Существуют различные методы измерения скорости света, в том числе астрономические и с использованием различной экспериментальной техники. Точность измерения величины с постоянно увеличивается. В данной таблице дан неполный перечень экспериментальных работ по определению скорости света.

Эксперимент

Экспериментальные методы

Результаты измерений, км/сек

Экспериментальная погрешность,

Вебер-Кольрауш

Максвелл

Майкельсон

Перротин

Роза и дорси

Миттелыптедта

Пиз и Пирсона

Андерсон

Затмение спутника Юпитера

Абберация света

Движущие тела

Вращающиеся зеркала

Электромагнитные постоянные

Электромагнитные постоянные

Вращающиеся зеркала

Вращающиеся зеркала

Электромагнитные постоянные

Вращающиеся зеркала

Вращающиеся зеркала

Электромагнитные постоянные

Ячейка затвора Керра

Вращающиеся зеркала

Ячейка затвора Керра

Микроволновая интерферометрия

На рисунке графически представлены численные значения скорости света, полученные в разные годы (рисунок Olimpusmicro.com).

Можно проследить, как изменялась точность измерений с прогрессом в области науки и техники.

Первое удачное измерение скорость света относится к 1676 г.

На рисунках представлены репродукция рисунка самого Рёмера, а также схематическая трактовка.

Астрономический метод Рёмера основывается на измерении скорости света по наблюдениям с Земли затмений спутников Юпитера . Юпитер имеет несколько спутников, которые либо видны с Земли вблизи Юпитера, либо скрываются в его тени. Астрономические наблюдения над спутниками Юпитера показывают, что средний промежуток времени между двумя последовательными затмениями какого-нибудь определенного спутника Юпитера зависит от того, на каком расстоянии друг от друга находятся Земля и Юпитер во время наблюдений. На рисунке: Метод Ремера. С - солнце, Ю - юпитер, З - земля

Пусть в определенный момент времени Земля З1 и Юпитер Ю1 находятся в противоположении, и в этот момент времени один из спутников Юпитера, наблюдаемый с Земли, исчезает в тени Юпитера (спутник на рисунке не показан). Тогда, если обозначить через R и r радиусы орбит Юпитера и Земли и через c - скорость света в системе координат, связанной с Солнцем С, на Земле уход спутника в тень Юпитера будет зарегистрирован на (R- r)/с секунд позже, чем он совершается во временной системе отчета, связанной с Юпитером.

По истечении 0,545 года Земля З2 и Юпитер Ю2 находятся в соединении. Если в это время происходит n-е затмение того же спутника Юпитера, то на Земле оно будет зарегистрировано с опозданием на (R+ r)/с секунд. Поэтому, если период обращения спутника вокруг Юпитера t, то промежуток времени T1, протекающий между первым и n-м затмениями, наблюдавшимися с Земли, равен

По истечении еще 0,545 года Земля З3 и Юпитер Ю3 будут вновь находиться в противостоянии. За это время совершилось (n-1) оборотов спутника вокруг Юпитера и (n-1) затмений, из которых первое имело место, когда Земля и Юпитер занимали положения З2 и Ю2, а последнее - когда они занимали положение З3 и Ю3. Первое затмение наблюдалось на Земле с запозданием (R+ r)/с, а последнее с запозданием (R- r)/ c по отношению к моментам ухода спутника в тень планеты Юпитера. Следовательно, в этом случае имеем

Рёмер измерил промежутки времени Т1 и Т2 и нашел, что Т1-Т2=1980 с. Но из написанных выше формул следует, что Т1-Т2=4 r/с, поэтому с=4 r/1980 м/с. Принимая r, среднее расстояние от Земли до Солнца, равным 1500000000 км, находим для скорости света значение 3,01*10 6 м/с .

Определение скорости света по наблюдению аберрации в 1725-1728 гг. Брадлей предпринял наблюдение с целью выяснить, существует ли годичный параллакс звезд, т.е. кажущееся смещение звезд на небесном своде, отображающее движение Земли по орбите и связанное с конечностью расстояния от Земли до звезды.

Брадлей действительно обнаружил подобное смещение. Он объяснил наблюдаемое явление, названное им аберрацией света , конечной величиной скорости распространения света и использовал его для определения этой скорости.

Зная угол α и скорость движения Земли по орбите v, можно определить скорость света c.

У него получилось значение скорости света равной 308000 км/с.

Важно заметить, что аберрация света связана с изменением направления скорости Земли в течение года. Постоянную скорость, как бы велика она ни была, нельзя обнаружить с помощью аберрации, ибо при таком движении направление на звезду остается неизменным и нет возможности судить о наличии этой скорости и о том, какой угол с направлением на звезду она составляет. Аберрация света позволяет судить лишь об изменении скорости Земли.

В 1849 г. впервые определение скорости света выполнил вы лабораторных условиях А. Физо. Его метод назывался методом зубчатого колеса. Характерной особенностью его метода является автоматическая регистрация моментов пуска и возвращения сигнала, осуществляемая путем регулярного прерывания светового потока (зубчатое колесо).

