическом словаре:
    волна возбуждения, распространяющаяся по нервному волокну, в ответ на раздражение нейронов. Обеспечивает передачу информации от рецепторов в центральную нервную систему …
  • ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА в Большой советской энциклопедии, БСЭ:
    нервная система, основная часть нервной системы животных и человека, состоящая из скопления нервных клеток (нейронов) и их отростков; представлена у …
  • ФИНЛЯНДИЯ в Большой советской энциклопедии, БСЭ:
    (Suomi), Финляндская Республика (Suomen Tasavalta). I. Общие сведения Ф. v государство на С. Европы. Граничит с СССР на В. (длина …
  • ФИЗИОЛОГИЯ в Большой советской энциклопедии, БСЭ:
    (от греч. physis v природа и...логия) животных и человека, наука о жизнедеятельности организмов, их отдельных систем, органов и …
  • ФИЗИКА в Большой советской энциклопедии, БСЭ:
    I. Предмет и структура физики Ф. v наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, свойства …
  • УСКОРИТЕЛИ ЗАРЯЖЕННЫХ ЧАСТИЦ в Большой советской энциклопедии, БСЭ:
    заряженных частиц - устройства для получения заряженных частиц (электронов, протонов, атомных ядер, ионов) больших энергий. Ускорение производится с помощью электрического …
  • ТЕРМОДИНАМИКА НЕРАВНОВЕСНЫХ ПРОЦЕССОВ в Большой советской энциклопедии, БСЭ:
    неравновесных процессов, общая теория макроскопического описания неравновесных процессов. Она называется также неравновесной термодинамикой или термодинамикой необратимых процессов. Классическая термодинамика …
  • СССР. ЭПОХА СОЦИАЛИЗМА в Большой советской энциклопедии, БСЭ:
    социализма Великая Октябрьская социалистическая революция 1917. Образование Советского социалистического государства Февральская буржуазно-демократическая революция послужила прологом Октябрьской революции. Только социалистическая революция …
  • СССР. ЛИТЕРАТУРА И ИСКУССТВО в Большой советской энциклопедии, БСЭ:
    и искусство Литература Многонациональная советская литература представляет собой качественно новый этап развития литературы. Как определённое художественное целое, объединённое единой социально-идеологической …
  • СССР. ЕСТЕСТВЕННЫЕ НАУКИ в Большой советской энциклопедии, БСЭ:
    науки Математика Научные исследования в области математики начали проводиться в России с 18 в., когда членами Петербургской АН стали Л. …
  • СОХРАНЕНИЯ ЗАКОНЫ в Большой советской энциклопедии, БСЭ:
    законы, физические закономерности, согласно которым численные значения некоторых физических величин не изменяются со временем в любых процессах или в определённом …
  • СИЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ в Большой советской энциклопедии, БСЭ:
    взаимодействия, одно из основных фундаментальных (элементарных) взаимодействий природы (наряду с электромагнитным, гравитационным и слабым взаимодействиями). Частицы, участвующие в С. в., …
  • СЕЛЕКЦИЯ ИМПУЛЬСНЫХ СИГНАЛОВ в Большой советской энциклопедии, БСЭ:
    импульсных сигналов, выделение из множества электрических видеоимпульсов (сигналов) только таких, которые обладают заданными свойствами. В зависимости от того, какие свойства …
  • САДОВСКОГО ЭФФЕКТ в Большой советской энциклопедии, БСЭ:
    эффект, появление механического вращающего момента, действующего на тело, облучаемое поляризованным эллиптически или по кругу светом. Теоретически предсказан в 1898 …
  • ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ в Большой советской энциклопедии, БСЭ:
    теория, физическая теория, рассматривающая пространственно-временные свойства физических процессов. Закономерности, устанавливаемые О. т., являются общими для всех физических процессов, поэтому часто …
  • НЕРВНАЯ РЕГУЛЯЦИЯ в Большой советской энциклопедии, БСЭ:
    регуляция, координирующее влияние нервной системы (НС) на клетки, ткани и органы, приводящее их деятельность в соответствие с потребностями организма и …
  • НЕОПРЕДЕЛЁННОСТЕЙ СООТНОШЕНИЕ в Большой советской энциклопедии, БСЭ:
    соотношение, принцип неопределённости, фундаментальное положение квантовой теории, утверждающее, что любая физическая система не может находиться в состояниях, в которых координаты …
  • НЕЛИНЕЙНАЯ ОПТИКА в Большой советской энциклопедии, БСЭ:
    оптика, раздел физической оптики, охватывающий исследование распространения мощных световых пучков в твёрдых телах, жидкостях и газах и их взаимодействие с …
  • МЮОНЫ в Большой советской энциклопедии, БСЭ:
    (старое название - m-мезоны), нестабильные элементарные частицы со спином 1/2, временем жизни 2,2×10-6 сек и массой, приблизительно в 207 раз …
  • МНОЖЕСТВЕННЫЕ ПРОЦЕССЫ в Большой советской энциклопедии, БСЭ:
    процессы, рождение большого числа вторичных сильно взаимодействующих частиц (адронов) в одном акте столкновения частиц при высокой энергии. М. …
  • МЕДИЦИНА в Большой советской энциклопедии, БСЭ:
    (латинское medicina, от medicus - врачебный, лечебный, medeor - лечу, исцеляю), система научных знаний и практических мер, объединяемых целью распознавания, …
  • МЕДИАТОРЫ в Большой советской энциклопедии, БСЭ:
    трансмиттеры (биол.), вещества, осуществляющие перенос возбуждения с нервного окончания на рабочий орган и с одной нервной клетки на другую. Предположение, …
  • ЛАЗЕРНОЕ ИЗЛУЧЕНИЕ в Большой советской энциклопедии, БСЭ:
    излучение (действие на вещество). Высокая мощность Л. и. в сочетании с высокой направленностью позволяет получать с помощью фокусировки световые потоки …
  • ЛАЗЕР в Большой советской энциклопедии, БСЭ:
    источник электромагнитного излучения видимого, инфракрасного и ультрафиолетового диапазонов, основанный на вынужденном излучении атомов и молекул. Слово "лазер" составлено из начальных …
  • КОМПТОНА ЭФФЕКТ в Большой советской энциклопедии, БСЭ:
    эффект, комптон-эффект, упругое рассеяние электромагнитного излучения на свободных электронах, сопровождающееся увеличением длины волны; наблюдается при рассеянии излучения малых длин волн …
  • КИНЕТИКА ФИЗИЧЕСКАЯ в Большой советской энциклопедии, БСЭ:
    физическая, теория неравновесных макроскопических процессов, то есть процессов, возникающих в системах, выведенных из состояния теплового (термодинамического) равновесия. К К. ф. …

