Пусть на задана непрерывная функция f(x). Введем сетку

и обозначим f i =f(x i ), i=0,1,N .

Сплайном, соответствующим данной функции f(x) и данным узлам , называется функция S(x), удовлетворяющая следующим условиям:

1. На каждом сегменте , i=1,2,N , функция S(x) является многочленом третьей степени;

2. Функция S(x), а также ее первая и вторая производные
непрерывны на ;

Последнее условие называется условием интерполирования , а сплайн, определяемый условиями 1)-3), называется также интерполяционным кубическим сплайном.

Докажем существование и единственность сплайна, определяемого перечисленными условиями. Приведенное ниже доказательство содержит также способ построения сплайна.

В промежутке между парой соседних узлов интерполяционная функция является многочленом 3-ей степени, который удобно записать в виде:

Коэффициенты многочлена определяют из условий в узлах. Он должен принимать табличные значения:

(1)

Число уравнений в два раза меньше числа неизвестных коэффициентов, поэтому для замыкания нужны дополнительные условия. Найдем первую и вторую производные от кубического многочлена:

(2)

Потребуем непрерывности этих производных (т. е. гладкости гибкой линейки) во всех точках, включая узлы. Приравнивая во внутреннем узле х i правые и левые пределы производных получаем:

3)

Недостающие два условия обычно получают из естественного предположения о нулевой кривизне графика на концах:

что соответствует свободно опущенным концам линейки. Но если есть дополнительные сведения об асимптотике функции, то можно записать другие краевые условия.

Уравнения (1-4) образуют систему линейных уравнений для определения 4N неизвестных коэффициентов. Эту систему можно решить методом исключения Гаусса, но выгоднее привести ее к специальному виду.

Уравнение (1) дает сразу все коэффициенты а i . Из уравнений (3) и (4)

(5)

Подставим (5) в (1), одновременно исключая а i = f i -1 , получим:

(6)

Исключая теперь из (3) b i и b i +1 по (6) и d i по (5), получаем систему уравнений для с i:

Матрица этой системы 3-х диагональная. Такие системы экономно решаются методом прогонки.

В силу диагонального преобладания система имеет единственное решение.

После нахождения с i определяются a i , b i и d i и определяется вид кубических многочленов (сплайнов) на каждом отрезке.

Таким образом, доказано, что существует единственный кубический сплайн, определяемый условиями 1)-3) и граничными условиями

Заметим, что можно рассматривать и другие граничные условия.

Можно рассмотреть и более общую задачу интерполяции функции сплайном – многочленом n-ой степени


,

коэффициенты которого кусочно - постоянны, и который в узлах принимает заданные значения и непрерывен вместе со своими (n-1) производными.

На практике наиболее употребительны 2 случая: один при n=3 (кубические многочлены) уже рассмотрен, второй при n-1 (многочлены Ньютона 1-ой степени) соответствует аппроксимации графика ломаной, построенной по узлам; определение коэффициентов при этом очевидно.

ЛЕКЦИЯ №14

ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ

ПРОСТЫЕ КВАДРАТУРНЫЕ ФОРМУЛЫ

Общая формула прямоугольников

1. Квадратурная формула левых прямоугольников.

2. Формула правых прямоугольников

3. Квадратурная формула средних прямоугольников

Расчет погрешности формул численного интегрирования.

Пусть h>0 достаточно мало, x 0 =0.

Разложим функцию в ряд Тейлора в окрестности x 0 =0. :

Локальная погрешность для малого отрезка h -

, то есть

Свойство аддитивности

- погрешность на отрезке .

Квадратурные формулы Ньютона-Котеса

Если многочлен n - степени, то

Это квадратурные формулы интерполяционного типа. Здесь С к – коэффициенты Котеса

Безразмерные формулы.

Недостатки кусочно-линейной и полиномиальной интерполяции привели к разработке теории сплайн-функции (от английского слова spline - линейка, рейка). Это связано с тем, что в инженерной практике часто приходится проводить гладкие кривые, используя упругую металлическую линейку, закрепленную в узловых точках.