Рис 3 . Схема опыта по определению скорости света методом зубчатого колеса.

Свет от источника проходил через прерыватель (зубья вращающегося колеса) и, отразившись от зеркала, возвращался опять к зубчатому колесу. Зная расстояние между колесом и зеркалом, число зубьев колеса, скорость вращения, можно вычислить скорость света.

Зная расстояние D, число зубьев z, угловую скорость вращения (число оборотов в секунду) v, можно определить скорость света. У него получилось она равной 313000 км/с.

Разрабатывали много способов, чтобы еще повысить точность измерений. Вскоре даже стало необходимо учитывать показатель преломления в воздухе. И вскоре в 1958 г. Фрум получил значение скорости света равной 299792,5 км/с, применяя микроволновый интерферометр и электрооптический затвор (ячейку Керра).

Одним из важных свойств, является скорость распространения света в пустоте и других оптических средах. Огромная величина скорости света по сравнению со скоростью распространения различных движущихся объектов, наблюдаемых человеком в практической жизни, ставило много затруднений и при объяснений многих оптических явлений и при практическом определении скорости света. Чтобы показать, как трудно воспринималась человеком возможность перемещения материи, в данном случае света, с огромными скоростями, можно привести пример определения скорости света, предпринятый итальянским ученым Галилео Галилеем, который вместе со своим сотрудником расположились на двух соседних вершинах гор и сигнализировали друг другу светом фонарей. Один участник этого эксперимента открывал крышку фонаря и одновременно включал часы. Второй участник, получив световой сигнал, также открывал фонарь и посылал свет в направлении первого экспериментатора, который, получив ответный сигнал, останавливал часы. Зная расстояние между вершинами гор и время прохождения светом этого расстояния туда и обратно, можно получить скорость света. Нам, конечно ясно, почему эта попытка определения скорости света не дало желаемых результатов.

Вскоре было понятно, что для того, чтобы измерить скорость распространения света с требуемой точностью, необходимо иметь большие расстояния, которые бы проходил свет, во-первых, и необходимо было отсчитывать время с очень высокой точностью, во вторых.

Для получения точных отсчетов времени используют модулирование света, при этом используют три основных метода модуляции:

  • Метод зубчатого колеса,
  • Метод вращающегося зеркала,
  • Метод электрического затвора.

Во всех этих методах время распространения определяется из измерения частоты модуляции.

Рассмотрим вкратце три эти варианта модуляции света на примерах.

Метод Физо. На рис.1.3.1 представлена принципиальная схема установки, используемая в методе Физо, где модуляция светового потока производится вращающимся зубчатым колесом. Свет от источника света 1 конденсорной системой направляется на полупрозрачное зеркало 2 , отразившись от которого проходит между зубьями вращающегося зубчатого колеса 5 . Далее, коллиматорная система 3 направляет пучок лучей на вогнутое зеркало 4 , отразившись от которого, свет проходит обратно по тому же пути до полупрозрачного зеркала 2 . Наблюдение производится глазом человека через окуляр 6 .

Если зубчатое колесо неподвижно, то свет пройдет через промежуток между зубцами, вернется обратно через тот же промежуток. Приведя во вращение зубчатое колесо, и увеличивая скорость вращения, можно добиться, что за время, пока свет идет от колеса 5 до зеркала 4 и обратно колесо повернется на ширину зуба и место промежутка займет зуб. В этом случае свет не будет попадать в окуляр 6 . Еще увеличив скорость вращения колеса можно получить прохождение света обратно через соседний промежуток и т.д.



Физо имел колесо с 720 зубцами и длину двойного пути светового пучка порядка 17 км . Из его опытов скорость света оказалась равной 3.15 . 10 10 см /с . Основная ошибка здесь связана с трудностью фиксирования момента затемнения. Дальнейшие усовершенствование этого метода привели к более точным результатам измерения скорости света.

Метод вращающегося зеркала. Этот метод, предложенный Уитстоном, был использован Фуко в 1960 году. Схема установки показана на рис. 1.3.2. От источника излучения 1 свет, пройдя через полупрозрачное зеркало 2 и объектив 3 направляется вращающимся зеркалом 4 на сферическое зеркало 5 . Отразившись от зеркала 5 , световой поток шел обратно и фокусировался наблюдательной системой в т. A (при неподвижном зеркале 4 ). При вращающемся зеркале за время прохождения светом дважды пути L , зеркало успевало повернуться на некоторый угол и, отраженный от него в обратном ходе световой поток фокусировался в точке B . Измеряя расстояние между A и B , мы получаем угол, на который поворачивается зеркало 4 и, следовательно, зная скорость вращения зеркала, время прохождения светом расстояния . При , найденное значение скорости распространения света оказалось равным 2.98 . 10 10 см /с . Расстояние между A и B было равным только 0.7 мм , и основной источник ошибок лежал в неточности измерения этого расстояния.