Проведение нервного импульса по волокну происходит за счет распространения по оболочке отростка волны деполяризации. Большинство периферических нервов по своим двигательным и чувствительным волокнам обеспечивают проведение импульса со скоростью до 50-60 м/сек. Собственно деполяризация процесс достаточно пассивный, тогда как восстановление мембранного потенциала покоя и способности к проведению осуществляется путем функционирования NA/K и Са насосов. Для их работы необходима АТФ, обязательным условием образования которой является наличие сегментарного кровотока. Прекращение кровоснабжения нерва сразу блокирует проведение нервного импульса.

По особенностям строения и функциям нервные волокна подразделяются на два вида: безмиелиновые и миелиновые. Безмиелиновые нервные волокна не имеют миелиновой оболочки. Их диаметр 5-7 мкм, скорость проведения импульса 1-2 м/с. Миелиновые волокна состоят из осевого цилиндра, покрытого миелиновой оболочкой, образованной шванновскими клетками. Осевой цилиндр имеет мембрану и оксоплазму. Миелиновая оболочка состоит на 80 % из липидов и на 20 % из белка. Миелиновая оболочка не покрывает сплошь осевой цилиндр, а прерывается и оставляет открытыми участки осевого цилиндра, которые называются узловыми перехватами (перехваты Ранвье). Длина участков между перехватами различна и зависит от толщины нервного волокна: чем оно толще, тем длиннее расстояние между перехватами.

В зависимости от скорости проведения возбуждения нервные волокна делятся на три типа: А, В, С. Наибольшей скорость проведения возбуждения обладают волокна типа А, скорость проведения возбуждения которых достигает 120 м/с, В имеет скорость от 3 до 14 м/с, С - от 0,5 до 2 м/с.

Выделяют 5 законов проведения возбуждения:

  • 1. Нерв должен сохранять физиологическую и функциональную непрерывность.
  • 2. В естественных условиях распространение импульса от клетки к периферии. Имеется 2-х стороннее проведение импульса.
  • 3. Проведение импульса изолированно, т.е. волокна покрытые миелином не передают возбуждение на соседние нервные волокна, а только вдоль нерва.
  • 4. Относительная неутомимость нерва в отличие от мышц.
  • 5. Скорость проведения возбуждения зависит от наличия или отсутствия миелина и длины волокна.
  • 3. Классификация повреждений периферических нервов

Повреждения бывают:

  • А) огнестрельные: -прямые (пулевые, осколочные)
  • -опосредованные
  • -пневмоповреждения
  • Б) неогнестрельные: резаные, колотые, укушенные, компрессионные, компрессионно-ишемические

Так же в литературе встречается разделение повреждений на открытые(резаные, колотые, рваные, рубленные, ушибленные, размозженные раны) и закрытые(сотрясение, ушиб, сдавленно, растяжение, раз рыв и вывих) травмы периферической нервной системы.

