В школе на лето всегда задавали неподъёмный список литературы - обычно меня хватало не более чем на половину, и ту я читал всю в кратком изложении. «Война и мир» на пяти страничках - что может быть лучше… Про историю телеграфов расскажу в подобном жанре, но общий смысл должен быть понятен.


Слово «Телеграф» происходит от двух древнегреческих слов - tele (далеко) и grapho (пишу). В современном значении это просто средство передачи сигналов по проводам, радио или другим каналам связи… Хотя первые телеграфы были беспроводными — ещё задолго до того, как научиться переписываться и передавать какую-либо информацию на большие расстояния, люди научились перестукиваться, перемигиваться, разводить костры и стучать в барабаны — всё это тоже можно считать телеграфами.

Хотите верьте, хотите нет, но когда-то в Голландии вообще передавали сообщения (примитивные) с помощью ветряных мельниц, коих там было огромное множество — просто останавливали крылья в определённых положениях. Возможно, именно это однажды (в 1792 году) вдохновило Клода Шафа на создание первого (среди непримитивных) телеграфа. Изобретение получило названием «Гелиограф» (оптический телеграф) — как несложно догадаться из названия, это устройство позволяло передавать информацию за счёт солнечного света, а точнее, за счёт его отражения в системе зеркал.


Между городами в прямой видимости друг от друга возводили специальные башни, на которых устанавливались огромные суставчатые крылья семафоров — телеграфист принимал сообщение и тут же передавал его дальше, передвигая крылья рычагами. Помимо самой установки, Клод придумал и свой язык символов, который позволял таким образом передавать сообщения со скоростью до 2 слов в минуту. Кстати, самая длинная линия (1200 км) была построена в 19 веке между Петербургом и Варшавой — из конца в конец сигнал проходил за 15 минут.
Электрические же телеграфы стали возможны лишь тогда, когда люди стали более плотно изучать природу электричества, то есть, примерно в 18 веке. Первая статья об электрическом телеграфе появилась на страницах одного научного журнала в 1753 году под авторством некоего «C. M.» — автор проекта предлагал посылать электрические заряды по многочисленным изолированным проволочкам, связывающим пункты А и Б. Количество проволочек должно было соответствовать количеству букв в алфавите: «Шарики на концах проволок будут наэлектризовываться и притягивать лёгкие тела с изображением букв ». Позже стало известно, что под «C. M.» скрывался шотландский учёный Charles Morrison, который, к сожалению, так и не смог наладить правильную работу своего устройства. Зато поступил благородно: угостил других учёных своими наработками и подал им идею, а те вскоре предложили различные усовершенствования схемы.

В числе первых был женевский физик Георг Лесаж, который в 1774 году построил первый работающий электростатический телеграф (он же в 1782 году предложил прокладывать телеграфные провода под землёй, в глиняных трубах). Всё те же 24 (или 25) изолированных друг от друга проводков, каждому соответствует своя буква алфавита; концы проводков соединены с «электрическим маятником» — передавая заряд электричества (тогда ещё вовсю тёрли эбонитовые палочки), можно заставить соответствующий электрический маятник другой станции выйти из состояния равновесия. Не самый быстрый вариант (передача небольшой фразы могла занять 2-3 часа), но он хотя бы работал. Спустя 13 лет телеграф Лесажа усовершенствовал физик Ломон, который сократил количество необходимых проводков до одного.

Электрическая телеграфия стала интенсивно развиваться, но действительно блестящие результаты дала только тогда, когда в ней стали применять не статическое электричество, а гальванический ток — пищу для размышления в этом направлении впервые (в 1800 году) подкинул Алессандро Джузеппе Антонио Анастасио Джероламо Умберто Вольта. Первым же отклоняющее действие гальванического тока на магнитную стрелку в 1802 году заметил итальянский учёный Романьези, а уже в 1809 году мюнхенским академиком Зёммерингом был изобретён первый телеграф, основанный на химических действиях тока.