Рассмотрим наиболее распространенный вариант сплайн-интерполяции - интерполяцию кубическими сплайнами .

Установлено, что упругая недеформируемая линейка проходит между соседними узлами по линии, удовлетворяющей уравнению

Очевидно, если в качестве функции выбрать полином, то его степень должна быть не выше третьей, так как для полинома третьей степени четвертая производная тождественно равна нулю. Этот полином называют кубическим сплайном , который на интервале записывается в виде

где a i ,b i ,c i ,d i - коэффициенты сплайна, определяемые из дополнительных условий; i = 1,2,3,....n - номер сплайна.

Всего сплайнов на один меньше, чем точек интерполяции. Интерполяцию сплайнами можно назвать кусочно-полиномиальной.

Коэффициенты сплайнов определяются из следующих условий сшивания соседних сплайнов в узловых точках.

1. Равенство значений сплайнов и функции f(x) в узловых точках - условия Лагранжа:

, . (6.10)

2. Непрерывность первой и второй производных от сплайнов в узлах:

Кроме перечисленных условий, следует добавить условия на концах, т. е. в точках x 0 и x n . В общем случае эти условия зависят от конкретной задачи. Мы воспользуемся условиями свободных концов сплайнов, т.е. вне интервала функция описывается полиномом первой степени - прямой линией:

, . (6.12)

Условия (6.10)-(6.12) позволяют найти коэффициенты a i ,b i ,c i ,d i всех n сплайнов. Их значения выражаются следующими формулами:

, (6.13)

где в первых трех уравнениях i = 1,2,...n , а в третьем i = 2,3,..n ;

h i =x i -x i -1 - i -й шаг аргумента.

Учитывая индексацию для с i , добавим значения этого коэффициента на концах сплайна

Сначала решается система из n - 1 линейных уравнений для с i . Затем определяются b i и d i по известным коэффициентам с i , а i известно - это значения функции f(x) в узловых точках. В каждое уравнение для определения с i входит только три неизвестных с последовательными значениями индексов c i - 1 ,c i ,c i +1 . Такая матрица, имеющая отличные от нуля только элементы главной и двух соседних диагоналей, называется трехдиагональной.

Программная реализация рассмотренного алгоритма приведена ниже (ПРОГРАММА 6.2). Приведен фрагмент, в котором рассчитываются коэффициенты сплайнов по узловым значениям интерполируемой функции.


Для формирования трехдиагональной матрицы Kc использован массив шагов аргумента h i . В процедуре Gauss рассчитывается вспомогательный массив cv, имеющий на 2 элемента меньше, чем массив с., так как с 0 и c n +1 известны и равны нулю. При большом числе уравнений для решения систем с трехдиагональной матрицей применяют метод прогонки , являющийся вариантом метода последовательных исключений. Результаты расчетов с использованием интерполяции сплайнами приведены на рис.6.4. В качестве интерполируемой функции был взят ток катушки электромагнита.


Как видно на рис.6.4, интерполяция кубическими сплайнами дает очень хорошее приближение в случае, если функция гладкая. В окружности на рисунке обозначен участок, где погрешность сплайна велика. Это связано с тем, что на этом участке происходит излом кривой тока, связанный с изменением сопротивления диода R D c прямого R пр на обратное R обр . При этом первая производная тока делает скачок, а сплайны по определению имеют равные первые производные справа и слева от узловой точки.

Как отмечалось ранее, интерполяция есть частный случай аппроксимации, критерием которой являются условия Лагранжа. Рассмотрим другой критерий аппроксимации - минимизацию среднеквадратичного отклонения приближающей функции от аппроксимируемой f(x) .

Рассмотрим задачу проведения гладких кривых по заданным граничным точкам, или задачу интерполяции. Поскольку через две точки можно провести сколь угодно много гладких кривых, то для решения этой задачи необходимо ограничить класс функций, которые будут определять искомую кривую. Математическими сплайнами называют функции, используемые для аппроксимации кривых. Важным их свойством является простота вычислений. На практике часто используют сплайны вида полиномов третьей степени. С их помощью довольно удобно проводить кривые, которые интуитивно соответствуют человеческому субъективному понятию гладкости. Термин “сплайн” происходит от английского spline – что означает гибкую полоску стали, которую применяли чертежники для проведения плавных кривых, например, для построения обводов кораблей или самолетов.