Метод электрического затвора Керра. В этом методе в качестве модулирующего устройства выступает ячейка Керра (ячейка Керра, заполненная полярной жидкостью и помещенная между скрещенными николями, пропускает свет только при наложении электрического поля). Схема установки представлена на рис. 1.3.3. Свет от ртутной лампы 1 проходит через затвор Керра на полупрозрачное зеркало 2 , отражается от него вправо и попадает на зеркало 3 . После отражения от зеркала 3 свет в обратном ходе лучей попадает на приемник энергии 8 .

Часть световой энергии проходит сквозь полупрозрачное зеркало и преодолев путь, определяемыми зеркалами 4 , 5 , 6 , 7 и обратно, также попадает на приемник 8 .

Точность этого метода определяется высокой частотой модуляции светового потока, создаваемой ячейкой Керра, находящейся под воздействием высокочастотного электрического поля, и возможностью точного измерения сдвига фаз двух световых потоков, поступающих от зеркала 3 и от зеркала 7 .

Значение, полученное для скорости света, равно . Современное общепринятое значение скорости света в вакууме .

Для оптических сред с показателем преломления скорость света определяется выражением: .

Экспериментальные методы определения скорости света

Существуют различные методы измерения скорости света, в том числе астрономические и с использованием различной экспериментальной техники. Точность измерения величины с постоянно увеличивается. В данной таблице дан неполный перечень экспериментальных работ по определению скорости света.

Эксперимент

Экспериментальные методы

Результаты измерений, км/сек

Эксперимента

погрешность,

Вебер-Кольрауш

Максвелл

Майкельсон

Перротин

Роза и дорси

Миттелыптедта

Пиз и Пирсона

Андерсон

Затмение спутника юпитера

Аберрация света

Движущиеся тела

Вращающиеся зеркала

Электромагнитные постоянные

Электромагнитные постоянные

Вращающиеся зеркала

Вращающиеся зеркала

Электромагнитные постоянные

Вращающиеся зеркала

Вращающиеся зеркала

Электромагнитные постоянные

Ячейка затвора Керра

Вращающиеся зеркала

Ячейка затвора Керра

Микроволновая интерферометрия

Первое удачное измерение скорости света относится к 1676 г. Астрономический метод Рёмера основывается на измерении скорости света по наблюдениям с Земли затмений спутников Юпитера. Юпитер имеет несколько спутников, которые либо видны с Земли вблизи Юпитера, либо скрываются в его тени. Астрономические наблюдения над спутниками Юпитера показывают, что средний промежуток времени между двумя последовательными затмениями какого-нибудь определенного спутника Юпитера зависит от того, на каком расстоянии друг от друга находятся Земля и Юпитер во время наблюдений.

Рис. 1. Метод Ремера. С - Солнце, Ю - Юпитер, З - Земля

За полгода наблюдения нарушение периодичности наблюдаемого начала затмения возрастали, достигая величины около 20 мин. Но это почти равно времени, за которое свет проходит расстояние, равное диаметру орбиты движения Земли вокруг Солнца (порядка 17 мин.). Скорость света, измеренная Рёмером, была равна: c= 214300 км/с.

По истечение еще 0,545 года Земля З3 и Юпитер Ю3 будут вновь находиться в противостоянии. За это время совершилось (n-1) оборотов спутника вокруг Юпитера и (n-1) затмений, из которых первое имело место, когда Земля и Юпитер занимали положения З2 и Ю2, а последнее - когда они занимали положение З3 и Ю3. Первое затмение наблюдалось на Земле с запозданием (R+r)/с, а последнее с запозданием (R-r)/c по отношению к моментам ухода спутника в тень планеты Юпитера.

Рёмер измерил промежутки времени Т1 и Т2 и нашел, что Т1-Т2=1980 с. Но из написанных выше формул следует, что Т1-Т2=4r/с, поэтому с=4r/1980 м/с. Принимая r, среднее расстояние от Земли до Солнца, равным 1500000000 км, находим для скорости света значение:

Этот результат был первым измерением скорости света. Метод Рёмера был не очень точен, но именно его расчеты показали астрономам, что для определения истинного движения планет и их спутников необходимо учитывать время распространения светового сигнала.

Рис. 2

Определение скорости света по наблюдению аберрации в 1725-1728 гг. Брадлей предпринял наблюдение с целью выяснить, существует ли годичный параллакс звезд, т.е. кажущееся смещение звезд на небесном своде, отображающее движение Земли по орбите и связанное с конечностью расстояния от Земли до звезды.

Брадлей действительно обнаружил подобное смещение. Он объяснил наблюдаемое явление, названное им аберрацией света, конечной величиной скорости распространения света и использовал его для определения этой скорости.