Позже в процессе создания телеграфа решил поучаствовать и русский учёный, а именно Павел Львович Шиллинг — в 1832 году он стал создателем первого электромагнитного телеграфа (а позже — ещё и оригинального кода для работы). Конструкция плода его стараний была такая: пять магнитных стрелок, подвешенные на шелковых нитях, двигались внутри «мультипликаторов» (катушек с большим количеством витков проволоки). В зависимости от направления тока магнитная стрелка шла в ту или иную сторону, а вместе со стрелкой поворачивался небольшой картонный диск. Используя два направления тока и оригинальный код (составленный из комбинаций отклонения диска шести мультипликаторов), можно было передавать все буквы алфавита и даже цифры.

Шиллингу было предложено сделать телеграфную линию между Кронштадтом и Петербургом, но в 1837 году он умер, и проект заморозился. Лишь спустя почти 20 лет его возобновил другой учёный, Борис Семёнович Якоби — помимо прочего, он задумался о том, как записывать получаемые сигналы, стал работать над проектом пишущего телеграфа. Задача была выполнена — условные значки записывал карандаш, прикреплённый к якорю электромагнита.

Также свои электромагнитные телеграфы (а то и «язык» для них) придумали Карл Гаусс и Вильгельм Вебер (Германия, 1833 год) и Кук и Уитстон (Великобритания, 1837). А, чуть про Сэмюила Морзе не забыл, хотя про него я уже . В общем, наконец-то научились передавать электромагнитный сигнал на большие расстояния. Понеслось — сначала простые сообщения, потом корреспондентские сети начали передавать по телеграфу новости для многих газет, потом появились целые телеграфные агентства.

Проблемой была передача информации между континентами — каким образом протянуть более 3000 км (от Европы к Америке) провода через Атлантический океан? Удивительно, но именно так и решили поступить. Инициатором стал Сайрус Уэст Филд - один из основателей компании Atlantic Telegraph Company, который устроил хардпати для местных олигархов и убедил их проспонсировать проект. В результате появился «клубок» кабеля весом в 3000 тонн (состоящий из 530 тысяч километров медной проволоки), который к 5 августа 1858 года успешно размотали по дну Атлантического океана крупнейшие на тот момент военные корабли Великобритании и США — «Агамемнон» и «Ниагара». Позже, правда, кабель порвался — не с первого раза, но починили.

Неудобство телеграфа Морзе заключалось в том, что его код могли расшифровать только специалисты, в то время как простым людям он был совершенно непонятен. Потому в последующие годы многие изобретатели трудились над тем, чтобы создать аппарат, регистрирующий сам текст сообщения, а не только телеграфный код. Наиболее известным среди них стал буквопечатающий аппарат Юзе:

Частично механизировать (облегчить) труд операторов-телеграфистов решил Томас Эдисон — он предложил вовсе исключить участие человека, записывая телеграммы на перфоленту.

Ленту делали на реперфораторе — устройстве для пробивания отверстий в бумажной ленте в соответствии со знаками телеграфного кода, поступающими от телеграфного передатчика.

Реперфоратор принимал телеграммы на транзитных телеграфных станциях, а затем передавал их автоматически — при помощи трансмиттера, устраняя тем самым трудоёмкую ручную обработку транзитных телеграмм (наклейку ленты с отпечатанными на ней знаками на бланк и последующую передачу всех символов вручную, с клавиатуры). Были и реперфотрансмиттеры — устройства для приёма и передачи телеграмм, выполняющие функции реперфоратора и трансмиттера одновременно.

В 1843 году появились факсы (мало кто знает, что они появились раньше телефона) — придумал их шотландский часовщик, Александр Бейн. Его устройство (которое он сам называл телеграфом Бейна) было способно на большие расстояния передавать копии не только текста, но и изображений (пусть и в отвратительном качестве). В 1855 году его изобретение усовершенствовал Джованни Казелли, доработав качество передачи изображений.

Правда, процесс был довольно трудозатратным, судите сами: исходное изображение нужно было перенести на специальную свинцовую фольгу, которую «сканировало» специальное перо, присоединённое к маятнику. Темные и светлые участки изображения передавались в виде электрических импульсов и воспроизводились на принимающем устройстве другим маятником, который «рисовал» на специальной увлажнённой бумаге, пропитанной раствором железосинеродистого калия. Устройство было названо пантелеграфом и в дальнейшем пользовалось большой популярностью по всему миру (в том числе в России).