Рассмотрим в начале сплайновую функцию для построения графика функции одной переменной. Пусть на плоскости задана последовательность точек , , причем . Определим искомую функцию , причем поставим два условия:

1) Функция должна проходить через все заданные точки: , .

2) Функция должна быть дважды непрерывно дифференцируема, то есть иметь непрерывную вторую производную на всем отрезке .

На каждом из отрезков , будем искать нашу функцию в виде полинома третьей степени:

.

Рис. 40. Сплайновая функция.

Задача построения полинома сводится к нахождению коэффициентов . Поскольку для каждого из отрезков необходимо найти 4 коэффициента , то всего количество искомых коэффициентов будет . Для нахождения всех коэффициентов определим соответствующее количество уравнений. Первые уравнений получаем из условий совпадения значений функции во внутренних узлах , . Следующие уравнений получаем аналогично из условий совпадения значений первых и вторых производных во внутренних узлах. Вместе с первым условием получаем уравнений. Недостающие два уравнения можно получить заданием значений первых производных в концевых точках отрезка . Так могут быть заданы граничные условия.

Перейдем к более сложному случаю – заданию кривых в трехмерном пространстве. В случае функционального задания кривой возможны многозначности в случае самопересечений и неудобства при значениях производных равных . Ввиду этого будем искать функцию в параметрическом виде. Пусть - независимый параметр, такой что . Кубическим параметрическим сплайном назовем следующую систему уравнений:

Координаты точек на кривой описываются вектором , а три производные задают координаты соответствующего касательного вектора в точке. Например, для координаты :

.

Одним из способов задания параметрического кубического сплайна является указание координат начальной и конечной точек, а также векторов касательных в них. Такой способ задания называется формой Эрмита. Обозначим концевые точки и , а касательные векторы в них и . Индексы выбраны таким образом с учетом дальнейшего изложения.

Будем решать задачу нахождения четверки коэффициентов , так как для оставшихся двух уравнений коэффициенты находятся аналогично. Запишем условие для построения сплайна:

Перепишем выражение для в векторном виде:

.

Обозначим вектор строку и вектор столбец коэффициентов , тогда .

Из (*) следует, что , . Для касательных ,

Отсюда получаем векторно-матричное уравнение:

.

Эта система решается относительно нахождением обратной матрицы размером .

.

Здесь - эрмитова матрица, - геометрический вектор Эрмита. Подставим выражение для нахождения : . Аналогично для остальных координат: , .

Выпишем в явном виде формулы для вычисления координат точек сплайна. Так как , то умножая справа на , получаем:

.

Четыре функции в скобках называются функциями сопряжения.

Форму кривой, заданной в форме Эрмита, легко изменять если учитывать, что направление вектора касательной задает начальное направление, а модуль вектора касательной задает степень вытянутости кривой в направлении этого вектора, как показано на рис. 41.

Рис. 41. Параметрический сплайн в форме Эрмита. Вытянутость кривой вправо обеспечивается тем, что .

Рассмотрим форму Безье, которая отличается от формы Эрмита способом задания граничных условий, а именно, вместо векторов и вводятся точки (и соответствующие им радиус векторы) и , как показано на рис.42, такие что выполняются условия: и .

Рис. 42. Параметрический сплайн в форме Безье.

Переход от формы Эрмита к форме Безье осуществляется преобразованием:

, (*)

где - геометрический вектор Безье. Подставляя это в выражение для , получаем

Полезным свойством сплайнов в форме Безье является то что кривая всегда лежит внутри выпуклой оболочки, образованной четырехугольником . Это свойство можно доказать, пользуясь тем, что в выражении (*) коэффициенты принимают значения от 0 до 1 и их сумма равна единице.

Заметим, что матрица вида

- называется матрицей Безье.