  • 73. Назвать основные положения биоэнергетики. Сходство и различия в использовании энергии ауто- и гетеротрофами, связь между теми и другими.
  • 74. Сформулировать понятие макроэргическая связь, макроэргическое соединение. Виды работ совершаемые живыми организмами. Связь с окислительно-восстановительными процессами.
  • 75 Особенности биологического окисления, его виды.
  • 76. Тканевое дыхание. Ферменты тканевого дыхания, их особенности, компартментализация.
  • 81)Определить понятие «Разобщение тканевого дыхания и окислительного фосфорилирования». Разобщающие факторы.
  • 82)Субстратное фосфорилирование. Биологическое значение, примеры.
  • 88) Что называют макроэргом.
  • 91. Определить поняти биологическое ок-е
  • 96) Назвать главные составные компоненты мембран, охарактеризовать липидный бислой.
  • 97)Типы черезмембранного переноса вещества, простая и облегчённая диффузия.
  • 98)Активный транспорт веществ через клетку.
  • 102.Превращения глюкозы в тканях
  • Реакции цикла Кребса
  • 105.Гликогенолиз
  • 106.Регуляция содержания глюкозы в крови
  • 107. Инсулин.
  • 112. Биохимические сдвиги сахарный диабет
  • 113. Кетоновые тела.
  • 114. Глюконеогенез
  • 121. Биологическая роль липидов.
  • 122. Механизмы эмульгирования липидов, значение процесса для их усвоения.
  • 123. Липолитические ферменты пищеварительного тракта, условия их функционирования.
  • 124. Роль желчных кислот в переваривании и всасывании липидов.
  • 125. Всасывание продуктов переваривания липидов, их превращения в слизистой кишечника и транспорт.
  • 126. Транспортные формы липидов, места их образования.
  • 127. Образование и транспорт триглицеридов в организме.
  • 130. Важнейшие фосфолипиды, биосинтез, биологическая роль. Сурфактант.
  • 131. Регуляция обмена липидов.
  • 132. Механизм влияния инсулина на содержание липидов.
  • 136.Стеаторея: определение, формы, различающиеся по происхождению. Дифференциация патогенной и панкреатической стеаторей.
  • 137. Дифференциация энтерогенной и других видов стеаторей.
  • 138. Биохимические признаки стеатореи.
  • 139. Типы гиперлипопротеинемии по данным биохитмического исследования сыворотки крови, мочи. Молекулярные дефекты.
  • 140. Типы гиполипопротеинемий (синдром Базен-Корнцвейга, болезнь Тэнжи, болезнь Норума)
  • 212. Какие биологически активные соединения можно назвать гормонами.
  • 213. В какой последовательности взаимодействуют гомоны в управлении метаболизмом.
  • 214. Назовите нейрогормоны гипофиза, и их органы мишени.
  • 216. Как регулируется актг.
  • 217. Назовите гонадотропные гормоны.
  • 219. Как регулируется продукция поратгормонаи кальцитонина.
  • 220. Охарактеризуйте природу гормонов надпочечников.
  • 221. Опишите гормональную регуляцию овогенеза.
  • 222. Раскажите об эксекреторной и инкреторной функции семенников.
  • 223. Расскажите о биологическом значении поджелудочной железы.
  • 290-291 Назвать 6 основных патологических состояний/назвать причины и лабораторные показатели…
  • 314. Механизм сокращения мышцы
  • 315. Соединительная ткань и структурой и свойствами ее основных компонентов.
  • 317. Состав нервной ткани
  • 318.Метаболизм нервной ткани
  • 319.Проведение нервного импульса
  • 319.Проведение нервного импульса

    Нервный импульс - волна возбуждения, распространяющаяся по нервному волокну, возникает при раздражении нейрона и несет сигнал о происшедшем изменении в среде (центростремительный импульс) или сигнал-команду в ответ на происшедшее изменение (центробежный импульс).