Зная угол α и скорость движения Земли по орбите v, можно определить скорость света c. У него получилось значение скорости света равной 308000 км/с. Важно заметить, что аберрация света связана с изменением направления скорости Земли в течение года. Постоянную скорость, как бы велика она ни была, нельзя обнаружить с помощью аберрации, ибо при таком движении направление на звезду остается неизменным и нет возможности судить о наличии этой скорости и о том, какой угол с направлением на звезду она составляет. Аберрация света позволяет судить лишь об изменении скорости Земли.

В 1849 г. впервые определение скорости света выполнил вы лабораторных условиях А. Физо. Его метод назывался методом зубчатого колеса. Характерной особенностью его метода является автоматическая регистрация моментов пуска и возвращения сигнала, осуществляемая путем регулярного прерывания светового потока (зубчатое колесо).

Рис 3 . Схема опыта по определению скорости света методом зубчатого колеса

Свет от источника проходил через прерыватель (зубья вращающегося колеса) и, отразившись от зеркала, возвращался опять к зубчатому колесу. Зная расстояние между колесом и зеркалом, число зубьев колеса, скорость вращения, можно вычислить скорость света.

Зная расстояние D, число зубьев z, угловую скорость вращения (число оборотов в секунду) v, можно определить скорость света. У него получилось она равной 313000 км/с.

Разрабатывали много способов, чтобы еще повысить точность измерений. Вскоре даже стало необходимо учитывать показатель преломления в воздухе. И вскоре в 1958 г. Фрум получил значение скорости света равной 299792,5 км/с, применяя микроволновый интерферометр и электрооптический затвор (ячейку Керра).

Литература

Мякишев Г.Я. Буховцев Б.Б. Физика 11. Учебник. М.: Просвещение, 2004.

Цели урока

Рассмотреть различные способы измерения скорости света.

На данном уроке компьютерные модели используются для объяснения нового материала.

№ п/п Этапы урока Время, мин Приемы и методы
1 Организационный момент 2
2 Опрос по теме «Корпускулярная и волновая теории света» 10 Устный опрос
3 Объяснение нового материала по теме «Скорость света» 30 Работа с моделями «Опыт Физо» и «Опыт Майкельсона»
4 Объяснение домашнего задания 3

Домашнее задание: § 59.

При объяснении нового материала используется демонстрация интерактивных моделей «Опыт Физо» и «Опыт Майкельсона». Способ демонстрации определяется техническими возможностями используемого учебного кабинета. Возможны следующие варианты:

  • Демонстрация модели учителем с использованием мультимедийного проекционного оборудования.
  • Демонстрация модели учителем с использованием системы удаленного управления персональными компьютерами учащихся, например NetOp School.
  • Работа учащихся с моделью непосредственно на учебных ПК во время объяснения нового материала учителем и под его контролем.
На уроке по теме «Скорость света» рассматриваются астрономический метод измерения скорости света и лабораторные методы измерения скорости света. Объяснение лабораторных методов измерения скорости света, как правило, вызывает затруднения в связи с отсутствием плакатов в школьных кабинетах, сложностью обсуждаемых экспериментов, большим количеством элементов экспериментальных установок. Интерактивные модели позволяют показать учащимся ход эксперимента и результат, который был получен в эксперименте. Для сильных классов можно повторить вычисления, проведенные Физо и Майкельсоном и сравнить полученные результаты с данными в таблице задачника.

Теория к уроку

Опыт Физо

В 1849 г. французский физик Арман Ипполит Луи Физо (23.11.1819–18.09.1896, Париж, Франция) первым поставил лабораторный опыт по измерению скорости света с использованием метода вращающегося затвора. В установке Физо узкий луч света разбивался на импульсы, проходя сквозь промежутки между выступами на окружности быстро вращающегося диска. Импульсы попадали на зеркало, расположенное на расстоянии L = 8,66 км от источника и ориентированное перпендикулярно ходу луча. Экспериментатор, изменяя скорость вращения колеса, добивался, чтобы отраженный свет попадал в промежуток между зубцами. На диске Физо было 720 выступов. Зная величину расстояния между зубцами и скорости вращения колеса, при которой свет попадает в следующий промежуток, можно рассчитать значение скорости света.

Полученный Физо результат для скорости света составил 313 247 304 м/с. В дальнейшем ряд исследователей усовершенствовали метод, используя различные варианты затворов. В частности, американский физик А. Майкельсон разработал весьма совершенный метод измерения скорости света с применением вращающихся зеркал. Это позволило существенно уточнить значение скорости света.

Пример расчетной операции для варианта, при котором экспериментатор добивается исчезновения света в окуляре прибора

Допустим, что зубец и прорезь зубчатого колеса имеют одинаковую ширину и за время движения импульса света до зеркала и обратно место прорези на колесе занял соседний зубец. Тогда свет перекроется зубцом и в окуляре станет темно. Это наступит при условии, что время прохождения света туда и обратно:

Здесь L – расстояние от зубчатого колеса до зеркала, T 1 – период вращения зубчатого колеса, ν 1 = 1 / T 1 – частота вращения, при которой в первый раз исчезает световой поток в окуляре, N – число зубцов. Так как t = t 1 , получаем расчетную формулу для определения скорости света данным методом:
c = 4LN ν 1 .