В 1872 году французский изобретатель Жан Морис Эмиль Бодо сконструировал свой телеграфный аппарат многократного действия — он имел возможность передавать по одному проводу два и более сообщения в одну сторону. Аппарат Бодо и созданные по его принципу получили название стартстопных.

Но помимо самого устройства, изобретатель придумал ещё и весьма удачный телеграфный код (Код Бодо), который впоследствии набрал большую популярность и получил наименование Международный телеграфный код №1 (ITA1). Дальнейшие модификации конструкции стартстопного телеграфного аппарата привели к созданию телепринтеров (телетайпов), а в честь учёного была названа единица скорости передачи информации — бод.

В 1930 году появился стартстопный телеграф с дисковым номеронабирателем телефонного типа (телетайп). Такое устройство, в числе прочего, позволяло персонифицировать абонентов телеграфной сети и осуществлять быстрое их соединение. В дальнейшем такие устройства стали называть «телекс» (от слов «telegraph» и «exchange»).

В наше время от телеграфов во многих странах отказались как от морально устаревшего способа связи, хотя в России его ещё применяют. С другой стороны, тот же светофор тоже можно в какой-то степени считать телеграфом, а он используется уже чуть ли не на каждом перекрёстке. Поэтому погодите списывать стариков со счётов;)

За период с 1753 по 1839 годы в истории телеграфа насчитывается около 50 различных систем — некоторые из них так и остались на бумаге, но были и такие, которые стали фундаментом современной телеграфии. Время шло, технологии и облик устройств менялись, но принцип работы оставался прежним.

А что сейчас? Недорогие СМС-сообщения потихоньку уходят — на смену им идут всевозможные бесплатные решения типа iMessage/WhatsApp/Viber/Telegram и всяких там асек-скайпов. Можно написать сообщение «22:22 — загадывай желание » и быть уверенным в том, что человек (возможно, находящийся с другой стороны земного шара) скорее всего даже успеет его вовремя загадать. Впрочем, вы уже не маленькие и сами всё понимаете… лучше попробуйте предсказать, что с передачей информации будет в будущем, через аналогичный по длине промежуток времени?

Фотоотчёты из всех музеев (со всеми телеграфами) будут опубликованы чуть позже на страницах нашего «исторического»

Примитивные виды связи: огонь, дым и отражённый свет

С незапамятных времен человечество пользовалось различными примитивными видами сигнализации и связи в целях передачи срочной и важной информации в тех случаях, когда по ряду причин традиционные виды почтовых сообщений не могли быть использованы. Огни, зажигаемые на возвышенных участках местности, или же дым от костров должен был оповестить о приближении врагов либо грядущем стихийном бедствии. Этот способ до сих пор используется заблудившимися в тайге или туристами, испытывающими стихийное бедствие . Некоторые племена и народы использовали для этих целей определенные комбинации звуковых сигналов от ударных музыкальных инструментов (барабанов), другие научились передавать определенные сообщения, манипулируя отраженным солнечным светом при помощи системы зеркал. В последнем случае система связи получила наименование «гелиограф ».

Оптический телеграф

В 1792 году во Франции Клод Шапп создал систему передачи информации при помощи светового сигнала, которая получила название «Оптический телеграф». В простейшем виде это была цепь типовых строений, с расположенными на кровле шестами с подвижными поперечинами, которая создавалась в пределах видимости одно от другого. Шесты с подвижными поперечинами - семафоры - управлялись при помощи тросов специальными операторами изнутри строений. Шапп создал специальную таблицу кодов, где каждой букве алфавита соответствовала определенная фигура, образуемая семафором, в зависимости от положений поперечных брусьев относительно опорного шеста. Система Шаппа позволяла передавать сообщения на скорости два слова в минуту и быстро распространилась в Европе. В Швеции цепь станций оптического телеграфа действовала до 1880 года.