    Потенциал покоя. Возникновение и проведение импульса связано с изме­нением состояния некоторых структурных элементов нейрона. К этим струк­турам относятся натриевый насос, включающий Ыа^ 1^-АТФазу, и два типа ионопроводящих каналов - натриевый и калиевый. Их взаимодействие дает в состоянии Покоя разность потенциалов по разные стороны плазматической мембраны аксонов (потенциал покоя). Существование разницы потенциалов связано" 1) с высокой концентрацией ионов калия в клетке (в 20-50 раз выше, чем в окружении); 2) с тем, что внутриклеточные анионы (белки и нуклеиновые кислоты) не могут выходить из клетки; 3) с тем, что проницаемость мембраны для ионов натрия в 20 раз ниже, чем для ионов калия. Потенциал существует в конечном счете потому, что ионы калия стремятся выйти из клетки, чтобы уравнять внешнюю и внутреннюю концентрации. Но покинуть клетку ионы калия не могут, и это приводит к возникновению отрицательного заряда, который тормозит дальнейшее выравнивание концентраций ионов калия. Ионы хлора должны оставаться снаружи, чтобы компенсировать заряд плохо проникающего натрия, но стремяться покинуть клетку по градиенту концен­трации.

    Для поддержания мембранного потенциала (около 75 мВ) необходимо сохранять разницу концентраций ионов натрия и калия, чтобы ионы натрия, проникающие в клетку, выводились бы из нее обратно в обмен на ионы калия. " Это достигается за счет действия мембранной Nа + , г^-АТФазы, которая за счет энергии АТФ переносит ионы натрия из клетки в обмен на два иона калия, забираемого в клетку. При ненормально высокой концентрации ионов натрия во внешней среде насос увеличивает отношение Nа + /К + . Таким образом, в состоянии покоя ионы калия перемещаются по градиенту кнаружи. Одновре­менно некоторое количество калия возвращается путем диффузии Разница между этими процессами компенсируется за счет действия К" 1 ", N8"""-насоса. Ионы натрия входят внутрь по градиенту со скоростью, ограничиваемой проницаемостью мембраны для них. Одновременно ионы натрия выкачивают­ся насосом против градиента концентрации за счет энергии АТФ.

    Потенциал действия - последовательность процессов, вызываемых в нерве раздражителем. Раздражение нерва влечет за собой местную деполяризацию мембраны, снижение мембранного потенциала. Это происходит из-за вхожде­ния в клетку некоторого количества ионов натрия. Когда разница потенциалов падает до порогового уровня (около 50 мВ), проницаемость мембраны для натрия увеличивается примерно в 100 раз. Натрий устремляется по градиенту в клетку, гася отрицательный заряд на внутренней поверхности мембраны. Величина потенциала может измениться от -75 в покое до +50. Произойдет не только гашение отрицательного заряда на внутренней поверхности мембраны, но появится положительный заряд (инверсия полярности). Этот заряд препят­ствует дальнейшему поступлению натрия в клетку, и проводимость для натрия падает. Насос же восстанавливает исходное состояние. О непосредственной причине этих трансформаций сказано ниже.

    Длительность потенциала действия составляет менее 1 мс и охватывает (в отличие от потенциала покоя) лишь небольшой участок аксона. В миелинизи-рованных волокнах это участок между соседними перехватами Раньве. Если потенциал покоя изменился в степени, не достигающей пороговой, то потенци­ал действия не возникает, если же пороговое значение достигнуто, то в каждом случае развивается одинаковый потенциал действия (опять «все или ничего»).

    Движение потенциала в немиелинизированных аксонах осущес­твляется следующим образом. Диффузия ионов из участка с инверти­рованной полярностью в соседние вызывает в них развитие потенциала действия. В связи с этим, возникнув в одном месте, потенциал распространяется по всей длине аксона.

    Движение потенциала действия представляет собой нервный импульс, или распространяющуюся волну возбуждения, или проведение.

    С движением потенциала действия, с его проведением, возможно, связаны изменения концентрации ионов кальция внутри аксонов. Весь внутриклеточ­ный кальций, кроме небольшой фракции, связан с белком (концентрация свободного кальция составляет около 0,3 мМ), в то время как вокруг клетки его концентрация достигает 2 мМ. Следовательно, имеется градиент, который стремится направить ионы кальция в клетку. Природа насоса, выталкивающе­го кальций, неясна. Известно, однако, что каждый ион кальция обменивается на 3 иона натрия, которые проникают в клетку в момент нарастания потенциала действия.

    Структура натриевого канала изучена недостаточно, хотя и известен ряд фактов: 1) существенный структурный элемент канала -интегральный мембранный белок; 2) на каждый квадратный микрометр поверхности пере­хвата Ранвье приходится около 500 каналов; 3) в период восходящей фазы потенциала действия через канал проходит примерно 50 000 ионов натрия; 4) быстрое удаление ионов возможно благодаря тому, что на каждый канал в мембране имеется от 5 до 10 молекул Nа + , \ К^-АТФазы.