Пример расчетной операции для варианта, при котором экспериментатор добивается появления света после исчезновения в окуляре прибора

Допустим, что зубец и прорезь зубчатого колеса имеют одинаковую ширину и за время движения импульса света до зеркала и обратно место первой прорези на колесе заняла следующая за ней прорезь. Тогда свет сможет вновь пройти до окуляра и в окуляре вновь станет светло. Это наступит при условии, что время прохождения света туда и обратно:

Получаем расчетную формулу для определения скорости света данным методом: c = 2LN ν 2 , где ν 2 = 1 / T 2 – частота вращения, при которой в окуляре вновь появляется свет после первого исчезновения.

Опыт Майкельсона

В течение всей своей жизни американский физик Альберт Абрахам Майкельсон (19.12.1852–09.05.1931) совершенствовал методику измерения скорости света. Создавая все более сложные установки, он пытался получить результаты с минимальной погрешностью. В 1924–1927 годах разработал схему опыта, в котором луч света посылался с вершины горы Вильсон на вершину Сан-Антонио. В качестве вращающегося затвора было использовано вращающееся зеркало, изготовленное с чрезвычайной точностью и приводимое в движение специально разработанным устройством.

«Подготовка опыта велась с большой тщательностью. Было выбрано место для двух установок. Одна из них помещалась на уже знакомой ему вершине горы Маунт-Вильсон, а другая – на вершине горы Сан-Антонио, известной под прозвищем «Старая плешь», на высоте 5800 м над уровнем моря и на расстоянии 35 км от горы Маунт-Вильсон. Береговой и геодезической службе Соединенных Штатов было поручено точно измерить расстояние между двумя отражающими плоскостями – вращающимся призматическим зеркалом на Маунт-Вильсон и неподвижным зеркалом на Сан-Антонио. Возможная ошибка при измерении расстояния составляла одну семимиллионную, или долю сантиметра на 35 км. Вращающаяся призма из никелированной стали с восемью зеркальными поверхностями, отполированными с точностью до одной миллионной, была изготовлена для опыта бруклинской компанией «Сперри джироскоп компани», президент которой, инженер-изобретатель Эльмер А. Сперри, был другом Майкельсона. Кроме того, было изготовлено еще несколько стеклянных и стальных призм. Восьмиугольный высокоскоростной ротор делал до 528 оборотов в секунду. Он приводился в движение воздушной струей, и его скорость, как и в прошлых опытах, регулировалась при помощи электрического камертона. (Камертон используется не только музыкантами для определения высоты звука. С его помощью можно очень точно определять короткие равные отрезки времени. Можно создать инструмент с нужной частотой, который под действием электрического тока будет вибрировать, подобно электрическому звонку)».

(Бернард Джефф. Майкельсон и скорость света. Перевод с английского Р. С. Бобровой. М.: Изд-во иностранной литературы, 1963. Электронная версия – http://n-t.ru/ri/dj/mc.htm).

Начиная с 1924 года, и до начала 1927 года было проведено пять независимых серий наблюдений. Средний результат равнялся 299 798 км в секунду.

Результаты же всех измерений Майкельсона можно записать как c = (299796 ± 4) км/с.

Расчет скорости света

В эксперименте используется восьмигранная призма. Поэтому время поворота призмы на одну грань τ 1 = T / 8 , τ 1 = 1/ 8ν 1 , где ν 1 – частота вращения призмы, при которой свет появляется в первый раз. Таким образом, c = 2L / τ 1 = 16L ν 1 .

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Скорость света и методы ее определения

План

Введение

1. Астрономические методы измерения скорости света

1.1 Метод Рёмера

1.2 Метод аберрации света

1.3 Метод прерываний (метод Физо)

1.4 Метод вращающегося зеркала (метод Фуко)

1.5 Метод Майкельсона

Введение

Скорость света - одна из наиболее важных физических констант, которые называют фундаментальными. Эта константа имеет особое значение как в теоретической, так и в экспериментальной физике и смежных с нею науках. Точное значение скорости света требуется знать в радио- и светолокации, при измерении расстояний от Земли до других планет, управлении спутниками и космическими кораблями. Определение скорости света наиболее важно для оптики, в частности, для оптики движущихся сред, и физики вообще. Познакомимся с методами определения скорости света.

1. Астрономические методы измерения скорости света

1.1 Метод Рёмера

Первые измерения скорости света были основаны на астрономических наблюдениях. Достоверное значение скорости света, близкое к современному ее значению, было получено впервые Рёмером в 1676 году при наблюдении затмений спутников планеты Юпитер.

