Электронный учебник по физике

КГТУ-КХТИ. Кафедра физики. Старостина И.А., Кондратьева О.И., Бурдова Е.В.

Для перемещения по тексту электронного учебника можно использовать:

1- нажатие клавиш PgDn, PgUp,,  для перемещения по страницам и строкам;

2- нажатие левой клавиши «мыши» по выделенному тексту для перехода в требуемый раздел;

3- нажатие левой клавиши «мыши» по выделенному значку @ для перехода в оглавление.

МАГНЕТИЗМ

МАГНЕТИЗМ

1. ОСНОВЫ МАГНИТОСТАТИКИ. МАГНИТНОЕ ПОЛЕ В ВАКУУМЕ

1.1. Магнитное поле и его характеристики.@

1.2. Закон Ампера.@

1.3. Закон Био – Савара – Лапласа и его применение к расчету магнитного поля. @

1.4. Взаимодействие двух параллельных проводников с током. @

1.5. Действие магнитного поля на движущуюся заряженную частицу. @

1.6. Закон полного тока для магнитного поля в вакууме(теорема о циркуляции вектора В). @

1.7. Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля. @

1. 8. Рамка с током в однородном магнитном поле. @

2. МАГНИТНОЕ ПОЛЕ В ВЕЩЕСТВЕ. @

2.1. Магнитные моменты атомов. @

2.2. Атом в магнитном поле. @

2.3. Намагниченность вещества. @

2.4. Виды магнетиков. @

2.5. Диамагнетизм. Диамагнетики. @

2.6. Парамагнетизм. Парамагнетики. @

2.7. Ферромагнетизм. Ферромагнетики. @

2.8. Доменная структура ферромагнетиков. @

2.9. Антиферромагнетики и ферриты. @

3. ЯВЛЕНИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ. @

3.1. Основной закон электромагнитной индукции. @

3.2. Явление самоиндукции. @

3.3. Явление взаимной индукции. @

3.4. Энергия магнитного поля. @

4. УРАВНЕНИЯ МАКСВЕЛЛА. @

4.1. Теория Максвелла для электромагнитного поля. @

4.2. Первое уравнение Максвелла. @

4.3. Ток смещения. @

4.4. Второе уравнение Максвелла. @

4.5. Система уравнений Максвелла в интегральной форме. @

4.6. Электромагнитное поле. Электромагнитные волны. @

МАГНЕТИЗМ

Магнетизм - раздел физики, изучающий взаимодействие между электричес­ки­ми токами, между токами и магнитами (телами с магнитным моментом) и между магнитами.

Долгое время магнетизм считался совершенно независимой от электричества наукой. Однако ряд важнейших открытий 19-20 веков А.Ампера, М.Фарадея и др. доказали связь электрических и магнитных явлений, что позволило считать учение о магнетизме составной частью учения об электричестве.

1. ОСНОВЫ МАГНИТОСТАТИКИ. МАГНИТНОЕ ПОЛЕ В ВАКУУМЕ

1.1. Магнитное поле и его характеристики.@

Впервые магнитные явления были последовательно рассмотрены английским врачом и физиком Уильямом Гильбертом в его работе - «О магните, магнитных телах и о большом магните – Земле». Тогда казалось, что электричество и магнетизм не имеютничего общего. Лишь в началеXIXвека датский ученый Г.Х.Эрстед выдвинул идею о том, что магнетизм может оказаться одной из скрытых форм электричества, что и подтвердил в 1820 г. на опыте. Этот опыт повлек за собой лавину новых открытий, имевших огромное значение.

Многочисленные опыты начала XIXвека показали, что каждый проводник с током и постоянный магнит способны оказывать силовое воздействие через пространство на другие проводники с током или магниты. Это происходит из-за того, что вокруг проводников с током и магнитов возникает поле, которое было названомагнитным .

Для исследования магнитного поля применяют небольшую магнитную стрелку, подвешенную на нити или уравновешенную на острие (Рис.1.1). В каждой точке магнитного поля стрелка, расположенная произвольно, будет п

Рис.1.1. Направление магнитного поля

оворачиваться в определенном направлении. Это происходит из-за того, что в каждой точке магнитного поля на стрелку действует вращающий момент, который стремится расположить ее ось вдоль магнитного поля. Осью стрелки называется отрезок, соединяющий ее концы.

Рассмотрим ряд опытов, которые позволили установить основные свойства магнитного поля:

На основании данных опытов был сделан вывод о том, что магнитное поле создается только движущимися зарядами или движущимися заряженными телами, а также постоянными магнитами. Этим магнитное поле отличается от электрического поля, которое создается как движущимися, так и неподвижными зарядами и действует как на одни, так и на другие.

Основной характеристикой магнитного поля является вектор магнитной индукции . За направление магнитной индукции в данной точке поля принимают направление, по которому в данной точке располагается ось магнитной стрелки отS к N (рис.1.1). Графически магнитные поля изображаются силовыми линиями магнитной индукции, то есть кривыми, касательные к которым в каждой точке совпадают с направлением вектора В.

Эти силовые линии можно увидеть с помощью железных опилок: например, если рассыпать опилки вокруг длинного прямолинейного проводника и пропустить через него ток, то опилки поведут себя подобно маленьким магнитикам, располагаясь вдоль силовых линий магнитного поля (рис. 1.2).

Как определить направление вектора около проводника с током? Это можно сделать с помощью правила правой руки, которое иллюстрируется рис. 1.2. Большой палец правой руки ориентируют в направлении тока, тогда остальные пальцы в согнутом положении указывают направление силовых линий магнитного поля. В случае, изображенном на рис.1.2, линиипредставляют собой концентрические окружности. Линии вектора магнитной индукции всегдазамкнуты и охватывают проводник с током. Этим они отличаются от линий напряженности электрического поля, которые начинаются на положительных и кончаются на отрицательных зарядах, т.еразомкнуты . Линии магнитной индукции постоянного магнита выходят из одного полюса, называемого северным (N) и входят в другой - южный (S) (рис. 1.3а). Вначале кажется, что здесь наблюдается полная аналогия с линиями напряженности электрического поля Е, причем полюса магнитов играют роль магнитных зарядов. Однако если разрезать магнит, картина сохраняется, получаются более мелкие магниты со своими северными и южными полюсами, т.е. полюса разделить невозможно, потому что свободных магнитных зарядов, в отличие от электрических зарядов, в природе не существует. Было установлено, что внутри магнитов имеется магнитное поле и линии магнитной индукции этого поля являются продолжением линий магнитной индукции вне магнита, т.е. замыкают их. Подобно постоянному магниту магнитное поле соленоида – катушки из тонкой изолированной проволоки с длиной намного больше диаметра, по которой течет ток (рис.1.3б). Конец соленоида, из которого ток в витке виден идущим против часовой стрелки, совпадает с северным полюсом магнита, другой – с южным. Магнитная индукцияв системе СИ измеряется в Н/(А∙м), этой величине присвоено специальное наименование – тесла .

Согласно предположению французского физика А.Ампера,намагниченное железо (в частности, стрелки компаса) содержит непрерывно движущиеся заряды, т.е. электрические токи в атомном масштабе. Такие микроскопические токи, обусловленные движением электронов в атомах и молекулах, существуют в любом теле. Эти микротоки создают свое магнитное поле и могут сами поворачиваться во внешних полях, создаваемых проводниками с током.Например, если вблизи какого-либо тела поместить проводник с током, то под действием его магнитного поля микротоки во всех атомах определенным образом ориентируются, создавая в теле дополнительное магнитное поле. О природе и характере этих микротоков Ампер в то время ничего не мог сказать, так как учение о строении вещества находилось еще в самой начальной стадии. Гипотеза Ампера была блестяще подтверждена лишь спустя 100 лет, после открытия электрона и выяснения строения атомов и молекул.

Магнитные поля, существующие в природе, разнообразны по масштабам и по вызываемым эффектам. Магнитное поле Земли, образующее земную магнитосферу, простирается на расстоянии 70 – 80 тысяч км в направлении к Солнцу и на многие миллионы километров в обратном направлении. В околоземном пространстве магнитное поле образует магнитную ловушку для заряженных частиц высоких энергий. Происхождение магнитного поля Земли связывают с движениями проводящего жидкого вещества в земном ядре. Из других планет Солнечной системы лишь Юпитер и Сатурн обладают заметными магнитными полями. Магнитное поле Солнца играет важнейшую роль во всех происходящих на Солнце процессах – вспышках, появлении пятен и протуберанцев, рождении солнечных космических лучей.

Магнитное поле широко применяется в различных отраслях промышленности, в частности при очистке муки на хлебозаводах от металлических примесей. Специальные просеиватели муки снабжены магнитами, которые притягивают к себе мелкие кусочки железа и его соединений, которые могут содержаться в муке.

Несколько столетий назад родилось понятие магнетизма как физического явления. Оно определялось как форма взаимодействия электрических зарядов, которые постоянно находятся в состоянии движения. Это взаимодействие осуществляется под действием еще одной невидимой силы - магнитного поля. Его удалось вычислить при помощи формул и создать математическую модель.

Замечание 1

На рубеже 19 и 20 веков, когда были определены основные понятия в классической квантовой физике, ориентирующейся на физические процессы, происходящие в микромире атомных частиц, родилась квантовая теория магнетизма. Сегодня установлено, что в этом процессе принимают участие квантовые частицы – бозоны и фотоны.

Магнитная восприимчивость

Ученые определили, что для каждого тела, заключенного в черный ящик, где есть напряжение на выходе, а не входе подается ток, можно подсчитать его передаточный импеданс. Однако также существует понятие магнитной восприимчивости. Оно характеризуется функцией отклика. Такой отклик подается на магнитное поле. Исследователи полагают, что точно магнитную восприимчивость вычисли очень сложно. Система вычислений будет содержать очень крупные числа, которыми трудно оперировать. В этом случае применяют метод составления анализа магнитной восприимчивости. Он формируется на основе измерений и предполагает большую работу по подготовке.