    Каждая молекула АТФазы должна вытолкнуть из клетки 5-10 тыс, ионов натрия для того, чтобы мог начаться следующий цикл возбуждения.

    Сопоставление скорости прохождения разных по размерам молекул позволило установить диаметр каналов - примерно 0,5 нм. Диаметр может увеличиваться на 0,1 нм. Скорость прохождения ионов натрия через канал в реальных условиях в 500 раз выше скорости прохождения ионов калия и остается выше в 12 раз даже при одинаковых концентрациях этих ионов.

    Спонтанный выход калия из клетки происходит через самостоятельные каналы, диаметр которых около

    Пороговый уровень мембранного потенциала, при котором растет его проницаемость для натрия, зависит от концентрации кальция вне клетки, ее снижение при гипокальциемии вызывает судороги.

    Возникновение потенциала действия и распространение импульса в немиелинизированном нерве происходит за счет открывания натриевого канала. Канал образован молекулами интегрального белка, его конформа-ция изменяется в ответ на рост положительного заряда окружающей среды. Рост заряда связан с входом натрия через соседний канал.

    Деполяризация, вызванная открытием канала, эффективно воздействует на соседний канал

    В миелинизированном нерве натриевые каналы сосредоточены в немиелини-зированных перехватах Ранвье (более десятка тысяч на 1 мкм) В связи с этим в зоне перехвата поток натрия оказывается в 10-100 раз большим, чем на проводящей поверхности немиелинизированного нерва. Молекулы На^ К^-АТФазы в большом количестве находятся на соседних участках нерва. Депо­ляризация одного из перехватов вызывает градиент потенциала между пере­хватами, поэтому ток быстро протекает через аксоплазму к соседнему перехва­ту, снижая там разницу потенциалов до порогового уровня. Этим обеспечива­ется высокая скорость проведения импульса по нерву - не менее чем в 2 раза быстрее, чем по немиелинизированному (до 50 м/с в немиелинизированном и до 100 м/с в миелинизированном).

    320.Передача нервных импульсов , т.е. распространение его на другую клетку, осуществляется с помощью специальных структур - синапсов , соединяющих нервное окончание и соседнюю клеткуСинаптическая щель разделяет клетки. Если ширина щели ниже 2 нм, передача сигнала происходит путем распространения тока, как вдоль аксона В большинстве синапсов ширина щели приближается к 20 нм В этих синапсах приход потенциала действия приводит к освобождению из пресинаптической мембраны медиаторного вещества, которое диффундирует через синаптическую щель и связывается со специфическим рецептором на постсинаптической мембра­не, передавая ему сигнал.

    Медиаторные вещества (нейромедиаторы) - соединения, которые находят­ся в пресинаптической структуре в достаточной концентрации, освобождаются при передаче импульса, вызывают после связывания с постсинаптической мембраной электрический импульс. Существенный признак нейромедиатора - наличие системы транспорта для его удаления из синапса Причем эта транспортная система должна отличаться высоким сродством к медиатору.

    В зависимости от характера медиатора, обеспечивающего синаптическую передачу, различают синапсы и холинэргические (медиатор - ацетилхолин), и адренэргические (медиаторы - катехоламиньг норадреналин, дофамин и, возможно, адреналин)

    Синапсы – это струтуры, предназначенные для передачи импульса с одного нейрона на другой или на мышечные и железистые структуры. Сингапсы обеспечивают поляризацию проведения импульса по цепи нейронов. В зависимости от способа передачи импульса синапсы могут быть химическими или электрическими (электротони­ческими).

    Химические синапсы передают импульс на другую клетку с помощью специальных биологически активных веществ - нейромедиаторов, находя­щихся в синаптических пузырьках. Терминаль аксона представляет собой пресинаптическую часть, а область второго ней­рона, или другой иннервируемой клетки, с которой она контактирует, - постсинаптическую часть. Область синаптического кон­такта между двумя нейронами состоит из пресинаптической мембраны, синаптической щели и постсинаптической мембраны.

    Электрические, или электротонические, синапсы в нервной системе мле­копитающих встречаются относительно редко. В области таких синапсов цитоплазмы соседних нейронов связаны щелевидными соединениями (кон­тактами), обеспечивающими прохождение ионов из одной клетки в другую, а следовательно, электрическое взаимодействие этих клеток.