Время прохождения светового сигнала от небесного светила до Земли зависит от дальности L расположения светила. Явление, происходящее на каком-то небесном теле, наблюдается с запаздыванием, равным времени прохождения света от светила до Земли:

где с - скорость света.

Если наблюдать какой-либо периодический процесс, происходящий в удаленной от Земли системе, то при неизменном расстоянии между Землей и системой наличие этого запаздывания не будет влиять на период наблюдаемого процесса. Если же за время периода Земля удалится от системы или приблизится к ней, то в первом случае окончание периода будет зарегистрировано с большим запаздыванием, чем его начало, что приведет к кажущемуся увеличению периода. Во втором случае, наоборот, окончание периода будет зафиксировано с меньшим запаздыванием, чем его начало, что приведет к кажущемуся уменьшению периода. В обоих случаях кажущееся изменение периода равно отношению разности расстояний между землей и системой в начале и конце периода к скорости света.

Изложенные соображения лежат в основе метода Рёмера.

Рёмер проводил наблюдения за спутником Ио, период обращения которого 42 ч 27 мин 33 с.

При движении Земли по участку орбиты Е 1 Е 2 Е 3 она удаляется от Юпитера и должно наблюдаться увеличение периода. При движении по участку Е 3 Е 4 Е 1 наблюдаемый период будет меньше истинного. Так как изменение одного периода мало (около 15 с), то эффект обнаруживается только при большом числе наблюдений, проводимых в течение длительного промежутка времени. Если например, наблюдать затмения в течение полугода, начиная с момента противостояния Земли (точка Е 1 ) до момента "соединения" (точка Е 3 ), то промежуток времени между первым и последним затмениями будет на 1320 с больше вычисленного теоретически. Теоретический расчет периода затмений проводился в точках орбиты, близких к противостоянию. Где расстояние между Землей и Юпитером практически не изменяется со временем.

Полученное расхождение можно объяснить только тем, что в течение полугода Земля перешла из точки Е 1 в точку Е 3 и свету приходится в конце полугодия проходить путь, больший, чем в начале, на величину отрезка Е 1 Е 3 , равного диаметру земной орбиты. Таким образом, незаметные для отдельного периода запаздывания накапливаются и образуют результирующее запаздывание. Величина запаздывания, определенная Рёмером, составляла 22 мин. Принимая диаметр орбиты Земли равным км, можно получить для скорости света значение 226000 км/с.

Значение скорости света, определенное на основании измерений Рёмера, оказалось меньше современного значения. Позже были выполнены более точные наблюдения затмений, в которых время запаздывания оказалось равным 16,5 мин, что соответствует скорости света 301000 км/с.

1.2 Метод аберрации света

свет скорость измерение астрономический

Для земного наблюдателя направление луча зрения на звезду будет неодинаковым, если это направление определять в разные времена года, то есть в зависимости от положения Земли на ее орбите. Если направление на какую-либо звезду определять с полугодовыми промежутками, то есть при положениях Земли на противоположных концах диаметра земной орбиты, то угол между полученными двумя направлениями называют годичным параллаксом (рис. .2). Чем дальше находится звезда, тем меньше ее параллактический угол. Измеряя параллактические углы различных звезд, можно определить расстояние этих звезд до нашей планеты.

В 1725-1728 гг. Брэдли (Bradley) Джеймс, английский астроном, измерил годичный параллакс неподвижных звезд. Наблюдая за одной из звезд в созвездии Дракона, он обнаружил, что ее положение менялось в течение года. За это время она описала небольшую окружность, угловые размеры которой были равны 40,9”. В общем случае в результате движения Земли по орбиту звезда описывает эллипс, большая ось которого имеет те же угловые размеры. Для звезд, лежащих в плоскости эклиптики, эллипс вырождается в прямую, а для звезд, лежащих у полюса - в окружность. (Эклиптикой называется большой круг небесной сферы, по которому происходит видимое годичное движение Солнца.)

Величина смещения, измеренная Брэдли, оказалась значительно больше ожидаемого параллактического смещения. Брэдли назвал это явление аберрацией света и объяснил его конечностью скорости света. За то короткое время, в течение которого свет, упавший на объектив телескопа, распространяется от объектива до окуляра, окуляр в результате движения Земли по орбите сдвигается на очень малый отрезок (рис. .3). Вследствие этого изображение звезды сместится на отрезок а . Направляя вновь телескоп на звезду, его придется несколько наклонить в направлении движения Земли, чтобы изображение звезды опять совпало с центром перекрестия нитей в окуляре.

Пусть угол наклона телескопа равен б. Обозначим время, необходимое свету для прохождения отрезка в , равного расстоянию от объектива телескопа до его окуляра, равно ф. Тогда отрезок, и

Из измерений Брэдли было известно, что при двух положениях Земли, лежащих на одном диаметре орбиты, звезда кажется смещенной от истинного положения на один и тот же угол. Угол между этими направлениями наблюдения, откуда, зная скорость Земли на орбите, можно найти скорость света. Брэдли получил с = 306000 км/с.