Электрический телеграф

Ключ Морзе

Телеграфный коммутатор конструкции П. Кошкодаева.
Использовался на стационарных узлах Наркомата связи и штабов военных округов. В годы ВОВ широко применялся для оборудования кроссов стационарных узлов связи
Военно-исторический музей артиллерии, инженерных войск и войск связи , Санкт-Петербург

Одна из первых попыток создать средство связи с использованием электричества относится к второй половине XVIII века, когда Лесаж в 1774 году построил в Женеве электростатический телеграф. В 1798 году испанский изобретатель Франциско де Сальва создал собственную конструкцию электростатического телеграфа. Позднее, в 1809 году немецкий учёный Самуил Томас Земмеринг построил и испытал электрохимический телеграф.

Первый электромагнитный телеграф создал российский учёный Павел Львович Шиллинг в 1832 году. Публичная демонстрация работы аппарата состоялась на квартире Шиллинга 21 октября 1832 года. Павел Шиллинг также разработал оригинальный код, в котором каждой букве алфавита соответствовала определенная комбинация символов, которая могла проявляться черными и белыми кружками на телеграфном аппарате. Впоследствии электромагнитный телеграф был построен в Германии - Карлом Гауссом и Вильгельмом Вебером (1833), в Великобритании - Куком и Уитстоном (1837), а в США электромагнитный телеграф запатентован С. Морзе в . Телеграфные аппараты Шиллинга, Гаусса-Вебера, Кука-Уитстона относятся к электро-магнитным аппаратам стрелочного типа, в то время как аппарат Морзе являлся электро-механическим. Большой заслугой Морзе является изобретение телеграфного кода, где буквы алфавита были представлены комбинацией точек и тире (код Морзе). Коммерческая эксплутация электрического телеграфа впервые была начата в Лондоне в 1837. В России работы П.Л. Шиллинга продолжил Б. С. Якоби , построивший в 1839 году пишущий телеграфный аппарат, а позднее, в 1850 году, - буквопечатающий телеграфный аппарат.

Основные телеграфные линии на 1891

Фототелеграф

В 1843 году шотландский физик Александр Бэйн продемонстрировал и запатентовал собственную конструкцию электрического телеграфа, которая позволяла передавать изображения по проводам. Аппарат Бэйна считается первой примитивной факс -машиной. В 1855 году итальянский изобретатель Джованни Казелли создал аналогичное устройство, которое назвал Пантелеграф и предложил его для коммерческого использования. Аппараты Казелли некоторое время использовалиь для передачи изображений посредством электрических сигналов на телеграфных линиях как во Франции, так и в России.

Беспроводной телеграф

7 мая 1895 года российский ученый Александр Степанович Попов на заседании Русского Физико-Химического Общества продемонстрировал прибор, названный им "грозоотметчик", который был предназначен для регистрации электромагнитных волн. Этот прибор считается первым в мире аппаратом беспроводной телеграфии, радиоприемником. В 1897 году при помощи аппаратов беспроводной телеграфии Попов осуществил прием и передачу сообщений между берегом и военным судном. В 1899 году Попов сконструировал модернизированный вариант приемника электромагнитных волн, где прием сигналов (азбукой Морзе) осуществлялся на головные телефоны оператора. В 1900 году благодаря радиостанциям, построенным на острове Гогланд и на российской военно-морской базе в Котке под руководством Попова, были успешно осуществлены аварийно-спасательные работы на борту военного корабля "Генерал-адмирал Апраксин", севшего на мель у острова Гогланд. В результате обмена сообщениями, переданным методом беспроводной телеграфии, экипажу российского ледокола Ермак была своевременно и точно передана информация о финских рыбаках, находящихся на оторванной льдине в Финском заливе. За рубежом техническая мысль в области беспроводной телеграфии также не стояла на месте. В 1896 году в Великобритании итальянец Гулиельмо Маркони подал патент "об улучшениях, произведенных в аппарате беспроводной телеграфии". Аппарат, представленный Маркони, в общих чертах повторял конструкцию Попова, многократно к тому времени описанную в европейских научно-популярных журналах. В 1901 году Маркони добился устойчивой передачи сигнала беспроводного телеграфа (буквы S) через Атлантику.