    Скорость передачи импульса миелиновыми волокнами больше, чем безмиелиновыми. Тонкие волокна, бедные миелином, и безмиелиновые волокна проводят нервный импульс со скоростью 1-2 м/с, тогда как тол­стые миелиновые - со скоростью 5-120 м/с.

    В безмиелиновом волокне волна деполяризации мембраны идет по всей аксолемме, не прерываясь, а в миелиновом возникает только в области перехвата. Таким образом, для миелиновых волокон характерно сальтатор-ное проведение возбуждения, т.е. прыжками. Между перехватами идет элек­трический ток, скорость которого выше, чем прохождение волны деполя­ризации по аксолемме.

    № 36 Сравнительная характеристика структурной организации рефлекторных дуг соматической и вегетативной нервной системы.

    Рефлекторная дуга - это цепь нервных клеток, обязатель­но включающая первый - чувствительный и последний - дви­гательный (или секреторный) нейроны. Наиболее простыми рефлекторными дугами являются двух- и трехнейронные, замыкающиеся на уровне одного сег­мента спинного мозга. В трехнейронной рефлекторной дуге пер­вый нейрон представлен чувствительной клеткой, который движется вначале по периферическому отростку, а затем по центральному, направляясь к одному из ядер заднего рога спинного мозга. Здесь импульс передается следующему нейрону, отросток кото­рого направляется из заднего рога в передний, к клеткам ядер (двигательных) переднего рога. Этот нейрон выполняет провод­никовую (кондукторную) функцию. Он передает импульс от чув­ствительного (афферентного) нейрона к двигательному (эффе­рентному). Тело третьего нейрона (эфферентного, эффекторного, двига­тельного) лежит в переднем роге спинного мозга, а его аксон - в составе переднего корешка, а затем спинномозгового нерва простирается до рабочего органа (мышца).

    С развитием спинного и головного мозга усложнились и связи в нервной системе. Образовались многоней­ронные сложные рефлекторные дуги , в построении и функциях которых участвуют нервные клетки, расположенные в вышележа­щих сегментах спинного мозга, в ядрах мозгового ствола, полу­шарий и даже в коре большого мозга. Отростки нервных кле­ток, проводящих нервные импульсы из спинного мозга к ядрам и коре головного мозга и в обратном направлении, образуют пучки, fasciculi.

    Нейромедиаторы – это вещества, которые характеризуются следующими признаками:

    Накапливаются в пресинаптической мембране в достаточной концентрации;

    Освобождаются при передаче импульса;

    Вызывают после связывания с постсинаптической мембраной изменение скорости метаболических процессов и возникновение электрического импульса;

    Имеют систему для инактивации или транспортную систему для удаления из синапса продуктов гидролиза.

    Нейромедиаторы играют важную роль в функционировании нервной ткани, обеспечивая синаптическую передачу нервного импульса. Их синтез происходит в теле нейронов, а накопление в особых везикулах, которые постепенно перемещаются с участием систем нейрофиламентов и нейротрубочек к кончикам аксонов.

    К нейромедиаторам относятся производные аминокислот: таурин, норадреналин, дофамин, ГАМК, глицин, ацетилхолин, гомоцистеин и некоторые другие (адреналин, серотонин, гистамин), а также нейропетиды.

    Холинэргические синапсы

    Ацетилхолин синтезируется из холина и ацетил-КоА. Для синтеза холина требуются аминокислоты серин и метионин. Но, как правило, из крови в нервную ткань поступает уже готовый холин. Ацетилхолин участвует в синаптической передаче нервного импульса. Он накапливается в синаптических пузырьках, образуя комплексы с отрицательно заряженным белком везикулином (рис. 22). Передача возбуждения с одной клетки на другую осуществляется с помощью специального синаптического механизма.

    Рис. 22. Холинэргический синапс

    Синапс – это функциональный контакт специализированных участков плазматических мембран двух возбудимых клеток. Синапс состоит из пресинаптической мембраны, синаптической щели и постсинаптической мембраны. Мембраны в месте контакта имеют утолщения в виде бляшек – нервных окончаний. Нервный импульс, достигший нервного окончания, не в состоянии преодолеть возникшее перед ним препятствие - синаптическую щель. После этого электрический сигнал преобразуется в химический.

    Пресинаптическая мембрана содержит специальные канальные белки, подобные белкам, формирующим натриевый канал в мембране аксона. Они тоже реагируют на мембранный потенциал, изменяя свою конформацию, и формируют канал. В результате ионы Са 2+ проходят через пресинаптическую мембрану по градиенту концентраций в нервное окончание. Градиент концентраций Са 2+ создается работой Са 2+ -зависимой АТФазы. Повышение концентрации Са 2+ внутри нервного окончания вызывает слияние имеющихся там везикул, заполненных ацетилхолином. Затем ацетилхолин секретируется в синаптическую щель путем экзоцитоза и присоединяется к рецепторным белкам, расположенным на поверхности постсинаптической мембраны.