Список литературы

1. Ньюмен, Спрулл, Основы интерактивной машинной графики, М. Мир, 1976.

2. Энджел Й. Практическое введение в машинную графику, Радио и Связь, 1984.

3. А. Вэн-Дэм, Дж. Фоли, Основы интерактивной машинной графики, т.1-2, М. Мир, 1985.

4. Е.В. Жикин, А.В.Боресков, Компьютерная графика. Динамика, реалистические ихображения, М., Диалог-МИФИ, 1995, 1997.

5. Л. Аммерал, Машинная графика на языке С, в 4-х томах, изд-во Сол. Систем, 1992.

6. Компьютер обретает разум. Пер. с англ. Под ред. В.Л.Стефанюка, М. Мир, 1990.

7. Роджерс, алгоритмические основы машинной графики. М. Мир, 1989.

8. Грайс, Графические средства персональных компьютеров, М., Мир, 1980.

9. Роджерс, Адамс, Математические основы машинной графики, М. Машиностроение, 1985.

10. Гилой, Интерактивная машинная графика, М., Мир, 1981.

11. Ф. Препарата, М. Шеймос, Вычислительная геометрия: Введение, М. Мир, 1989.

12. А.Фокс, М. Пратт, Вычислительная геометрия, М., Мир, 1982.

13. А.Б.Боресков, Е.В.Шикина, Г.Е.Шикина, Компьютерная графика: первое знакомство, Под ред. Е.В.Шикина, М., Финансы и статистика, 1996.

14. А.В.Фролов, Г.В.Фролов, Графический интерфейс GDI в MS WINDOWS, Москва, Изд-во Диалог-МИФИ, 1994.

15. Майкл Ласло, Вычислительная геометрия и компьютерная графика на С++, Москва, Бином, 1997.

16. Ю.Тихомиров, Программирование трехмерной графики, С.-Пб.: БХВ‑Санкт-Петербург,1999.

17. А.Хонич, Как самому создать трехмерную игру. М.:МИКРОАРТ, 1996.

18. М.Маров, 3D Studio MAX 2.5: справочник – СПб: «Питер», 1999. – 672 с.

19. А.Ла Мот, Д.Ратклифф и др. Секреты программирования игр/ Перев с англ. – СПб: Питер, 1995. – 720 с.

20. Н. Томпсон, Секреты программирования трехмерной графики для Windows 95. Перев с англ. – СПб: Питер, 1997. – 352 с.


* В этом определении при замене, скажем, оси Oz на ось Ox остальные оси заменяются по правилу циклической перестановки, то есть Oy заменится на Oz, а Ox заменится на Oy. Всего циклических перестановок может быть три: (x,y,z)®(y,z,x)®(z,x,y).

* Более строгое определение однородных координат дается в разделе линейной алгебры «Проективные пространства».

ПОТОЧЕЧНОЕ ОПИСАНИЕ ПОВЕРХНОСТЕЙ.

Метод заключается в задании поверхности множеством принадлежащих ей точек. Следовательно, качество изображения при этом методе зависит от количества точек и их расположения.

Поточечное описание применяется в тех случаях, когда поверхность очень сложна и не обладает гладкостью, а детальное представление геометрических особенностей важно для практики.

Пример : Участки грунта на других планетах, формы небесных тел, информация о которых получена в результате спутниковых съемок. Микрообъекты, снятые с помощью электронных микроскопов.

Исходная информация о поточечно описанных объектах представляется в виде матрицы трехмерных координат точек.

Сплайны - это гладкие (имеющие несколько непрерывных производных) кусочно-полиномиальные функции, которые могут быть использованы для представления функций, заданных большим количеством значений и для которых неприменима аппроксимация одним полиномом. Так как сплайны гладки, экономичны и легки в работе, они используются при построении произвольных функций для:

o моделирования кривых;

o аппроксимации данных с помощью кривых;

o выполнения функциональных аппроксимаций;

o решения функциональных уравнений.