Аппарат Бодо: новый этап развития телеграфии

В 1872 году французский изобретатель Жан Бодо сконструировал телеграфный аппарат многократного действия, который имел возможность передавать по одному проводу два и более сообщения в одну сторону. Аппарат Бодо и созданные по его принципу получили название стартстопных. Кроме того, Бодо создал весьма удачный телеграфный код (Код Бодо), который впоследствии был воспринят повсеместно и получил наименование Международный телеграфный код № 1 (ITA1). Модифицированная версия МТК № 1 получила название МТК № 2 (ITA2). В СССР на основе ITA2 был разработан телеграфный код МТК-2 . Дальнейшие модификации конструкции стартстопного телеграфного аппарата, предложенного Бодо, привели к созданию телепринтеров (телетайпов).В честь Бодо была названа единица скорости передачи информации - бод .

Telex

Телекс Siemens T100

К 1930 году была создана конструкция стартстопного телеграфного аппарата, оснащенного дисковым номеронабирателем телефонного типа (телетайп). Этот тип телеграфного аппарата в числе прочего позволял персонифицировать абонентов телеграфной сети и осуществлять быстрое их соединение. Практически одновременно, в Германии и Великобритании были созданы национальные сети абонентского телеграфа, получившие название Telex (TELEgraph + EXchange). Несколько позже в США также была создана национальная сеть абонентского телеграфирования, подобная Telex, которая получила наименование TWX (Telegraph Wide area eXchange). Сети международного абонентского телеграфирования постоянно расширялись и к 1970 году сеть Telex объединяла абонентов более чем 100 стран мира.Только в восьмидесятых годах благодаря появлению на рынке недорогих и практичных факсимильных машин сеть абонентского телеграфирования стала сдавать позиции в пользу факсимильной связи.

Телеграф в новом веке

В наши дни возможности обмена сообщениями по сети Telex сохранена во многом благодаря электронной почте. В России телеграфная связь существует и поныне, телеграфные сообщения передаются и принимаются при помощи специальных устройств - телеграфных модемов, сопряженных в узлах электрической связи с персональными компьютерами операторов. Тем не менее в некоторых странах национальные операторы сочли телеграф устаревшим видом связи и свернули все операции по отправлению и доставке телеграмм. В Нидерландах телеграфная связь прекратила работу в 2004 году. В январе 2006 года старейший американский национальный оператор Western Union объявил о полном прекращении обслуживания населения по отправке и доставлению телеграфных сообщений. В то же время в Канаде, Бельгии, Германии, Швеции, Японии некоторые компании все еще поддерживают сервис по отправлению и доставке традиционных телеграфных сообщений.

См. также

  • Абонентское телеграфирование

Отель, не имеющий телекса, не может иметь рейтинг "пять звезд". Сейчас в мире более полутора миллионов телексных номеров. Телекс является документальным видом связи и признается документом на основании международных соглашений 30-х годов прошлого века. В России есть сеть общего пользования, в которой каждое сообщение хранится 7 месяцев, и может быть разыскано по всему пути следования, а также может быть вам выдано с заверяющей печатью как документ.

Ссылки по теме

  • Центральный Музей Связи имени А.С. Попова: Аппарат П.Л. Шиллинга
  • История Факсимильных машин и Фототелеграфов (англ.)
  • Виртуальный музей телетайпов (англ.) - большая коллекция аппаратов и фотоэксклюзив.

3.1. История телеграфной связи (электрический телеграф)

Открытие электромагнитных волн легли в основу изобретения электрического телеграфа как основы дальней связи.

В 1753 г. физик из Лейпцига Винклер открыл способ передачи электрического тока по проводам , что позволило женевцу Лесажу сконструировать громоздкий телеграфный аппарат, состоящий из 24 изолированных проводов, подключенных на другом конце к источнику электрического тока. Индикаторами букв этого аппарата были поочередно притягиваемые соответствующие шарики бузины. Вскоре, Лемонд и Бекман усовершенствовали аппарат Лесажу, сократив количество проводов до двух . Первым шагом на пути к созданию несколько иного пути по созданию электрического телеграфа был блестящий опыт датского физика, профессора Копенгагенского университета Ханса Кристиана Эрстеда (17771851) по отклонению магнитной стрелки под влиянием проводника с электрическим током. В созданном аппарате было два новшества, использованных многими изобретателями в будущих своих конструкциях: шелковая изоляционная обмотка проводов и сигнальное устройство (звонок), оповещающее о начале передачи. Этот опыт был продемонстрирован в 1830 г.