    Ацетилхолиновый рецептор представляет собой трансмембранный олигомерный гликопротеиновый комплекс, состоящий из 6 субъединиц. Плотность расположения белков-рецепторов в постсинаптической мембране очень велика – около 20000 молекул на 1 мкм 2 . Пространственная структура рецептора строго соответствует конформации медиатора. При взаимодействии с ацетилхолином белок-рецептор так изменяет свою конформацию, что внутри него формируется натриевый канал. Катионная селективность канала обеспечивается тем, что ворота канала сформированы отрицательно заряженными аминокислотами. Т.о. повышается проницаемость постсинаптической мембраны для натрия и возникает импульс (или сокращение мышечного волокна). Деполяризация постсинаптической мембраны вызывает диссоциацию комплекса «ацетилхолин-белок-рецептор», и ацетилхолин освобождается в синаптическую щель. Как только ацетилхолин оказывается в синаптической щели, он за 40 мкс подвергается быстрому гидролизу под действием фермента ацетилхолинэстеразы на холин и ацетил-КоА.

    Необратимое ингибирование ацетилхолинэстеразы вызывает смерть. Ингибиторами фермента являются фосфорорганические соединения. Смерть наступает в результате остановки дыхания. Обратимые ингибиторы ацетилхолинэстеразы используются как лечебные препараты, например, при лечении глаукомы и атонии кишечника.

    Адренэргические синапсы (рис. 23)встречаются в постганглионарных волокнах, в волокнах симпатической нервной системы, в различных отделах головного мозга. Медиаторами в них служат катехоламины: норадреналин и дофамин. Катехоламины в нервной ткани синтезируются по общему механизму из тирозина. Ключевой фермент синтеза – тирозингидроксилаза, ингибируемая конечными продуктами.

    Рис. 23. Адренэргический синапс

    Норадреналин – медиатор в постганглионарных волокнах симпатической системы и в различных отделах ЦНС.

    Дофамин – медиатор проводящих путей, тела нейронов которого расположены в отделе мозга. Дофамин отвечает за контроль произвольных движений. Поэтому при нарушении дофаминергической передачи возникает заболевание паркинсонизм.

    Катехоламины, как и ацетилхолин, накапливаются в синаптических пузырьках и тоже выделяются в синаптическую щель при поступлении нервного импульса. Но регуляция в адренергическом рецепторе происходит иначе. В пресинаптической мембране имеется специальный регуляторный белок – ахромогранин, который в ответ на повышение концентрации медиатора в синаптической щели связывает уже выделившийся медиатор и прекращает его дальнейший экзоцитоз. Фермента, разрушающего медиатор, в адренергических синапсах нет. После передачи импульса молекулы медиатора перекачиваются специальной транспортной системой путем активного транспорта с участием АТФ обратно в пресинаптическую мембрану и включаются вновь в везикулы. В пресинаптическом нервном окончании излишек медиатора может быть инактивирован моноаминооксидазой (МАО), а также катехоламин-О-метилтрансферазой (КОМТ) путем метилирования по оксигруппе.

    Передача сигнала в адренергических синапсах протекает с участием аденилатциклазной системы. Связывание медиатора с постсинаптическим рецептором почти мгновенно вызывает повышение концентрации цАМФ, что приводит к быстрому фосфорилированию белков постсинаптической мембраны. В результате тормозится генерация нервных импульсов постсинаптической мембраны. В некоторых случаях непосредственной причиной этого является повышение проницаемости постсинаптической мембраны для калия, либо снижение проводимости для натрия (такое состояние приводит к гиперполяризации).

    Таурин образуется из аминокислоты цистеина. Сначала происходит окисление серы в HS-группе (процесс идет в несколько стадий), затем происходит декарбоксилирование. Таурин – это необычная кислота, в которой нет карбоксильной группы, а имеется остаток серной кислоты. Таурин принимает участие в проведении нервного импульса в процессе зрительного восприятия.

    ГАМК – тормозной медиатор (около 40% нейронов). ГАМК повышает проницаемость постсинаптических мембран для ионов калия. Это ведет к изменению мембранного потенциала. ГАМК тормозит запрет на проведение «ненужной» информации: внимание, двигательный контроль.