По ее поведению устанавливают самые важные процессы, которые протекают в изучаемой системе. Потом ее изучают и составляют анализ, где учитываются все подобные процессы. Для реализации программы расчетов необходимо знать о процессах, которые возможны в такой системе, а также их влияния на восприимчивость.

Чтобы определить значение восприимчивости необходимо знать показатели намагниченности. Она создается приложенным магнитным полем. При расчете общим способом, в оборот берется зависимость магнитного поля от пространственных и временных координат. Когда поле находится в зависимости от времени, то вся система находится в тепловом равновесии. Для вычисления функции распределения необходимо учитывать уравнения движения.

В уравнениях Максвелла есть определение магнитного момента. Намагниченность получается на основе усреднения магнитных моментов ионов. Для выполнения усреднения необходимо знать распределение ионных токов. В общем случае расчетов такое понятие неизвестно математиками, поэтому есть объективная сложность во всей теории магнетизма.

Ученые применяют два метода решения этой проблемы:

  • метод локализованных моментов;
  • метод делокализованных моментов.

При достижении результата намагниченности следует найти среднее значение оператора текущего магнитного момента.

Обобщенная восприимчивость

Замечание 2

При рассмотрении понятия восприимчивости обычно берут во внимание среду, где отклик присутствует в равных долях к воздействию. При неоднородной среде отклик зависит от более высоких степеней воздействия.

Затем используют метод вторичного квантования. Магнетизм в металлических субстанциях предстает в виде многочастотного явления. Многочастичная волновая функция удовлетворяет уравнению Шредингера. Коэффициенты в разложенной функции зависят от квантовых чисел. При использовании чисел заполнения статистика учитывается не коэффициентами разложения, а базисными функциями.

Магнитный гамильтониан

Рассматриваемые свойства магнетизма обязаны своим происхождением электронам. Это было подтверждено на экспериментальном уровне. Установлено, что электрон обладает собственным магнитным моментом. При описании движения электрона используются релятивистские способы изучения, а также уравнение Дирака и источники поля.

При исследовании однородного гамильтониана с одним электроном установлено, что взаимодействие идет с электроном и его окружением. Самый простой метод имеют потенциалы с однородным внешним полем. В качестве дополнительных источников изучения используется:

  • электрическое квадрупольное поле;
  • операторная эквивалентность;
  • дипольное магнитное поле;
  • другие электроны этого же иона;
  • кристаллическое электрическое поле.

В отличие от магнитного гамильтониана, который является прямым и общим, если знать его функции. Однако подобные данные недоступны, поэтому точных расчетов достичь не удается.

Статическая восприимчивость невзаимодействующих систем

Гамильтониан предстает в виде суммы отдельных членов. Для остальных систем существуют не взаимодействующие элементы. Так как явление магнетизма прочно связано с понятиями проводников и диэлектриков, многие математики используют их при составлении квантовой теории магнетизма. Диэлектрики характеризуются распределением заряда, и он неплохо локализован в конкретной ячейке. Эти системы описываются локализованными эффективными спинами. Однако, из-за того, что во многих природных элементах остается непонятой магнитный момент и его распределение, то дальнейшие вычисления также проводятся особыми методами.

Физик Ландау проводит эксперименты над неферромагнитными металлами. На приложенном поле впервые были исследована статическая реакция. Его коллега в это же рассмотрел спиновый парамагнетизм. Сам Ландау предпринял попытки распознать орбитальный диамагнетизм.

При измерении самой восприимчивости существует немало специальных методов. Все они основаны на том, что ест образец с удельной восприимчивостью. Если образец поместить на конец маятника, который висит под прямым углом по отношению к поверхности, то возникнет крутильный момент. Сбалансировать крутильный момент от образца возможно противоположным крутильным моментом. Он достигается при пропускании через элемент системы электрического тока. Оно проходит через соленоид. В остальных случаях измерение сводится к измерению тока, которое равно нулевому смещению. Для материалов с сильномагнитным полем используется магнитометр с вибрирующим образцом.

Заряженные тела способны создавать кроме электрического еще один вид поля. Если заряды движутся, то в пространстве вокруг них создается особый вид материи, называемый магнитным полем . Следовательно, электрический ток, представляющий собой упорядоченное движение зарядов, тоже создает магнитное поле. Как и электрическое поле, магнитное поле не ограничено в пространстве, распространяется очень быстро, но все же с конечной скоростью. Его можно обнаружить только по действию на движущиеся заряженные тела (и, как следствие, токи).

Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности E электрического поля. Такой характеристикой является вектор B магнитной индукции. В системе единиц СИ за единицу магнитной индукции принят 1 Тесла (Тл). Если в магнитное поле с индукцией B поместить проводник длиной l с током I , то на него будет действовать сила, называемая силой Ампера , которая вычисляется по формуле:

где: В – индукция магнитного поля, I – сила тока в проводнике, l – его длина. Сила Ампера направлена перпендикулярно вектору магнитной индукции и направлению тока, текущего по проводнику.

Для определения направления силы Ампера обычно используют правило «Левой руки» : если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы Ампера, действующей на проводник (см. рисунок).

Если угол α между направлениями вектора магнитной индукции и тока в проводнике отличен от 90°, то для определения направления силы Ампера надо взять составляющую магнитного поля, которая перпендикулярна направлению тока. Решать задачи этой темы нужно так же как и в динамике или статике, т.е. расписав силы по осям координат или складывая силы по правилам сложения векторов.

Момент сил, действующих на рамку с током

Пусть рамка с током находится в магнитном поле, причём плоскость рамки перпендикулярна полю. Силы Ампера будут сжимать рамку, а их равнодействующая будет равна нулю. Если поменять направление тока, то силы Ампера поменяют своё направление, и рамка будет не сжиматься, а растягиваться. Если линии магнитной индукции лежат в плоскости рамки, то возникает вращательный момент сил Ампера. Вращательный момент сил Ампера равен:

где: S - площадь рамки, α - угол между нормалью к рамке и вектором магнитной индукции (нормаль - вектор, перпендикулярный плоскости рамки), N – количество витков, B – индукция магнитного поля, I – сила тока в рамке.

Сила Лоренца

Сила Ампера, действующая на отрезок проводника длиной Δl с силой тока I , находящийся в магнитном поле B может быть выражена через силы, действующие на отдельные носители заряда. Эти силы называют силами Лоренца . Сила Лоренца, действующая на частицу с зарядом q в магнитном поле B , двигающуюся со скоростью v , вычисляется по следующей формуле:

Угол α в этом выражении равен углу между скоростью и вектором магнитной индукции. Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено по правилу левой руки или по правилу буравчика (как и сила Ампера). Вектор магнитной индукции нужно мысленно воткнуть в ладонь левой руки, четыре сомкнутых пальца направить по скорости движения заряженной частицы, а отогнутый большой палец покажет направление силы Лоренца. Если частица имеет отрицательный заряд, то направление силы Лоренца, найденное по правилу левой руки, надо будет заменить на противоположное.

Сила Лоренца направлена перпендикулярно векторам скорости и индукции магнитного поля. При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает . Поэтому модуль вектора скорости при движении частицы не изменяется. Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость лежит в плоскости, перпендикулярной вектору индукции магнитного поля, то частица будет двигаться по окружности, радиус которой можно вычислить по следующей формуле:

Сила Лоренца в этом случае играет роль центростремительной силы. Период обращения частицы в однородном магнитном поле равен:

Последнее выражение показывает, что для заряженных частиц заданной массы m период обращения (а значит и частота, и угловая скорость) не зависит от скорости (следовательно, и от кинетической энергии) и радиуса траектории R .

Теория о магнитном поле

Если по двум параллельным проводам идёт ток в одном направлении, то они притягиваются; если в противоположных направлениях, то отталкиваются. Закономерности этого явления были экспериментально установлены Ампером. Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот. Опыты показали, что модуль силы, действующей на отрезок длиной Δl каждого из проводников, прямо пропорционален силам тока I 1 и I 2 в проводниках, длине отрезка Δl и обратно пропорционален расстоянию R между ними:

где: μ 0 – постоянная величина, которую называют магнитной постоянной . Введение магнитной постоянной в СИ упрощает запись ряда формул. Ее численное значение равно:

μ 0 = 4π ·10 –7 H/A 2 ≈ 1,26·10 –6 H/A 2 .

Сравнивая приведенное только что выражение для силы взаимодействия двух проводников с током и выражение для силы Ампера нетрудно получить выражение для индукции магнитного поля создаваемого каждым из прямолинейных проводников с током на расстоянии R от него:

где: μ – магнитная проницаемость вещества (об этом чуть ниже). Если ток протекает по круговому витку, то в центре витка индукция магнитного поля определяется по формуле:

Силовыми линиями магнитного поля называют линии, по касательным к которым располагаются магнитные стрелки. Магнитной стрелкой называют длинный и тонкий магнит, его полюса точечны. Подвешенная на нити магнитная стрелка всегда поворачивается в одну сторону. При этом один её конец направлен в сторону севера, второй - на юг. Отсюда название полюсов: северный (N ) и южный (S ). Магниты всегда имеют два полюса: северный (обозначается синим цветом или буквой N ) и южный (красным цветом или буквой S ). Магниты взаимодействуют так же, как и заряды: одноименные полюса отталкиваются, а разноименные – притягиваются. Невозможно получить магнит с одним полюсом. Даже если магнит разломать, то у каждой части будет по два разных полюса.

Вектор магнитной индукции

Вектор магнитной индукции - векторная физическая величина, являющаяся характеристикой магнитного поля, численно равная силе, действующей на элемент тока в 1 А и длиной 1 м, если направление силовой линии перпендикулярно проводнику. Обозначается В , единица измерения - 1 Тесла. 1 Тл - очень большая величина, поэтому в реальных магнитных полях магнитную индукцию измеряют в мТл.