Человеком, сразу понявшим, что открытие Эрстеда можно использовать для практического телеграфа был российский ученый-электротехник Павел Львович Шиллинг (17861837), который в 1832 г. создал стрелочный телеграфный аппарат, у которого индикаторами служили пять стрелок .

Осенью 21 октября 1832 г. на его квартире состоялась первая публичная демонстрация «телеграфной системы Шиллинга». На демонстрации, где присутствовал сам российский император Николай I, по линии длиной 100 м была передана первая телеграмма, состоящая из 10 слов.

В электромагнитном телеграфе П. Л. Шиллинга основным элементом был мультипликатор, содержащий астатическую пару намагниченных стрелок, которые были изобретены в 1821 г. A. M. Ампером. Изменение полярности подключения к батарее проводов линии связи вызывало поворот диска, подвешенного на одной нити с астатическими стрелками мультипликатора. Одна сторона диска была окрашена в белый, а другая в черный цвет, благодаря этому по положению диска можно было судить о переданном знаке.Линейная часть устройства имела восемь проводов (один общий, один вызывной), подключаемых к электрической батарее с помощью специальной клавиатуры с восемью парами белых и черных клавиш. Приемник имел семь мультипликаторов, смонтированных на общей раме. Для передачи букв и цифр, а также для уменьшения числа проводов в линии связи Шиллинг разработал специальный код, содержащий комбинации разного числа (от 1 до 5) последовательных сигналов. Это был первый в истории электросвязи неравномерный код .

Именно с изобретения этого аппарата начинается эпоха практического применения электрического телеграфа, эволюция которого представлена аппаратами кодовой передачи сообщений С. Морзе, буквопечатающим

Д. Юза, факсимильным Д. Казелли, телетайпом Трусевича, фототелеграфным аппаратом «Нева» и т.д.

В 1835 г. Шиллинг проводил презентацию своего аппарата в Мюнхене. На

этой презентации присутствовал английский офицер У. Кук, который сразу же понял, какое значение для управления и развития железных дорог имеет новое средство связи. Вернувшись в Англию с макетом аппарата Шиллинга, он привлек к реализации электромагнитного телеграфа английского ученого

Ч. Уитстона, которым в стрелочный аппарат Шиллинга был внесен ряд усовершенствований. Аппараты У. Кука и Ч. Уитстона в течение 50 лет широко применялись в Англии.

Изобретение Шиллинга практически реализовал академик Петербургской академии наук Б. С. Якоби. В 1841 году он построил первую телеграфную линию между Зимним дворцом и Главным штабом. Б. С. Якоби в 1850 г. разработал первый в мире телеграфный аппарат (на три года раньше Морзе) с буквопечатанием принимаемых сообщений, в котором, как он говорил «регистрация знаков осуществлялась с помощью типографского шрифта» .

Hемецкий ученый К.А.Штейнгель во время ремонта рельсовой колеи (т. е. при обрыве электрической цепи) обнаружил, что телеграф продолжал работать. Основываясь на этом, он сделал вывод, что роль «второго провода» выполняет земля . Это позволило ему в 1838 г. стать изобретателем так называемого «заземления». Работы Уитстона, Кука, Штейнгеля, Гаусса и Вебера полностью исчерпали возможности, заложенные в изобретении Шиллинга.

Практическое всемирное распространение получил электромагнитный телеграф, созданный американским художником Самуэлем Морзе .

Вначале Морзе пытался построить телеграф, который требовал прокладки между станциями 26 отдельных линий по одной для каждой буквы алфавита. После нескольких лет работы ему удалось уменьшить число проводов до одного (вместо другого использовалась земля). Дополнительно, в свое изобретение он ввел реле, которое изобрел американский физик Джозеф Генри . Это позволило создавать ретрансляторы телеграфных сигналов, которые с помощью реле, установленного на конце каждого участка линии связи, обеспечивали подключение батареи, снабжающей электропитанием следующий участок этой линии. Применение ретрансляторов позволяло существенно увеличить протяженность телеграфных линий.