Следует отметить, что явление аберрации света связано с изменением направления скорости Земли в течение года. Объяснение этого явления базируется на корпускулярных представлениях о свете. Рассмотрение аберрации света с позиций волновой теории более сложно и связано с вопросом о влиянии движения Земли на распространение света.

Рёмером и Брэдли было показано, что скорость света конечна, хотя и имеет огромное значение. Для дальнейшего развития теории света важно было установить, от каких параметров зависит скорость света и как она изменяется при переходе света из одной среды в другую. Для этого необходимо было разработать методы измерения скорости света земных источников. Первые попытки таких экспериментов были предприняты в начале XIX века.

1.3 Метод прерываний (метод Физо)

Первый экспериментальный метод определения скорости света земных источников был разработан в 1449 г. французским физиком Арманом Ипполитом Луи Физо. Схема опыта представлена на рис. .4.

Свет, распространяющийся от источника s , частично отражается от полупрозрачной пластинки Р и направляется к зеркалу М . На пути луча располагается прерыватель света - зубчатое колесо К , ось которого ОО" параллельна лучу. Лучи света проходят через промежутки между зубьями, отражаются зеркалом М и направляются обратно через зубчатое колесо и пластинку Р к наблюдателю.

При медленном вращении колеса К свет, пройдя через промежуток между зубьями, успевает возвратиться через тот же промежуток и попадает в глаз наблюдателя. В те моменты, когда путь лучей пересекается зубцом, свет не попадает к наблюдателю. Таким образом, при малой угловой скорости наблюдатель воспринимает мелькающий свет. Если увеличить скорость вращения колеса, то при некотором значении свет, прошедший через один промежуток между зубьями, дойдя до зеркала и вернувшись обратно, не попадет в тот же самый промежуток d , а будут перекрыт зубцом, занявшим к этому моменту положение промежутка d . Следовательно, при угловой скорости в глаз наблюдателя свет совсем не будет попадать ни от промежутка d , ни от всех последующих (первое затемнение). Если взять число зубцов п , то время поворота колеса на ползубца равно

Время прохождения светом расстояния от колеса до зеркала М и обратно равно

где l - расстояние до колеса от зеркала (база). Приравнивая эти два интервала времени, получаем условие, при котором наступает первое затемнение:

откуда можно определить скорость света:

где - число оборотов в секунду.

В установке Физо база составляла 8,63 км, число зубцов в колесе 720 и первое затемнение наступило при частоте 12,6 об/с. Если увеличить скорость колеса вдвое, то будет наблюдаться просветленное поле зрения, при утроенной скорости вращения опять наступит затемнение и т.д. Вычисленное Физо значение скорости света 313300 км/с.

Основная трудность таких измерений заключается в точном установлении момента затемнения. Точность повышается как при увеличении базы, так и при скоростях прерываний, позволяющих наблюдать затемнения высших порядков. Так, Перротен в 1902 году провел измерения при длине базы 46 км и получил значение скорости света 29987050 км/с. Работа проводилась в условиях чрезвычайно чистого морского воздуха с использованием высококачественной оптики.

Вместо вращающегося колеса можно применять другие, более совершенные методы прерывания света, например, ячейку Керра, с использованием которой можно прерывать световой пучок 107 раз в секунду. При этом можно существенно сократить базу. Так, в установке Андерсона (1941 г.) с ячейкой Керра и фотоэлектрической регистрацией база составляла всего 3 м. Им получено значение с = 29977614 км/с.

1.4 Метод вращающегося зеркала (метод Фуко)

Метод определения скорости света, разработанный в 1862 году Фуко, можно отнести к первым лабораторным методам. Этим методом Фуко измерил скорость света в средах, для которых показатель преломления n >1 .

Схема установки Фуко приведена на рис. 5.

Свет от источника S проходит через полупрозрачную пластинку Р , линзу L и падает на плоское зеркало M 1, которое может вращаться вокруг своей оси О , перпендикулярной к плоскости чертежа. После отражения от зеркала M 1 луч света направляется на неподвижное вогнутое зеркало М 2 , расположенное так, чтобы этот луч всегда падал перпендикулярно к его поверхности и отражался по тому же пути на зеркало M 1 . Если зеркало M 1 неподвижно, то отраженный от него луч возвратится по своему первоначальному пути к пластинке Р , частично отражаясь от которой он даст изображение источника S в точке S 1 .

При вращении зеркала M 1 за время, пока свет проходит путь 2 l между обоими зеркалами и возвращается обратно (), вращающееся с угловой скоростью зеркало M 1 повернется на угол

и займет положение, показанное на рис. .5 пунктиром. Отраженный от зеркала луч по отношению к первоначальному будет повернут на угол и даст изображение источника в точке S 2 . Измерив расстояние S 1 S 2 и зная геометрию установки, можно определить угол и вычислить скорость света:

Таким образом, суть метода Фуко заключается в точном измерении времени прохождения светом расстояния 2 l . Это время оценивается по углу поворота зеркала M 1 , скорость вращения которого известна. Угол поворота определяется на основе измерений смещения S 1 S 2 . В опытах Фуко скорость вращения составляла 800 об/с, база l изменялась от 4 до 20 км. Было найдено значение с = 298000500 км/с.