Вектор магнитной индукции направлен по касательной к силовым линиям, т.е. совпадает с направлением северного полюса магнитной стрелки, помещённой в данное магнитное поле. Направление вектора магнитной индукции не совпадает с направлением силы, действующей на проводник, поэтому силовые линии магнитного поля, строго говоря, силовыми не являются.

Силовая линия магнитного поля постоянных магнитов направлена по отношению к самим магнитам так, как показано на рисунке:

В случае магнитного поля электрического тока для определения направления силовых линий используют правило «Правой руки» : если взять проводник в правую руку так, чтобы большой палец был направлен по току, то четыре пальца, обхватывающие проводник, показывают направление силовых линий вокруг проводника:

В случае прямого тока линии магнитной индукции - окружности, плоскости которых перпендикулярны току. Вектора магнитной индукции направлены по касательной к окружности.

Соленоид - намотанный на цилиндрическую поверхность проводник, по которому течёт электрический ток I подобно полю прямого постоянного магнита. Внутри соленоида длиной l и количеством витков N создается однородное магнитное поле с индукцией (его направление также определяется правилом правой руки):

Линии магнитного поля имеют вид замкнутых линий - это общее свойство всех магнитных линий. Такое поле называют вихревым. В случае постоянных магнитов линии не оканчиваются на поверхности, а проникают внутрь магнита и замыкаются внутри. Это различие электрического и магнитного полей объясняется тем, что, в отличие от электрических, магнитных зарядов не существует.

Магнитные свойства вещества

Все вещества обладают магнитными свойствами. Магнитные свойства вещества характеризуются относительной магнитной проницаемостью μ , для которой верно следующее:

Данная формула выражает соответствие вектора магнитной индукции поля в вакууме и в данной среде. В отличие от электрического, при магнитном взаимодействии в среде можно наблюдать и усиление, и ослабление взаимодействия по сравнению с вакуумом, у которого магнитная проницаемость μ = 1. У диамагнетиков магнитная проницаемость μ немного меньше единицы. Примеры: вода, азот, серебро, медь, золото. Эти вещества несколько ослабляют магнитное поле. Парамагнетики - кислород, платина, магний - несколько усиливают поле, имея μ немного больше единицы. У ферромагнетиков - железо, никель, кобальт - μ >> 1. Например, у железа μ ≈ 25000.

Магнитный поток. Электромагнитная индукция

Явление электромагнитной индукции было открыто выдающимся английским физиком М.Фарадеем в 1831 году. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур. Магнитным потоком Φ через площадь S контура называют величину:

где: B – модуль вектора магнитной индукции, α – угол между вектором магнитной индукции B и нормалью (перпендикуляром) к плоскости контура, S – площадь контура, N – количество витком в контуре. Единица магнитного потока в системе СИ называется Вебером (Вб).

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции ε инд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум возможным причинам.

  1. Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.
  2. Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре.

При решении задач важно сразу определить за счет чего меняется магнитный поток. Возможно три варианта:

  1. Меняется магнитное поле.
  2. Меняется площадь контура.
  3. Меняется ориентация рамки относительно поля.

При этом при решении задач обычно считают ЭДС по модулю. Обратим внимание также внимание на один частный случай, в котором происходит явление электромагнитной индукции. Итак, максимальное значение ЭДС индукции в контуре состоящем из N витков, площадью S , вращающемся с угловой скоростью ω в магнитном поле с индукцией В :

Движение проводника в магнитном поле

При движении проводника длиной l в магнитном поле B со скоростью v на его концах возникает разность потенциалов, вызванная действием силы Лоренца на свободные электроны в проводнике. Эту разность потенциалов (строго говоря, ЭДС) находят по формуле:

где: α - угол, который измеряется между направлением скорости и вектора магнитной индукции. В неподвижных частях контура ЭДС не возникает.

Если стержень длиной L вращается в магнитном поле В вокруг одного из своих концов с угловой скоростью ω , то на его концах возникнет разность потенциалов (ЭДС), которую можно рассчитать по формуле:

Индуктивность. Самоиндукция. Энергия магнитного поля

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре. Собственный магнитный поток Φ , пронизывающий контур или катушку с током, пропорционален силе тока I :

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукции или индуктивностью катушки. Единица индуктивности в СИ называется Генри (Гн).

Запомните: индуктивность контура не зависит ни от магнитного потока, ни от силы тока в нем, а определяется только формой и размерами контура, а также свойствами окружающей среды. Поэтому при изменении силы тока в контуре индуктивность остается неизменной. Индуктивность катушки можно рассчитать по формуле:

где: n - концентрация витков на единицу длины катушки:

ЭДС самоиндукции , возникающая в катушке с постоянным значением индуктивности, согласно формуле Фарадея равна:

Итак ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Энергия W м магнитного поля катушки с индуктивностью L , создаваемого током I , может быть рассчитана по одной из формул (они следуют друг из друга с учётом формулы Φ = LI ):

Соотнеся формулу для энергии магнитного поля катушки с её геометрическими размерами можно получить формулу для объемной плотности энергии магнитного поля (или энергии единицы объёма):

Правило Ленца

Инерция – явление, происходящее и в механике (при разгоне автомобиля мы отклоняемся назад, противодействуя увеличению скорости, а при торможении отклоняемся вперёд, противодействуя уменьшению скорости), и в молекулярной физике (при нагревании жидкости увеличивается скорость испарения, самые быстрые молекулы покидают жидкость, уменьшая скорость нагревания) и так далее. В электромагнетизме инерция проявляется в противодействии изменению магнитного потока, пронизывающего контур. Если магнитный поток нарастает, то возникающий в контуре индукционный ток направлен так, чтобы препятствовать нарастанию магнитного потока, а если магнитный поток убывает, то возникающий в контуре индукционный ток направлен так, чтобы препятствовать убыванию магнитного потока.

На этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    После того как Ампер высказал догадку, что никаких «магнитных зарядов» не существует и что намагничивание тел объясняется молекулярными круговыми токами (§§ 57 и 61), прошло почти сто лет, когда, наконец, это предположение было с полной убедительностью доказано прямыми экспериментами. Вопрос о природе магнетизма был решен опытами в области так называемых магнето-механических явлений. Методы осуществления и расчета этих опытов были разработаны на основе развитых Резерфордом в 1911 г. и Бором в 1913 г. представлений о строении атомов (впрочем, некоторые близкие по замыслу эксперименты проводились и раньше, в частности Максвеллом, но безуспешно).

    При исследовании явлений радиоактивности Резерфордом было установлено, что электроны в атомах вращаются по замкнутым орбитам вокруг положительно заряженных ядер атомов; Бор показал при теоретическом анализе спектров, что только некоторые из этих орбит устойчивы; наконец, вслед за этим (в 1925 г., также на основе анализа спектров) было обнаружено вращение электронов вокруг своей оси, как бы аналогичное суточному вращению Земли; совокупность этих данных привела к ясному пониманию природы амперовых круговых токов. Стало очевидным, что основными элементами магнетизма в веществах является: или вращение электронов вокруг ядер, или вращение электронов вокруг своей оси, или же оба эти вращения одновременно.

    При постановке в 1914-1915 гг. первых успешных магнетомеханических опытов, которые пояснены ниже, вначале предполагалось, что магнитные свойства веществ полностью определяются орбитальным движением электронов вокруг ядер. Однако количественные результаты упомянутых опытов показали, что свойства ферромагнитных и парамагнитных веществ определяются не движением электронов по орбитам, а вращением электронов вокруг своей оси.

    Чтобы понять замысел магнетомеханических опытов и правильно оценить выводы, к которым привели эти опыты, нужно вычислить отношение магнитного момента кругового тока, создаваемого движением электрона, к механическому моменту количества движения электрона.

    Величина любого тока, как известно, определяется количеством электричества, проходящего через поперечное сечение в единицу времени; очевидно, что величина тока, эквивалентного орбитальному вращению электрона, равна произведению заряда электрона на число оборотов в единицу времени где скорость движения электрона и радиус орбиты. Указанное произведение выражает величину эквивалентного тока в электростатических единицах. Чтобы получить величину тока в электромагнитных единицах, указанное произведение нужно разделить на скорость света (стр. 296); таким образом,

    Круговой ток образует такое же магнитное поле, как магнитный листок с моментом, равным произведению тока на обтекаемую им площадь [формула (17)]:

    Таким образом, мы видим, что движение электрона вокруг ядра сообщает атому магнитный момент, равный

    Сопоставляя этот магнитный момент с механическим моментом количества движения электрона:

    находим, что отношение магнитного момента к механическому импульсу не зависит ни от скорости движения электрона, ни от радиуса орбитьи

    И действительно, более полная теория показывает, что уравнение (33) является справедливым не только для круговых орбит, но также и для эллиптических орбит электрона.

    Вращение электрона вокруг своей оси сообщает самому электрону некоторый магнитный момент. Вращение электрона вокруг своей оси называют спином (от английского слова «спин», означающего вращение вокруг оси). Если предположить, что электрон имеет шарообразную форму и что заряд электрона распределен с равномерной плотностью по сферической поверхности, то вычисления показывают, что отношение спинового магнитного момента электрона к механическому импульсу вращения электрона вокруг своей оси в два раза больше, чем аналогичное отношение для орбитального движения:

    Изложенные соображения о пропорциональности магнитного момента и импульса вращения указывают на то, что в известных условиях магнитные явления могут оказаться связанными с гироскопическими эффектами. Эту связь магнитных явлений с гироскопическими эффектами пытался экспериментально обнаружить еще Максвелл, но только Эйнштейну и де Гаазу (1915 г.), А. Ф. Иоффе и П. Л. Капице (1917 г.) и Барнету (1914 г. и 1922 г.) впервые удалось произвести удачные опыты. Эйнштейн и де Гааз установили, что железный стержень, подвешенный в соленоиде в качестве сердечника, при намагничивании током, пропускаемым через соленоид, приобретает импульс вращения (рис. 256). Чтобы получить заметный эффект, Эйнштейн и де Гааз воспользовались явлением резонанса, производя периодическое перемагничивание переменным током с частотой, совпадающей с частотой собственных крутильных колебаний стержня.