    Глицин – вспомогательный тормозной медиатор (менее 1% нейронов). По вызываемым эффектам подобен ГАМК. Его функция - торможение мотонейронов.

    Глутаминовая кислота - главный возбуждающий медиатор (около 40% нейронов). Основная функция: проведение основных потоков информации в ЦНС (сенсорные сигналы, двигательные команды, память).

    Нормальная деятельность ЦНС обеспечивается тонким балансом глутаминовой кислоты и ГАМК. Нарушение этого баланса (как правило, в сторону уменьшения торможения) негативно влияет на многие нервные процессы. При нарушении баланса развивается синдром дефицита внимания и гиперактивности детей (СДВГ), повышается нервозность и тревожность взрослых, нарушение сна, бессонница, эпилепсия.

    Нейропептиды имеют в своем составе от трех до нескольких десятков аминокислотных остатков. Функционируют только в высших отделах нервной системы. Эти пептиды выполняют функцию не только нейромедиаторов, но и гормонов. Они передают информацию от клетки к клетке по системе циркуляции. К ним относятся:

    Нейрогипофизарные гормоны (вазопрессин, либерины, статины) – они одновременно являются и гормонами и медиторами;

    Гастроинтестинальные пептиды (гастрин, холецистокинин). Гастрин вызывает чувство голода, холецистокинин вызывает чувство насыщения, а также стимулирует сокращение желчного пузыря и функцию поджелудочной железы;

    Опиатоподобные пептиды (или пептиды обезболивания). Образуются путём реакций ограниченного протеолиза белка-предшественника проопиокортина. Взаимодействует с теми же рецепторами, что и опиаты (например, морфин), тем самым имитируют их действие. Общее название - эндорфины. Они легко разрушаются протеиназами, поэтому их фармакологический эффект незначителен;

    Пептиды сна. Их молекулярная природа не установлена. Они вызывают сон;

    Пептиды памяти (скотофобин). Накапливается при тренировке на избегание темноты;

    Пептиды-компоненты ренин-ангиотензиновой системы. Стимулируют центр жажды и секрецию антидиуретического гормона.

    Образование пептидов происходит в результате реакций ограниченного протеолиза, разрушаются они под действием протеиназ.

    Контрольные вопросы

    1. Охарактеризуйте химический состав мозга.

    2. В чем состоят особенности метаболизма в нервной ткани?

    3. Перечислите функции глутамата в нервной ткани.

    4. Какова роль медиаторов в передаче нервного импульса? Перечислите основные тормозные и возбуждающие медиаторы.

    5. В чем состоят отличия в функционировании адренэргических и холинэргических синапсов?

    6. Приведите примеры соединений, влияющих на синаптическую передачу нервных импульсов.

    7. Какие биохимические изменения могут наблюдаться в нервной ткани при психических заболеваниях?

    8. Каковы особенности действия нейропептидов?

    Биохимия мышечной ткани

    Мышцы составляют 40-50% массы тела человека.

    Различают три типа мышц:

    Поперечнополосатые скелетные мышцы (сокращаются произвольно);

    Поперечнополосатая сердечная мышца (сокращается непроизвольно);

    Гладкие мышцы (сосуды, кишечник, матка) (сокращаются непроизвольно).

    Поперечнополосатая мышца состоит из многочисленных удлиненных волокон.

    Мышечное волокно - многоядерная клетка, покрытая эластичной оболочной - сарколеммой . В мышечное волокно входят двигательные нервы , передающие ему нервный импульс, вызывающий сокращение. По длине волокна в полужидкой саркоплазме расположены нитевидные образования - миофибриллы . Саркомер - повторяющийся элемент миофибриллы, ограниченный Z-линией (рис. 24). В середине саркомера находится А-диск, темный в фазово-контрастном микроскопе, в центре которого расположена М-линия, видная при электронной микроскопии. Н-зона занимает среднюю часть
    А-диска. I-диски светлые в фазово-контрастном микроскопе, и каждый из них делится на равные половины Z-линией. В А-дисках находятся толстые миозиновые и тонкие актиновые нити. Тонкие нити начинаются у Z-линии, проходят через I-диск и прерываются в области Н-зоны. Электронная микроскопия показала, что толстые нити уложены в форме шестиугольника и проходят через весь А-диск. Между толстыми нитями расположены тонкие. При сокращении мышцы I-диски практически исчезают, а область перекрывания между тонкими и толстыми нитями увеличивается.

    Саркоплазматический ретикулум - внутриклеточная мембранная система взаимосвязанных уплощенных пузырьков и канальцев, которая окружает саркомеры миофибрилл. На внутренней его мембране расположены белки, способные связывать ионы кальция.