Рассмотрим задачу проведения гладких кривых по заданным граничным точкам, или задачу интерполяции. Поскольку через две точки можно провести сколь угодно много гладких кривых, то для решения этой задачи необходимо ограничить класс функций, которые будут определять искомую кривую. Математическими сплайнами называют функции, используемые для аппроксимации кривых. Важным их свойством является простота вычислений. На практике часто используют сплайны вида полиномов третьей степени. С их помощью довольно удобно проводить кривые, которые интуитивно соответствуют человеческому субъективному понятию гладкости. Термин “сплайн” происходит от английского spline – что означает гибкую полоску стали, которую применяли чертежники для проведения плавных кривых, например для построения обводов кораблей или самолетов.

Рассмотрим вначале сплайновую функцию для построения графика функции одной переменной. Пусть на плоскости задана последовательность точек ,, причем . Определим искомую функцию , причем поставим два условия:

1) Функция должна проходить через все точки: , ;

2) Функция должна быть дважды непрерывно дифференцируема, то есть иметь непрерывную вторую производную на всем отрезке .

На каждом из отрезков , , будем искать нашу функцию в виде полинома третьей степени:

.

Сплайновая функция

Задача построения полинома сводится к нахождению коэффициентов . Поскольку для каждого из отрезков необходимо найти 4 коэффициента , то всего количество искомых коэффициентов будет . Для нахождения всех коэффициентов определим соответствующее количество уравнений. Первые уравнений получаем из условий совпадения значений функции во внутренних узлах ,. Следующие уравнений получаем аналогично из условий совпадения значений первых и вторых производных во внутренних узлах. Вместе с первым условием получаем уравнений. Недостающие два уравнения можно получить заданием значений первых производных в концевых точках отрезка . Так могут быть заданы граничные условия.



Перейдем к более сложному случаю – заданию кривых в трехмерном пространстве. В случае функционального задания кривой возможны многозначности в случае самопересечений и неудобства при значениях производных равных . Ввиду этого будем искать функцию в параметрическом виде. Пусть - независимый параметр, такой что . Кубическим параметрическим сплайном назовем следующую систему уравнений:

Координаты точек на кривой описываются вектором , а три производные задают координаты соответствующего касательного вектора в точке. Например, для координаты :

Одним из способов задания параметрического кубического сплайна является указание координат начальной и конечной точек, а также векторов касательных в них. Такой способ задания называется формой Эрмита. Обозначим концевые точки и , а касательные векторы в них и . Индексы выбраны таким образом с учетом дальнейшего изложения.

Будем решать задачу нахождения четверки коэффициентов , так как для оставшихся двух уравнений коэффициенты находятся аналогично. Запишем условие для построения сплайна:

Перепишем выражение для в векторном виде:

.

Обозначим вектор строку и вектор столбец коэффициентов , тогда .

Из (*) следует, что , . Для касательных ,

Отсюда получаем векторно-матричное уравнение:

.

Эта система решается относительно нахождением обратной матрицы размером .

.

Здесь - эрмитова матрица, - геометрический вектор Эрмита. Подставим выражение для нахождения : . Аналогично для остальных координат: , .

Слово сплайн (английское слово "spline") означает гибкую линейку, используемую для проведения гладких кривых через заданные точки на плоскости. Форма этого универсального лекала на каждом отрезке описывается кубической параболой. Сплайны широко используются в инженерных приложениях, в частности, в компьютерной графике. Итак, на каждом i –м отрезке [x i –1 , x i ], i= 1, 2,…, N, решение будем искать в виде полинома третьей степени:

S i (x )=a i +b i (x–x i )+c i (x x i ) 2 /2+d i (x–x i ) 3 /6

Неизвестные коэффициенты a i , b i , c i , d i , i= 1, 2,..., N, находим из:

Условий интерполяции: S i (x i )=f i , i= 1, 2,..., N ; S 1 (x 0)=f 0 ,

Непрерывности функции S i (x i– 1 )=S i– 1 (x i –1), i= 2, 3,..., N,

Непрерывности первой и второй производной:

S / i (x i– 1)=S / i– 1 (x i –1), S // i (x i –1)=S // i –1 (x i –1), i= 2, 3,..., N .