    Рис. 256. Схема опыта Эйнштейна и де Гааза, а - зеркальце, О - источник света.

    Эффект Эйнштейна и де Гааза объясняется следующим образом. При намагничивании оси элементарных магнитов - «электронных волчков» - ориентируются в направлении магнитного поля; геометрическая сумма импульсов вращения «электронных волчков» становится отличной от нуля, а так как в начале опыта импульс вращения железного стержня (рассматриваемого как механическая система атомов) был равен нулю, то по закону сохранения импульса вращения

    (т. I, § 38) вследствие намагничивания стержень в целом должен приобрести импульс вращения, равный по величине, но противоположный по направлению геометрической сумме импульсов вращения «электронных волчков».

    Барнет произвел опыт, обратный опыту Эйнштейна и де Гааза, а именно, Барнет вызвал намагничивание железного стержня, приведя его в быстрое вращение; намагничивание происходило в направлении, противоположном оси вращения. Подобно тому как вследствие суточного вращения Земли ось гирокомпаса принимает положение, параллельное земной оси (т. I, § 38), точно так же в опыте Барнета оси «электронных волчков» принимают положение-, параллельное оси вращения железного стержня (при этом вследствие того, что заряд электрона отрицателен, направление намагниченности будет противоположно оси вращения стержня).

    В опытах А. Ф. Иоффе и П. Л. Капицы (1917 г.) железный намагниченный стержень, подвешенный на нити, подвергался быстрому нагреванию выше точки Кюри. При этом упорядоченное размещение «элементарных волчков», оси которых вследствие намагниченности были ориентированы по полю параллельно оси стержня, утрачивалось и заменялось хаотическим распределением направления осей, так что суммарный магнитный и механический моменты «элементарных волчков» оказывались близкими к нулю (рис. 257). В силу закона сохранения момента количества движения железный стержень при размагничивании приобретал импульс вращения.

    Рис. 257. Схема, поясняющая идею опыта Иоффе - Капицы. а - железный стержень намагничен; б - стержень размагничен нагреванием выше точки Кюри.

    Измерение магнитного момента и импульса вращения в опытах Эйнштейна и де Гааза, в опытах Барнета и в опытах Иоффе и Капицы, которые были неоднократно повторены многими учеными, показало, что отношение этих величин определяется формулой (34), а не формулой (33). Это указывает на то, что основным элементом магнетизма в железе (и вообще в ферромагнитных телах) является спин - осевое вращение электронов, а не орбитальное движение электронов вокруг положительных ядер атомов.

    Однако и орбитальное движение электронов сказывается на магнитных свойствах веществ: магнитный момент атомов, ионов и молекул представляет собой геометрическую сумму спиновых и орбитальных магнитных моментов (впрочем, строение атомов таково, что определяющую роль в этой сумме опять-таки имеют спиновые моменты).

    Когда суммарный магнитный момент частицы равен нулю, то вещество оказывается диамагнитным. Формально диамагнитные вещества характеризуются магнитной проницаемостью меньшей, чем единица следовательно, отрицательной магнитной восприимчивостью это означает, что диамагнитные вещества намагничиваются в направлении, противоположном напряженности намагничивающего поля.

    Электронная теория объясняет диамагнетизм влиянием магнитного поля на орбитальное движение электронов вокруг ядер. Это движение электрона, как уже было пояснено, эквивалентно току. Когда на атом начинает действовать магнитное поле и напряженность его возрастает от нуля до некоторого значения «индуцируется добавочный ток», который согласно закону Ленца (§ 71) имеет такое направление, что созданный этим «добавочным током» магнитный момент всегда направлен противоположно возросшему от нуля до полю. Если намагничивающее поле перпендикулярно к плоскости орбиты, то оно просто изменяет скорость движения электрона по орбите, и это измененное значение скорости сохраняется все время, пока атом пребывает в магнитном поле; если же поле не перпендикулярно к плоскости орбиты, то возникает и устанавливается прецессионное движение оси орбиты вокруг направления поля (аналогично прецессии оси волчка вокруг вертикали, проходящей через точку опоры волчка) (т. I, § 38).

    Вычисления приводят к нижеследующей формуле для магнитной восприимчивости диамагнитных веществ:

    здесь заряд и масса электрона, число электронов в атоме, число атомов в единице объема вещества, средний радиус электронных орбит.

    Таким образом, диамагнитный эффект является общим свойством всех веществ; однако этот эффект мал, и поэтому он может быть наблюдаем только в том случае, если нет противоположного ему сильного парамагнитного эффекта.

    Теория парамагнетизма была разработана Ланжевеном в 1905 г. и развита на основе современных представлений Флеком, Стонером и др. (в 1927 и в последующие годы). В зависимости от строения атома магнитные моменты, создаваемые отдельными внутриатомными электронами, могут или взаимно компенсироваться, так что атом в целом оказывается немагнитным (подобные вещества проявляют диамагнитные свойства), или же результирующий магнитный момент атома оказывается отличным от нуля. В этом последнем случае, как показывает квантовая механика, магнитный момент атома (точнее, его электронной оболочки) закономерно выражается (т. III, §§ 59, 67-70) через своего рода «атом магнетизма» По квантовой

    механике этим «атомом магнетизма» является магнитный момент создаваемый вращением электрона вокруг ядра, - магнетон Бора, равный

    (здесь заряд электрона, постоянная Планка, с - скорость света, масса электрона).

    Точно такой же магнитный момент имеет каждый электрон независимо от его движения вокруг ядра, но вследствие своего строения или, как условно говорят, вследствие своего вращения вокруг оси. Магнитный момент спина равен магнетону Бора, тогда как механический момент спина [в соответствии с формулами (33) и (34)] равен половине орбитального момента электрона.

    Некоторые атомные ядра также имеют магнитные моменты, но в тысячи раз меньшие, чем магнитные моменты, присущие электронным оболочкам атомов § 115). Магнитные моменты ядер выражаются через ядерный магнетон, величина которого определяется такой же формулой, как величина магнетона Бора, если в этой формуле заменить массу электрона массой протона.

    По теории Ланжевена, при намагничивании парамагнитного вещества молекулы ориентируются своими магнитными моментами по направлению силовых линий поля, но молекулярно-тепловое

    движение в той или иной мере расстраивает эту ориентацию. Молекулярная картина намагничивания парамагнитного вещества аналогична поляризации диэлектрика (§ 22), если, конечно, представить себе, что жесткие электрические диполи заменены элементарными магнитиками, а электрическое поле - магнитным полем. О степени ориентации элементарных магнитиков в направлении намагничивающего поля можно судить по величине средней проекции магнитного момента на направление поля (рассчитанной на одну молекулу). При беспорядочном расположении осей элементарных магнитиков когда же все элементарные магнитики ориентированы в направлении поля,

    Ланжевен показал, что при температуре и при напряженности внутреннего магнитного поля утр аналогично формуле для в § 22) отношение выражается следующей функцией:

    При малых значениях как уже упоминалось в § 22, вышеуказанная функция Ланжевена (36) приобретает значение у, так что в этом случае

    Очевидно, что намагниченность равна произведению величины на число молекул в единице объема:

    Таким образом, при неизменной плотности вещества намагниченность обратно пропорциональна абсолютной температуре. Этот факт эмпирически установлен Кюри в 1895 г.

    Для большинства парамагнитных веществ мало в сравнении с единицей, поэтому, подставив в формулу и заменив через можно пренебречь величиной в сравнении с единицей; тогда получаем:

    где означает удельную магнитную восприимчивость (т. е. восприимчивость, отнесенную к единице массы). Эта формула носит название закона Кюри. Для многих парамагнетиков более точной является нижеследующая, более сложная форма закона Кюри [формула (31)]:

    Величина для некоторых парамагнитных веществ положительна, для других отрицательна.

    Парамагнитное вещество при намагничивании втягивается в пространство между полюсами магнита. Следовательно, при намагничивании парамагнитное вещество может производить работу, тогда как на размагничивание работа должна быть затрачена. В связи с этим, как было теоретически предсказано Дебаем, парамагнитные вещества при быстром адиабатном размагничивании должны испытывать некоторое охлаждение (в особенности в той области весьма низких температур, где магнитная восприимчивость парамагнетика сильно возрастает при понижении температуры). Опыты, проведенные с 1933 г. в ряде лабораторий, подтвердили выводы теории и послужили основой для разработки магнитного метода глубокого охлаждения тел. Парамагнитное вещество обычными методами охлаждают в магнитном поле до температуры жидкого гелия, после чего вещество быстро удаляют из магнитного поля, что и вызывает в этом веществе еще большее понижение температуры. Этим методом получают температуры, отличающиеся от абсолютного нуля на тысячные доли градуса.

    Характерной особенностью ферромагнитных веществ является то, что в относительно слабых полях они намагничиваются почти до полного насыщения. Стало быть, в ферромагнетиках существуют какие-то силы, которые, преодолевая влияние теплового движения, содействуют упорядоченной ориентации элементарных магнитных моментов. Предположение о существовании внутреннего поля сил, содействующих намагничиванию ферромагнетиков, впервые было высказано русским ученым Б. Л. Розингом в 1892 г. и обосновано П. Вейсом в 1907 г.