Фуко на своей установке впервые измерил скорость света в воде. Поместив между зеркалами трубу, наполненную водой, Фуко обнаружил, что угол сдвига возрос в ѕ раза, а следовательно, рассчитанная по записанной выше формуле скорость распространения света в воде оказалась равной (3/4)с . Вычисленный по формулам волновой теории показатель преломления света в воде получился равным, что полностью соответствует закону Снеллиуса. Таким образом, на основе результатов этого эксперимента была подтверждена справедливость волновой теории света, и был закончен полутора вековой спор в ее пользу.

1.5 Метод Майкельсона

В 1926 году установка Майкельсона была выполнена между двумя горными вершинами, так что расстояние, проходимое лучом от источника до его изображения после отражений от первой грани восьмигранной зеркальной призмы, зеркал М 2 - М 7 и пятой грани, составляло около 35,4 км. Скорость вращения призмы (приблизительно 528 об/с) выбиралась такой, чтобы за время распространения света от первой грани до пятой призма успевала повернуться на 1/8 оборота. Возможное смещение зайчика при неточно подобранной скорости играло роль поправки. Скорость света, определенная в этом опыте, оказалась равной 2997964 км/с.

Из других методов отметим выполненное в 1972 году измерение скорости света путем независимого определения длины волны и частоты света. Источником света служил гелий-неоновый лазер, генерирующий излучение 3,39 мкм. При этом длина волны измерялась с помощью интерферометрического сравнения с эталоном длины оранжевого излучения криптона, а частота - с помощью радиотехнических методов. Скорость света

определенная этим методом, составила 299792,45620,001 км/с. Авторы метода считают, что достигнутая точность может быть повышена за счет улучшения воспроизводимости измерений эталонов длины и времени.

В заключение отметим, что при определении скорости света измеряется групповая скорость и , которая лишь для вакуума совпадает с фазовой.

Размещено на Allbest.ru

Подобные документы

    Разделение четырехмерного пространства на физическое время и трехмерное пространство. Постоянство и изотропия скорости света, определение одновременности. Расчет эффекта Саньяка в предположении анизотропии скорости света. Изучение свойств NUT-параметра.

    статья , добавлен 22.06.2015

    Видимое излучение и теплопередача. Естественные, искусственные люминесцирующие и тепловые источники света. Отражение и преломление света. Тень, полутень и световой луч. Лунное и солнечное затмения. Поглощение энергии телами. Изменение скорости света.

    презентация , добавлен 27.12.2011

    Преобразование света при его падении на границу двух сред: отражение (рассеяние), пропускание (преломление), поглощение. Факторы изменения скорости света в веществах. Проявления поляризации и интерференции света. Интенсивность отраженного света.

    презентация , добавлен 26.10.2013

    Развитие представления о пространстве и времени. Парадигма научной фантастики. Принцип относительности и законы сохранения. Абсолютность скорости света. Парадокс замкнутых мировых линий. Замедление хода времени в зависимости от скорости движения.

    реферат , добавлен 10.05.2009

    Понятие дисперсии света. Нормальная и аномальная дисперсии. Классическая теория дисперсии. Зависимость фазовой скорости световых волн от их частоты. Разложение белого света дифракционной решеткой. Различия в дифракционном и призматическом спектрах.

    презентация , добавлен 02.03.2016

    Устройство фотометрической головки. Световой поток и мощность источника света. Определение силы света, яркости. Принцип фотометрии. Сравнение освещенности двух поверхностей, создаваемой исследуемыми источниками света.

    лабораторная работа , добавлен 07.03.2007

    Основные принципы геометрической оптики. Изучение законов распространения световой энергии в прозрачных средах на основе представления о световом луче. Астрономические и лабораторные методы измерения скорости света, рассмотрение законов его преломления.

    презентация , добавлен 07.05.2012

    Спектральные измерения интенсивности света. Исследование рассеяния света в магнитных коллоидах феррита кобальта и магнетита в керосине. Кривые уменьшения интенсивности рассеянного света со временем после выключения электрического и магнитного полей.

    статья , добавлен 19.03.2007

    Теоретические основы оптико-электронных приборов. Химическое действие света. Фотоэлектрический, магнитооптический, электрооптический эффекты света и их применение. Эффект Комптона. Эффект Рамана. Давление света. Химические действия света и его природа.

    реферат , добавлен 02.11.2008

    Волновая теория света и принцип Гюйгенса. Явление интерференции света как пространственного перераспределения энергии света при наложении световых волн. Когерентность и монохроматичных световых потоков. Волновые свойства света и понятие цуга волн.