Учитывая, что , для определения 4N неизвестных получаем систему 4N –2 уравнений:

a i =f i , i= 1, 2,..., N,

b i h i – c i h i 2 /2 + d i h i 3 /6=f i – f i –1 , i= 1, 2,..., N,

b i – b i–1 = c i h i – d i h i 2 /2, i= 2, 3,..., N,

d i h i = c i – c i– 1 , i= 2, 3,..., N.

где h i =x i – x i– 1. Недостающие два уравнения выводятся из дополнительных условий: S // (a )=S // (b )=0. Можно показать, что при этом . Из системы можно исключить неизвестные b i , d i , получив систему N+ 1 линейных уравнений (СЛАУ) для определения коэффициентов c i :

c 0 = 0, c N = 0,

h i c i –1 + 2(h i +h i +1)c i +h i +1 c i +1 = 6 , i= 1, 2,…, N –1. (1)

После этого вычисляются коэффициенты b i , d i:

, i= 1, 2,..., N. (2)

В случае постоянной сетки h i =h этасистема уравнений упрощается.

Данная CЛАУ имеет трехдиагональную матрицу и решается методом прогонки.

Коэффициенты определяются из формул:

Для вычисления значения S (x ) в произвольной точке отрезка z ∈[a, b ] необходимо решить систему уравнений на коэффициенты c i , i= 1,2,…, N –1, затем найти все коэффициенты b i , d i . Далее, необходимо определить, на какой интервал [x i 0, x i 0–1 ] попадает эта точка, и, зная номер i 0 , вычислить значение сплайна и его производных в точке z

S (z )=a i 0 +b i 0 (z–x i 0)+c i 0 (z–x i 0) 2 /2+d i 0 (z–x i 0) 3 /6

S / (z )=b i 0 +c i 0 (z–x i 0)+d i 0 (z–x i 0) 2 /2, S // (z )=c i 0 +d i 0 (z–x i 0).

Требуется вычислить значения функции в точках 0.25 и 0.8, используя сплайн – интерполяцию.

В нашем случае: h i =1/4, .

Выпишем систему уравнений для определения :

Решая эту систему линейных уравнений, получим: .

Рассмотрим точку 0.25, которая принадлежит первому отрезку, т.е. . Следовательно, получим,

Рассмотрим точку 0.8, которая принадлежит четвертому отрезку, т.е. .

Следовательно,

Глобальная интерполяция

В случае глобальной интерполяции отыскивается единый полином на всем интервале [a, b ], т.е. строится полином, который используется для интерполяции функции f(x) на всем интервале изменения аргумента x. Будем искать интерполирующую функцию в виде полинома (многочлена) m –ой степени P m (x )=a 0 +a 1 x+a 2 x 2 +a 3 x 3 +…+a m x m . Какова должна быть степень многочлена, чтобы удовлетворить всем условиям интерполяции? Допустим, что заданы две точки: (x 0 , f 0) и (x 1 , f 1), т.е. N=1. Через эти точки можно провести единственную прямую, т.е. интерполирующей функцией будет полином первой степени P 1 (x )=a 0 +a 1 x. Через три точки (N=2) можно провести параболу P 2 (x )=a 0 +a 1 x+a 2 x 2 и т.д. Рассуждая таким способом, можно предположить, что искомый полином должен иметь степень N .

Для того, чтобы доказать это, выпишем систему уравнений на коэффициенты. Уравнения системы представляют собой условия интерполяции в при каждом x=x i :

Данная система является линейной относительно искомых коэффициентов a 0 , a 1 , a 2 , …, a N. Известно, что СЛАУ имеет решение, если ее определитель отличен от нуля. Определитель данной системы

носит имя определителя Вандермонда . Из курса математического анализа известно, что он отличен от нуля, если x k x m (т.е. все узлы интерполяции различные). Таким образом, доказано, что система имеет решение.