    В ферромагнитных веществах элементарными магнитами являются вращающиеся вокруг своей оси электроны - спины. В развитие идей Вейса предполагают, что спины, будучи расположены в узлах кристаллической решетки и взаимодействуя друг с другом, создают внутреннее поле, которое в отдельных мелких участках ферромагнитного кристалла (эти участки называют доменами) поворачивает все спины в одну сторону, так что каждый такой участок (домен) оказывается спонтанно (самопроизвольно) намагниченным до насыщения. Однако смежные участки кристалла в отсутствие внешнего магнитного поля имеют неодинаковое направление

    намагниченности. Вычисления показывают, что, например, в кристаллах железа «самопроизвольное» намагничивание может происходить в направлении любого ребра кубической кристаллической ячейки.

    Слабое внешнее магнитное поле заставляет все спины в домене повернуться в направлении того ребра кубической ячейки, которое составляет наименьший угол с направлением намагничивающего поля.

    Рис. 258. Ориентация спинов в доменах при намагничивании ферромагнетика.

    Более сильное поле вызывает новый поворот спинов ближе к направлению поля. Магнитное насыщение достигается тогда, когда магнитные моменты всех спонтанно намагниченных микрокристаллических участков окажутся ориентированными в направлении поля. При намагничивании поворачиваются не домены, но все спины в них; все спины в каком-либо микрокристаллике поворачиваются единовременно, как солдаты в строю; этот поворот спинов происходит сначала в одних доменах, потом в других. Таким образом, процесс намагничивания ферромагнитного вещества является ступенчатым (рис. 258).

    Экспериментально ступенчатость намагничивания впервые была обнаружена Баркгаузеном (1919 г.). Простейший опыт, пригодный для демонстрации этого явления, заключается в следующем: железный стерженек, вложенный в катушку, соединенную с телефоном, постепенно намагничивают, медленно поворачивая подковообразный магнит, подвешенный над катушкой (рис. 259); при этом в телефоне слышится характерный шорох, который распадается на отдельные удары, если намагничивающее поле изменять достаточно медленно (на сотые доли эрстеда в 1 сек.).

    Рис. 259. Опыт Баркгаузена.

    Оказалось, что эффект Баркгаузена исключительно велик при намагничивании тонкой никелевой проволоки, которая предварительно была завита в локон протягиванием через блок, а затем вложена в капилляр, удерживающий ее принудительно в выпрямленном состоянии. Прерывистый характер намагничивания сказывается на диаграмме намагничивания в виде мельчайших ступенчатых уступов (рис. 260).

    Области самопроизвольного намагничивания - домены - были экспериментально обнаружены и исследованы Н. С. Акуловым, который использовал для этого разработанный им порошковый метод магнитной дефектоскопии. Поскольку домены аналогичны маленьким магнитикам, на границе между ними поле не однородно.

    Рис. 260. Ступенчатый характер кривых намагничивания. Участки, отмеченные окружностями, приведены в увеличенном масштабе.

    Чтобы выявить очертания доменов, образец размагниченного ферромагнитного вещества помещают под микроскопом и покрывают поверхность образца жидкостью со взвешенной в ней тончайшей железной пылью. Железная пыль, собираясь около границ доменов, четко обозначает их контуры (рис. 261),

    Рис. 261. Домены в чистом железе (а), в кремнистом железе (б) и в кобальте (в).

    В поясненной выше картине происхождения ферромагнитных свойств некоторое время оставалась невыясненной одна важная часть, а именно природа сил, образующих то внутреннее поле, которое вызывает упорядоченную ориентацию спинов внутри доменов. В 1927 г. советский физик Я. Г. Дорфман осуществил опыт, показавший, что силы внутреннего поля в ферромагнетиках не

    являются силами магнитного взаимодействия, а имеют иное происхождение. Выделив узкий пучок из потока быстро движущихся электронов («бета-лучей», выбрасываемых радиоактивными веществами), Дорфман заставил эти электроны проходить через тонкую ферромагнитную пленку никеля; за пленкой никеля была поставлена фотографическая пластинка, позволявшая после проявления определить место встречи с нею электронов, так что можно было с большой точностью измерить угол, на который электроны отклонялись, проходя через намагниченную пленку никеля (рис. 262). Расчет показывает, что если бы внутреннее поле в ферромагнетике имело природу обычных магнитных взаимодействий, то след электронного пучка сместился бы на фотопластинке в установке Дорфмана почти на 2 см; в действительности смещение оказалось ничтожно малым.

    Рис. 262. Схема, поясняющая идею опыта Дорфмана.

    Теоретические исследования проф. Френкеля (1928 г.) и позже Блоха, Стонера и Слейтера показали, что упорядоченная ориентация спинов в доменах вызывается особого рода силами, существование которых было вскрыто квантовой механикой и которые проявляются при химическом взаимодействии атомов (в ковалентной связи; т. I, § 130). Эти силы, согласно принятому в квантовой механике способу их вычисления и истолкования, называют обменными силами. Вычисления показали, что энергия обменного взаимодействия между атомами железа в монокристалле в сотни раз превышает энергию магнитного взаимодействия. Это согласуется с измерениями, которые были сделаны Я. Г. Дорфманом в упомянутых выше опытах.

    Тем не менее практически наиболее важные свойства ферромагнетиков определяются не столько обменным взаимодействием, но преимущественно магнитным взаимодействием. Дело в том, что хотя существование областей «самопроизвольной» намагниченности (доменов) в ферромагнетиках вызывается обменными силами (упорядоченная ориентация спинов соответствует минимальной энергии обменного взаимодействия, т. е. является наиболее устойчивой), но преобладающие направления намагниченности доменов определяются симметрией кристаллической решетки и соответствуют минимуму энергии магнитного взаимодействия. А процесс технического намагничивания, как пояснено выше (рис. 258), заключается в опрокидывании всех спинов внутри отдельных доменов сначала в направлении той кристаллографической оси легкого намагничивания, которая составляет наименьший угол с направлением поля, а потом и в повороте спинов по направлению поля. Затраты энергии, необходимые для осуществления такого ступенчатого опрокидывания спинов поочередно во всех

    доменах и поворота их по полю, а также ряд величин, которые зависят от указанных затрат энергии (величин, определяющих намагничивание, магнитострикцию и другие явления), наиболее успешно вычисляются методами, которые разработаны Н. С. Акуловым (с 1928 г.) и Е. Е. Кондорским (с 1937 г.).

    Рис. 263. Сопоставление теоретических кривых намагниченности с экспериментальными данными (они показаны кружочками) для монокристалла железа.

    Из рис. 263, который мы приводим в качестве одного из примеров, можно видеть, что теоретические кривые, полученные по уравнениям Н. С. Акулова, хорошо согласуются с экспериментальными данными; диаграмма справа представляет намагничивание монокристалла железа в направлении пространственной диагонали кубической решетки, диаграмма слева - то же в направлении диагонали грани куба,

    Одним из основных препятствий для развития более завершенной и согласованной теории электрических феноменов явилась преувеличенная значимость, придаваемая сходству между статическим электричеством и электрическим током. Такой подход породил ошибочную веру в то, что в оба вида феноменов входит лишь одна сущность – электрический заряд. Тот же вид ошибки, только более полным и категоричным образом проявился и в нынешнем взгляде на магнетизм. Настаивая на том, что электростатические и электрические феномены – это просто два аспекта одного и того же, современное научное мнение признает, что между ними существует достаточное различие, оправдывающее отдельную категорию электростатики в теоретических аспектах статических феноменов. Если магнитостатика (соответствующая ветвь магнетизма) и упоминается во всех современных физических текстах, обычно от нее отмахиваются как от “старого подхода”, ныне вышедшего из моды. Строго статические концепции, такие как магнитные полюса, чаще всего вводятся с извинениями.

    Дробление отдельных физических сфер изучения на все больше и больше подразделений являлось характерной чертой научной деятельности на протяжении всей ее истории. В ситуации с магнитостатикой у нас имеется обратный процесс, случай, когда основное подразделение физики умерло благодаря каннибализму. Магнитостатику проглотил связанный с ней, но совсем другой феномен – электромагнетизм . Между этими двумя видами магнитных явлений есть много сходства, как и между двумя видами электричества. По существу, величины, в терминах которых выражается магнитостатика, определяются в основном электромагнитными отношениями. Но это ни в коей мере не оправдывает нынешнюю веру в то, что в процесс вовлечена лишь одна сущность. Подчиненный статус, который традиционная физика часто приписывает магнитным явлениям, иллюстрируется следующим комментарием К. У. Форда:

    “Как считают физики-теоретики, магнетизм в нашем мире – это просто побочный продукт электричества; он существует лишь как результат движения электрически заряженных частиц”.

    Такое утверждение подразумевает, что сделанные допущения установлены разумно и прочно . Однако на самом деле допущение, что магнетизм существует лишь как результат движения заряженных частиц, основывается на целиком и полностью незначимых допущениях. Истинная ситуация точнее описывается следующей цитатой из физического учебника:

    “Лишь за прошедшие тридцать лет были созданы модели, объединяющие два источника магнетизма (магниты и магнитостатику). Даже сегодня модели далеки от совершенства, но, по крайней мере, они убедили людей, что имеется лишь один источник магнитных полей: все магнитные поля возникают за счет движущихся электрических зарядов”.

    По существу, этот отрывок свидетельствует о том, что практически идея разработана не так уж и хорошо, но, тем не менее, большинство голосует за нее. Видный американский астроном Дж. Н. Бакелл указывал на то, что “часто мы создаем серьезные научные проблемы шумным одобрением, а не наблюдением” . Некритичное принятие “далеких от совершенства” моделей магнетизма – достойный пример такой ненаучной практики.

    Странной характеристикой существующей ситуации является то, что, придя к выводу, что магнетизм – это просто побочный продукт электричества, одним из видов деятельности физиков является поиск магнитного аналога подвижного электрического заряда – электрона. И вновь, цитируя К. У. Форда:

    “Электрическая частица создает электрическое поле. Когда оно движется, оно создает магнитное поле как вторичный эффект. В целях симметрии должны быть магнитные частицы, создающие магнитные поля, движение которых создает электрические поля так же, как движущиеся электрические частицы создают магнитные поля”.

    Автор признает, что “и до сих пор магнитный монополь смущает всех исследователей. Экспериментаторы потерпели поражение в обнаружении любого признака частицы”. Этот блуждающий огонек продолжает преследоваться с рвением, вызывающим такие ехидные комментарии, как:

    “Удивительно, что отсутствие экспериментального свидетельства существования магнитных монополей не уменьшает рвения искателей”.

    Точка зрения Форда такова: “Очевидное отсутствие существования монопольных частиц приводит современных физиков к парадоксу, они не могут все бросить до тех пор, пока не найдут объяснения” . Но он же (ненамеренно) предлагает ответ на парадокс, которым завершает обсуждение ситуации с монополем:

    “Физиков волнует вызов симметрии и всех известных законов – магнитная частица до сих пор не создана и не обнаружена”.

    Всякий раз, когда наблюдаемые факты “бросают вызов известным законам” и нынешнему пониманию связи отношений симметрии с любой данной ситуацией, можно с уверенностью говорить, что нынешнее понимание симметрии и, по крайней мере, некоторых “известных законов” неверное. В данном случае любой критический подход быстро укажет не только на то, что ряд допущений, на основе которых делается вывод о существовании магнитных монополей, выведен из чистых допущений без фактической поддержки, но и на то, что между двумя ключевыми допущениями имеется определенное противоречие.

    Как объяснял Форд, магнитный монополь, который так усердно ищут физики, - это частица, “создающая магнитные поля; то есть магнитный заряд”. Если бы такая частица существовала, она бы, конечно, оказывала магнитные влияния благодаря заряду. Но это напрямую противоречит допущению, что магнетизм является “побочным продуктом электричества”. Физики не могут сидеть одновременно на двух стульях. Если магнетизм – это побочный продукт электричества (то есть, электрических зарядов), тогда не может быть магнитного заряда (источника магнитных эффектов), аналогичного электрическому заряду - источнику электрических эффектов . С другой стороны, если бы частица с магнитным зарядом (магнитный монополь) существовала, тогда базовая теория магнетизма, приписывающая все магнитные эффекты электричеству, неверна .

    Из положений теоретического развития вселенной движения очевидно, что упущенная информация – это понимание физической природы магнетизма. До тех пор, пока магнетизм считается побочным продуктом электричества, а электричество рассматривается как данная характеристика природы, не поддающаяся объяснению, ничто не направит теорию в надлежащие русла . Но как только осознается, что магнитостатические явления возникают за счет магнитных зарядов, и что такой заряд является видом движения (вибрацией вращения), ситуация проясняется почти автоматически. Конечно, магнитные заряды существуют. Точно так же, как имеются электрические заряды, являющиеся одномерными вибрациями вращения, действующими противоположно одномерным вращениям, существуют и магнитные заряды – двумерные вибрации вращения, действующие противоположно двумерным вращениям . Феномены, возникающие за счет зарядов такой природы, относятся к магнитостатике. Электромагнетизм – это еще один двумерный феномен, включающий движение непрерывной, а не вибрационной природы.

    Двухмерность – вот ключ к пониманию магнитных отношений . Отсутствие осознания базовой характеристики магнетизма – одна из основных причин, создающих путаницу, существующую во многих сферах магнитной теории. Два измерения магнитного заряда и электромагнетизма являются, конечно, скалярными измерениями . Движение компонентов во втором измерении не возможно представить напрямую в традиционной пространственной системе отсчета, но они обладают наблюдаемыми косвенными влияниями, особенно на действующие величины. Значительный вклад в путаницу вносит и отсутствие осознания вибрационной природы электростатических и магнитостатических движений, которая резко отличает их от непрерывных движений, вовлеченных в электрический ток и электромагнетизм. Магнитостатика похожа на электромагнетизм тем, что определяющим фактором является ряд действующих измерений. Она похожа на электростатику тем, что определяющим фактором является вибрационный характер движения.

    Наши открытия показывают, что отсутствие магнитных монополей – это не “вызов симметрии”. Симметрия существует, но для ее осознания требуется лучшее понимание природы электричества и магнетизма. В электрических и магнитных отношениях есть симметрия, и в некоторых смыслах именно такой вид симметрии предвидели Форд и его коллеги. Один вид магнитного поля действительно создается так же, как электрическое поле, как и полагает Форд в объяснении рассуждения, лежащего в основе гипотезы магнитного монополя. Но электрическое поле создает не “электрическая частица”; это определенный вид движения – вибрация вращения. Магнитное поле создается подобной вибрацией вращения. Магнитное поле создает электрический ток, поступательное движение частицы (незаряженного электрона) в проводнике. Поступательное движение магнитного поля аналогично создает электрический ток в проводнике. И вновь, симметрия существует, но не тот вид симметрии, который призывался бы для магнитного монополя.

    Уравнение магнитной силы, выражение для силы между двумя магнитными зарядами, идентично уравнению Кулона, за исключением коэффициента t/s, введенного в магнитный заряд вторым скалярным измерением движения. Традиционная форма уравнения F = MM’/d². Как и в других первичных уравнениях силы, термины M’ и d² не обладают размерностями. На основе общих принципов, применяемых к уравнениям силы, что определялось во вселенной движения, упущенный термин в магнитном уравнении аналогичен 1/s в уравнении Кулона, - это 1/t. Тогда пространственно-временные размерности магнитного уравнения - F = t²/s² x 1/t = t/s².

    Подобно движению, составляющему электрический заряд, и по тем же причинам, движение, составляющее магнитный заряд, обладает скалярным направлением наружу. Но поскольку в материальном секторе магнитное вращение обязательно положительное (смещение во времени), все устойчивые магнитные заряды в данном секторе обладают смещением в пространстве (отрицательным), и отсутствует независимое магнитное явление, соответствующее отрицательному* электрическому заряду . В данном случае нет установленного использования, препятствующего применению обозначений, согласующихся с терминологией вращения. Поэтому мы будем относить магнитный заряд к отрицательным зарядам, а не пользоваться положительным* обозначением, как в случае электрического заряда.

    Хотя в материальном окружении отсутствуют положительные магнитные заряды, кроме как под влиянием внешних сил в ситуации, которая будет обсуждаться позже, двумерный характер магнитного заряда вносит влияние ориентации, не присутствующее в электрических феноменах. Все одномерные (электрические) заряды похожи; они не обладают отличительными характеристиками, по которым их можно было бы подразделить на разные виды классов. Но двумерный (магнитный) заряд состоит из вибрации вращения в измерении системы отсчета и еще одного скалярного измерения, независимого от первого, и, следовательно, перпендикулярного к нему в геометрическом представлении. Вращение, с которым связана вторая вибрация вращения, делит атом на две половины, которые могут определяться отдельно. На одной стороне от разделительной линии наблюдаемое вращение происходит по часовой стрелке. Скалярное направление магнитного заряда на этой стороне – направление наружу от вращения по часовой стрелке. Подобный заряд на противоположной стороне – это движение наружу от вращения против часовой стрелки.

    Единица магнитного заряда относится лишь к одной из двух вращающихся систем. Следовательно, атом обретает два заряда, занимающих положения, описанные в предыдущем параграфе, и направленных противоположно. Поэтому каждый атом магнитной или намагниченной субстанции обладает двумя полюсами или центрами магнитного влияния. На Земле имеются аналоги магнитных полюсов, соответственно они называются северным полюсом и южным полюсом.

    Полюса представляют собой точки скалярного отсчета. Действующее направление вибрации вращения, составляющее заряд, находящийся на северном полюсе, - это движение наружу от северной точки отсчета; действующее направление заряда, центрированного в южном полюсе, - это движение наружу от южной точки отсчета. Следовательно, взаимодействие двух магнитно заряженных атомов следует тому же паттерну, что и взаимодействие электрических зарядов. Как показано на рисунке 22, два северных полюса (линия а) движутся наружу от северных точек отсчета и, следовательно, наружу друг от друга. Два южных полюса (линия с) тоже движутся наружу друг от друга. Но, как показано на линии b, северный полюс, движущийся наружу от северной точки отсчета, движется по направлению к южному полюсу, который движется наружу от южной точки отсчета. Таким образом, одноименные полюса отталкиваются, а разноименные притягиваются.

    На этом основании, когда два магнитно заряженных атома сближаются друг с другом, северный полюс одного атома притягивается к южному полюсу другого атома. Результирующая структура – линейная комбинация северного полюса, нейтральная комбинация обоих полюсов и южный полюс. Прибавление третьего магнитно заряженного атома превращает южный полюс в нейтральную комбинацию, но оставляет новый южный полюс на новом конце структуры. Могут происходить и дальнейшие прибавления такого рода, ограниченные лишь температурными и другими разрушительными силами. Подобную стрелу атомов с северным и южным полюсами на противоположных концах можно создавать введением атомов намагниченной материи между магнитно заряженными атомами двухатомной комбинации. Разделение подобной структуры в любой точке ломает нейтральную комбинацию и оставляет северный и южный полюса на концах каждого сегмента. Следовательно, на сколько частей не делился бы намагниченный материал, в каждом фрагменте материала всегда имеются северный и южный полюса .

    Благодаря направленному характеру магнитных сил они подвергаются экранированию так же, как электрические силы. С другой стороны, гравитационная сила не может экранироваться или модифицироваться никоим образом. Многие наблюдатели сочли это указанием на то, что гравитационная сила должна обладать абсолютно другой природой. Такое впечатление усугубляется трудностью обнаружения подходящего места гравитации в основной физической теории. Основная цель теоретиков, работающих над проблемой построения “общей теории” или “единой теории” физики – найти место гравитации в своей теоретической структуре.