Мы показали, что для нахождения коэффициентов
a 0 , a 1 , a 2 , …, a N надо решить СЛАУ, что является сложной задачей. Но есть другой способ построения полинома N –й степени, который не требует решения такой системы.

Полином Лагранжа

Решение ищем в виде , где l i (z ) базисные полиномы N –й степени, для которых выполняется условие: . Убедимся в том, что если такие полиномы построены, то L N (x) будет удовлетворять условиям интерполяции:

Каким образом построить базисные полиномы ? Определим

, i= 0, 1,..., N.

Легко понять, что

Функция l i (z ) является полиномом N –й степени от z и для нее выполняются условия "базисности":

0, i≠k;, т.е. k=1,…,i-1 или k=i+1,…,N.

Таким образом, нам удалось решить задачу о построении интерполирующего полинома N– й степени, и для этого не нужно решать СЛАУ. Полином Лагранжа можно записать в виде компактной формулы: . Погрешность этой формулы можно оценить, если исходная функция g (x ) имеет производные до N+ 1 порядка:

.

Из этой формулы следует, что погрешность метода зависит от свойств функции g (x ), а также от расположения узлов интерполяции и точки z. Как показывают расчетные эксперименты, полином Лагранжа имеет малую погрешность при небольших значениях N <20 . При бόльших N погрешность начинает расти, что свидетельствует о том, что метод Лагранжа не сходится (т.е. его погрешность не убывает с ростом N ).

Рассмотрим частные случаи. Пусть N=1, т.е. заданы значения функции только в двух точках. Тогда базовые полиномы имеют вид:

, т.е. получаем формулы кусочно–линейной интерполяции.

Пусть N=2. Тогда:

В результате мы получили формулы так называемой квадратичной или параболической интерполяции.

Пример: Заданы значений некоторой функции:

x 3.5
f -1 0.2 0.5 0.8

Требуется найти значение функции при z= 1, используя интерполяционный полином Лгранжа. Для этого случая N =3, т.е. полином Лагранжа имеет третий порядок. Вычислим значения базисных полиномов при z =1:

Подбор эмпирических формул

При интерполировании функций мы использовали условие равенства значений интерполяционного полинома и данной функции в узлах интерполяции. Если же исходные данные получены в результате опытных измерений, то требование точного совпадения не нужно, так как данные не получены точно. В этих случаях можно требовать лишь приближенного выполнения условий интерполяции . Это условие означает, что интерполирующая функция F(x) проходит не точно через заданные точки, а в некоторой их окрестности, так, например, как это показано на рис.

Тогда говорят о подборе эмпирических формул . Построение эмпирической формулы состоит из двух этапов6 подбора вида этой формулы , содержащей неизвестные параметры , и определение наилучших в некотором смысле этих параметров. Вид формулы иногда известен из физических соображений (для упругой среды связь между напряжением и деформацией) или выбираются из геометрических соображений: экспериментальные точки наносятся на график и примерно угадывается общий вид зависимости путем сравнения полученной кривой с графиками извесиных функций. Успех здесь в значительной степени определяется опытом и интуицией исследователя.

Для практики важен случай аппроксимации функции многочленами, т.е. .

После того, как выбран вид эмпирической зависимости степень близости к эмпирическим данным определяется, используя минимум суммы квадратов отклонений вычисленных и экспериментальных данных.

Метод наименьших квадратов

Пусть для исходных данных x i , f i , i= 1,…,N (нумерацию лучше начинать с единицы), выбран вид эмпирической зависимости: с неизвестными коэффициентами . Запишем сумму квадратов отклонений между вычисленными по эмпирической формуле и заданными опытными данными:

Параметры будем находить из условия минимума функции . В этом состоит метод наименьших квадратов (МНК).

Известно, что в точке минимума все частные производные от по равны нулю:

(1)

Рассмотрим применение МНК для частного случая, широко используемого на практике. В качестве эмпирической функции рассмотрим полином

Формула (1) для определения суммы квадратов отклонений примет вид:

Вычислим производные:

Приравнивая эти выражения нулю и собирая коэффициенты при неизвестных , получим следующую систему линейных уравнений.