    Сейчас развитие теории вселенной движения показывает, что гравитация, статическое электричество и магнитостатика – явления одного и того же рода. Они отличаются друг от друга лишь числом действующих скалярных измерений . Благодаря симметрии пространства и времени в этой вселенной каждый вид силы (движения) обладает противоположно направленным партнером. Гравитация не исключение, она имеет место, как во времени, так и в пространстве . Следовательно, она подвергается тому же дифференцированию между положительным и отрицательным, что и дифференциация, которую мы обнаруживаем в электрических силах. Но в материальном секторе вселенной итоговое гравитационное влияние всегда происходит в пространстве, то есть, отсутствует действующая отрицательная гравитация . В космическом секторе оно всегда происходит во времени. Поскольку гравитация трехмерна, не может быть любой пространственной дифференциации вида, который мы обнаруживаем в магнетизме.

    В результате отсутствия понимания истинной связи между электромагнитными и гравитационными феноменами, традиционная физическая наука не способна сформулировать теорию, относящуюся к обеим сферам. Ее подход к проблеме – допускать, что электричество фундаментально, и воздвигать структуру физической теории на этом основании. Чтобы привести наблюдения и измерения в соответствие с теорией, основанной на электричестве, требуются дальнейшие допущения. Таким образом, гравитации присвоили статус необъяснимой аномалии. Так случилось из-за способа построения теорий, а не из-за какой-либо особенности гравитации . Если бы подход изменился, физическая теория строилась бы на основании допущения, что гравитация фундаментальна, а “не усвоенными” пунктами оказались бы электричество и магнетизм. Единую теорию, которую пытаются построить исследователи, можно создать лишь посредством развития, такого как представленного в данной работе. Оно покоится на прочном фундаменте понимания, где каждому из трех базовых феноменов отводится свое надлежащее место.

    Помимо влияний разницы в числе скалярных измерений, свойства вибрации вращения, составляющей магнитный заряд, совпадают со свойствами вибрации вращения, составляющей электрический заряд. Отсюда в надлежащих материалах можно индуцировать магнитные заряды. Материалы, в которых индуцируются магнитные заряды, ведут себя как постоянные магниты . По существу, некоторые материалы становятся постоянными магнитами, когда в них индуцируются магнитные заряды. Однако лишь относительно небольшое число элементов способно намагничиваться в значительной степени; то есть, обладать свойством, известным как ферромагнетизм .

    Традиционные теории магнетизма не имеют объяснения ограничению намагничивания элементов. Конечно, эти теории подразумевали бы, что оно должно быть общим свойством материи. На основании ранее упомянутых допущений электроны, которые традиционная теория рассматривает как составляющие атомов, являются миниатюрными электромагнитами и создают магнитные поля. В большинстве случаев допускается, что магнитные поля атомов ориентированы случайно и отсутствует итоговая магнитная результирующая. “Однако имеется несколько элементов, в атомах которых поля, созданные разными электронами, взаимно уничтожаются не полностью. Такие атомы обладают итоговым магнитным полем. У некоторых материалов… магнитные поля атомов выстраиваются в линию друг с другом” . Допускается, что такие материалы обладают магнитными свойствами. А вот почему эти несколько элементов должны обретать свойство, которым не обладает большинство элементов, не уточняется .

    В целях объяснения в терминах вселенной движения нам потребуется рассмотреть природу атомного движения. Если к трехмерной комбинации движений, составляющих атом, прибавляется двумерная, положительная вибрация вращения, это меняет величины движений. Результат – не один и тот же атом с магнитным зарядом, а атом другого вида . Как отдельная сущность магнитный заряд может существовать лишь в атоме, составленном так, что имеется часть атомной структуры, способная вибрировать двумерно и независимо от основного тела атома. Если нас волнует магнитное вращение, требование удовлетворяется тогда, когда вращение асимметрично; то есть, в одном из двух магнитных измерений имеется n единиц смещения, а в другом – n + 1.

    На этом основании симметричные элементы, обладающие магнитными вращениями 1-1, 2-2, 3-3 и 4-4, исключаются. Хотя магнитный заряд не обладает третьим измерением, электрическое вращение, с которым он связан в трехмерном движении атома, не должно зависеть от вращения, связанного с оставшейся частью атома. Следовательно, электрическое смещение вращения должно превышать 7, так чтобы одна полная единица (7 единиц смещения плюс уровень первичной единицы) могла оставаться с основным телом магнитного вращения, в то время как избыток относится к магнитному вращению. Более того, электрическое смещение должно быть положительным, поскольку система отсчета не может вмещать два разных отрицательных смещения (движение во времени) в одной и той же атомной структуре. Следовательно, полностью исключаются электроотрицательные смещения. Влияние всех исключений ограничивает магнитные заряды до небольшого числа элементов.

    Первым элементом, способным принимать магнитный заряд в обычном состоянии, является железо . Такое положение №1 особенно благоприятно для намагничивания, поэтому железо до сих пор остается самым магнитным из элементов. Два следующих элемента, кобальт и никель , тоже магнитные, поскольку их электрическое смещение обычно положительное. В особых условиях смещения хрома (6) и магния (7) увеличиваются соответственно до 8 и 9 с помощью переориентации относительно новой нулевой точки, что объяснялось в томе 1 книги Д. Ларсона. Тогда эти элементы тоже способны принимать магнитные заряды.

    Согласно предыдущему объяснению атомных характеристик, требующихся для приема магнитного заряда, другими магнитными элементами являются лишь члены Деления II Группы 4А. Теоретическое ожидание совпадает с наблюдением, но имеются пока необъяснимые различия между магнитным поведением этих элементов и элементов Группы 3А. В Группе 4А магнитная сила меньше. Лишь один из элементов этой группы, гадолиний, магнитен при комнатной температуре, и он не занимает того же положения в группе, что и железо - самый магнитный элемент Группы 3А. Однако самарий, находящийся в положении железа, не играет важной роли во многих магнитных сплавах. Гадолиний находится на два положения выше в атомных сериях, что может указывать на то, что он подвергается модификации, подобной модификации, присущей низшим элементам Группы 3А, но противоположно направленной.

    Если на основании поведения в некоторых сплавах мы приписываем некоторые магнитные свойства ванадию, все элементы Деления II Групп 3А и 4А обладают степенью намагничиваться при надлежащих условиях. Большее число магнитных элементов в Группе 4А – это отражение большего размера 32-х элементов группы, который помещает эти элементы в деление II. В связи с магнитными свойствами редкоземельных элементов Группы 4А имеется ряд еще необъяснимых особенностей в положениях элементов в атомных сериях. Возможно, они связаны с другими еще необъяснимыми отклонениями в поведении этих элементов, которые были замечены при обсуждениях других физических свойств. Магнитные способности элементов деления II и сплавов переносятся в некоторые соединения. Но такие простые соединения как бинарные хлориды, окиси и так далее – не магнитные; то есть, не способны принимать магнитные заряды ферромагнитного типа.

    ЭЛЕКТРОМАГНЕТИЗМ

    Термины “электрический” и “магнитный” введены в работах Д. Ларсона с пониманием того, что они используются как синонимы для соответственно “скалярно одномерного” и “скалярно двумерного”, а не ограничивались относительно узким значением, которое они имеют в повседневной практике. Здесь они используются в тех же смыслах, хотя расширенный объем определений не так очевиден, потому что сейчас мы в основном имеем дело с феноменами, которые обычно называются “электрическими” или “магнитными”. Мы определили одномерное движение незаряженных электронов как электрический ток, одномерную вибрацию вращения – как электрический заряд, двумерную вибрацию вращения – как магнитный заряд . Конкретнее, магнитный заряд – это двумерное вращательно распределенное скалярное движение вибрационного характера .

    Сейчас мы готовы исследовать движения, не являющиеся зарядами, но обладающие некоторыми первичными характеристиками магнитного заряда, то есть они являются двумерными направленными распределенными скалярными движениями.

    Давайте рассмотрим короткий отрезок проводника, по которому будем пропускать электрический ток. Материя, из которой состоит проводник, подвергается действию гравитации - трехмерно распределенному скалярному движению вовнутрь. Как мы видели, ток – это движение пространства (электронов) в материи проводника, эквивалентное скалярному движению материи в пространстве наружу. Таким образом, одномерное движение тока противодействует части скалярного движения гравитации вовнутрь, действующей в скалярном измерении пространственной системы отсчета.

    В этом примере давайте предположим, что два противоположных движения в отрезке проводника равны по величине. Тогда итоговое скалярное измерение равно нулю. От начального трехмерного гравитационного движения остается вращательно распределенное скалярное движение в двух других скалярных измерениях . Поскольку оставшееся движение скалярное и двумерное, оно магнитное и известно как электромагнетизм . Обычно гравитационное движение в измерении тока лишь частично нейтрализуется потоком тока, но это не меняет природы результата, а просто уменьшает величину магнитного влияния.

    Из вышеприведенного объяснения видно, что электромагнетизм – это остаток гравитационного движения, который остается после того, как все или часть движения в одном из трех гравитационных измерений нейтрализуется противоположно направленным движением электрического тока . Следовательно, двумерное скалярное движение перпендикулярно потоку тока . Поскольку гравитационное движение в двух измерениях не подвергается влиянию движения электрического тока наружу, оно обладает скалярным направлением вовнутрь.

    Во всех случаях магнитный эффект проявляется намного больше, чем гравитационный, который убирается, если рассматривается в контексте нашей гравитационно связанной системы отсчета. Это не означает, что ток создает нечто. Происходит следующее. Определенные движения преобразуются в другие виды движений, более сконцентрированных в системе отсчета. И чтобы удовлетворить требованиям новой ситуации, привносится энергия извне. Как указывалось, разница, которую мы наблюдаем между величинами движений с разными числами действующих измерений, - это искусственный результат нашего расположения в гравитационно связанной системе, расположения, сильно увеличивающего размер . С точки зрения естественной системы отсчета, системы, к которой реально приспосабливается вселенная, основные единицы не зависят от измерений; то есть 1³ = 1² = 1. Но благодаря нашему асимметричному расположению во вселенной, естественная единица скорости, s/t, принимает бо льшую величину, 3x10 10 см/сек. Она становится коэффициентом измерения, который входит в каждое соотношение между величинами разных измерений .

    Например, термин c² (квадрат 3x10 10) в уравнении Эйнштейна для отношения между массой и энергией отражает коэффициент, относящийся к двум скалярным измерениям, отделяющим массу (t³/s³) от энергии (t/s). Аналогично, разница в одно измерение между двумерным магнитным влиянием и трехмерным гравитационным влиянием делает магнитное влияние в 3x10 10 раза больше (если выражено в системе сгс). Магнитное влияние меньше, чем одномерное электрическое влияние на тот же самый коэффициент. Из этого следует, что магнитная единица заряда или электромагнитная единица, определенная магнитным эквивалентом закона Кулона, в 3x10 10 раз больше, чем электрическая единица или электростатическая единица. Электрическая единица 4,80287x10 -10 электростатических единиц эквивалентна 1,60206x10 -20 электромагнитных единиц.

    Относительные скалярные направления сил между элементами тока противоположны направлениям сил, создаваемых электрическими и магнитными зарядами, как показано на рисунке 23, который следует сравнить с рисунком 22. Электромагнитные движения вовнутрь направлены к нулевым точкам, из которых движения зарядов направлены наружу. Два проводника, несущие ток в том же направлении, AB или A’B, аналогично одноименным зарядам, движутся друг к другу, как показано линией (а) на схеме, а не отталкиваются друг от друга, как это делают одноименные заряды. Два проводника, несущие ток в направлении BA или B’A, как показано на линии (с), тоже движутся друг к другу. Но проводники, несущие ток в противоположных направлениях, AB’ и BA’, аналогично разноименным зарядам, отталкиваются друг от друга, как указано на линии (b).

    Такие различия в возникновении и скалярном направлении между двумя видами магнетизма проявляются и другими способами. В нашем исследовании данных тем будет удобнее рассматривать отношения силы с другой точки зрения. До сих пор наше обсуждение вращательно распределенных скалярных движений – гравитационного, электрического и магнитного – проходило в терминах сил, оказываемых отдельными объектами, по существу, точечными источниками рассматриваемых влияний. Сейчас, в электромагнетизме, мы имеем дело с протяженными источниками. На самом деле они являются протяженными совокупностями дискретных источников, поскольку все физические феномены существуют в форме дискретных единиц. Следовательно, было бы возможно работать с электромагнитными влияниями так же, как с влияниями, возникающими за счет легче определяемых точечных источников, но такой подход к протяженным источникам сложен и труден. Значительное упрощение достигается введением концепции поля.

    Такой подход применим и к более простым гравитационным и электрическим феноменам. Конечно, сейчас это модный способ иметь дело со всеми (видимыми) взаимодействиями, хотя к дискретным источникам лучше подходит альтернативный подход. Исследуя базовую природу полей, мы можем рассмотреть ситуацию с гравитацией, которая во многих отношениях является самым простым из феноменов. Как мы знаем, масса А обладает движением АБ по направлению к массе Б, находящейся поблизости. Это движение неотъемлемо неотличимо от движения БА атома Б. В той степени, в какой реальному движению массы А препятствует инерция, движение объекта А появляется в системе отсчета как движение объекта Б, составляющее прибавление к реальному движению этого объекта.

    Величина гравитационного движения массы А, приписанного массе Б, определяется как произведение масс А и Б, деленное на расстояние между двумя массами, поскольку является движением массы Б, если скалярное движение АБ рассматривается как движение обоих объектов. Из этого следует, что каждому пространственному положению вблизи от объекта А можно присвоить величину и направление, указывая способ, каким масса размером в единицу двигалась бы под влиянием гравитационной силы объекта А, если бы занимала это расположение. Соединение расположений и соответствующих векторов сил составляет гравитационное поле объекта А . Аналогично, распределение движения электрических или магнитных зарядов определяет электрическое или магнитное поле в пространстве, окружающем заряд.

    Математическое выражение объяснения поля массы или заряда идентично тому, которое появляется в ныне принятой физической теории, но его концептуальная основа совсем другая . Традиционная точка зрения такова. Поле – это “нечто физически реальное в пространстве” вокруг возбуждающего объекта, а сила физически передается от одного объекта другому этим “нечто”. Однако после критического анализа ситуации П. У Бриджмен пришел к выводу об отсутствии свидетельства, оправдывающего допущение, что это “нечто” реально существует. Мы находим, что поле – это не “нечто физическое” . Это просто математическое следствие неспособности традиционной системы отсчета представлять истинный характер скалярного движения. Но осознание истинного статуса как математического приема не лишает его полезности. Полевой подход остается самым простым и наиболее удобным способом математически иметь дело с магнетизмом.

    Поле магнитного заряда определяется в терминах силы, действующей на пробный магнит. Поле магнитного полюса, например, одного конца длинного стержневого магнита, радиально. Как можно видеть из описания возникновения магнетизма в предыдущих параграфах, поле провода, несущего электрический ток, тоже было бы радиальным (в двух измерениях), если бы определялось в терминах силы, действующей на элемент тока в параллельном проводнике. Привычно определять магнитное поле на основе электростатики: то есть, силой, действующей на магнит или электромагнит в форме катушки, соленоид, который создает радиальное поле так же, как стержневой магнит посредством геометрической компоновки. Если поле несущего ток провода определяется именно так, оно окружает провод, а не растягивается радиально. Тогда сила, действующая на пробный магнит перпендикулярна полю и направлению потока тока.

    Это прямой вызов физической теории, очевидное нарушение повсеместно применяемых физических принципов. Физика никогда не встречалась с таким вызовом. Физики не способны даже выдвинуть правдоподобную гипотезу. Поэтому они просто отмечают аномалию, “странную” характеристику магнитного эффекта. “Магнитная сила обладает странно направленным характером, - говорит Ричард Фейнман. - В каждом примере, сила всегда пребывает под прямыми углами к вектору скорости” . Однако перпендикулярная связь между направлением движения тока и направлением силы не казалась бы странной, если бы взаимодействовали магниты с магнитами и токи с токами . В этом случае магнитное влияние тока на ток все еще пребывало бы “под прямыми углами к вектору скорости”, но в направлении поля, а не перпендикулярно к нему, поскольку поле определялось бы в терминах действия тока на ток . В случае взаимодействия тока с магнитом результирующая сила перпендикулярна магнитному полю, то есть, вектору напряженности поля . Пробный магнит в электромагнитном поле не движется в направлении поля, как можно было бы ожидать, а в перпендикулярном направлении.

    “Заметьте, какое странное направление силы. Оно не совпадает ни с полем, ни с направлением тока. Вместо этого сила перпендикулярна и току и линиям поля”.

    Использование слова “странный” в данном утверждении – это неявное признание, что причина перпендикулярного направления не понята в контексте современной физической теории. И вновь, развитие вселенной движения предлагает упущенную информацию. Ключ к пониманию ситуации – осознание разницы между скалярным направлением движения (силой) магнитного заряда наружу и электромагнитным движением вовнутрь .

    Очевидно, что движение электрического тока происходит в одном из скалярных измерений, отличного от измерения, представленного в пространственной системе отсчета, поскольку направление потока тока обычно не совпадает с направлением движения проводника. Следовательно, магнитный остаток состоит из движения в другом ненаблюдаемом измерении и в измерении системы отсчета. Если магнитное влияние одного тока взаимодействует с магнитным влиянием другого, измерение движения тока А, параллельного измерению системы отсчета, совпадает с соответствующим измерением тока Б. Результат – единая сила, сила взаимного притяжения или отталкивания, уменьшающая или увеличивающая расстояние между А и Б. Но если взаимодействие происходит между током А и магнитом В, измерения, параллельные системе отсчета, не могут совпадать, поскольку движение (и соответствующая сила) тока А происходит в скалярном направлении вовнутрь, а движение магнита В происходит в скалярном направлении наружу.

    Можно поинтересоваться, почему движения вовнутрь и наружу не могут сочетаться на положительном или отрицательном основании с итоговой результирующей, равной разности. Причина в том, что движение вовнутрь проводника А к магниту В является одновременно движением В к А, поскольку скалярное движение – это обоюдный процесс . Движение магнита наружу похоже на движение В от А и движение А от В. Из этого следует, что два отдельных движения обоих объектов, одно вовнутрь, другое наружу, не являются комбинацией движения вовнутрь одного объекта и движением наружу другого объекта. Из этого следует, что два движения должны происходить в разных скалярных измерениях . Поэтому сила, действующая на элемент тока в магнитном поле (силовой аспект движения в измерении системы отсчета), перпендикулярна полю .

    Эти отношения показаны на рисунке 24. Слева находится один конец стержневого магнита. Магнит создает магнитостатическое (МС) поле, существующее в двух скалярных измерениях. Одно измерение любого скалярного движения должно быть ориентировано так, чтобы совпадать с измерением системы отсчета. Мы будем называть наблюдаемое измерение МС движения - А, пользуясь большой буквой, чтобы продемонстрировать наблюдаемый статус, и представляя МС поле жирной линией. Ненаблюдаемое измерение движение обозначается буквой b и представляется тонкой линией.

    Сейчас мы вводим электрический ток в третье скалярное измерение. Как указывалось выше, его ориентация совпадает с измерением системы отсчета и обозначается буквой С. Ток создает электромагнитное (ЭМ) поле в измерениях а и b, перпендикулярных С. Поскольку МС движение обладает скалярным направлением наружу, в то время как ЭМ движение направлено вовнутрь, скалярные измерения движений, совпадающие с измерением системы отсчета, не могут быть одними и теми же. Поэтому измерениями ЭМ движения являются В и а; то есть, наблюдаемый результат взаимодействия между двумя видами магнитного движения находится в измерении В, перпендикулярном к МС полю и току С.