В 1838 г. С. Морзе изобрел оригинальный неравномерный код. Его оригинальность заключалась в том, что часто встречающимся буквам английского алфавита соответствовали короткие кодовые комбинации, а редко встречающимся, длинные кодовые комбинации. Это свойство кода принципиально отличало его от неравномерного кода Шиллинга, который использовал свой код не для сокращения избыточности сообщений, а для уменьшения числа проводов в линии связи. Код Морзе стал первым примером эффективного метода статистического кодирования источника сообщений. Общие принципы статистического кодирования были установлены только через 100 лет К. Шенноном создателем теории информации. В 1851 г. код Морзе был несколько модифицирован и стал международным кодом. Он применялся во всех странах мира в проводных линиях связи, а позже стал международным и в радиосвязи: его, в частности, использовали для обмена сообщениями сотни тысяч радиолюбителей. Лишь в самом конце XX века в связи с развитием спутниковых систем связи Международным союзом электросвязи было принято решение о прекращении использования кода Морзе на всех линиях связи.

В мае 1844 г. под руководством Морзе была построена телеграфная линия между Вашингтоном и Балтимором общей протяженностью 65 км. По этой линии С. Морзе публично продемонстрировал передачу кодового сообщения «What hath God wraght !» («О, Господи, что ты сотворил!») . Эта первая телеграфная линия Морзе (1844 г) обеспечивала скорость 5 бит/с (0,5 буквы).

На основе открытий П. Л. Шиллинга и Б. С. Якоби физиком Д. Юзом и французским телеграфным механиком Э. Бодо в 1855 г. изобретена первая печатающая телеграфная машина . Изобретение в 1860 г. печатающей телеграфной системы обеспечивало скорость 10 бит/с (1 буква). В 1874 г. Бодо изобрел многократную систему телеграфирования с печатью. Эта система шестикратного телеграфного аппарата Бодо уже обеспечивала невиданную скорость передачи 100 бит/с (10 букв в секунду). В 1858 г. Уинстон изобрел аппарат, выдающий информацию непосредственно на встроенную в него телеграфную ленту (прототип современного телеграфного аппарата).

В 1832 году русский ученый Павел Львович Шиллинг изобрёл телеграф, который был удачно испытан в Петербурге. Шиллингу также удалось создать подводный кабель с каучуковой изоляцией и воздушную подводку на проводах.

Вернер фон Сименс (1816-1892) – немецкий физик, электротехник и предприниматель. Родился в Ленте близ Ганновера. Вскоре после окончания Берлинского артиллерийского училища оставил военную карьеру и занялся изобретательской деятельностью.

В. Сименс с братом Карлом улучшили конструкцию электромагнитного телеграфа, и савместно с механиком И. Гальске братья сконструировали электрический телеграф. В 1847 году в Пруссии В. Сименс получил патент на телеграф. И. Гальске усовершенствовал изготовление проводов и их изоляцию. Вернер и Карл Сименсы совместно с И. Гальске создали фирму «Сименс и Гальске», которая занималась промышленным производством средств связи. Телеграфные линии строились по всему земному шару. За небольшой период времени небольшая мастерская превратилась в крупный завод, который изготавливал телеграфные установки и различные кабели.

Сименс Эрнст Вернер серьёзно занимался электротелеграфией, точной механикой и оптикой. В 1846 году учёный изобрёл машину для наложения резиновой изоляции на провода. Эта машина вошла во всеобщее употребление при производстве изолированных проводников для подземных и подводных телеграфных кабелей. В. Сименс ввёл в обиход термин «электротехника». 17 января 1867 г. учёный изложил свою теорию динамо-машины в берлинской академии. Данная машина стала основой для всей современной электротехники.

В 1879 г. на берлинской выставке была представлена первая электрическая железная дорога и первый трамвай, построенные В. Сименсом. С этого началась активная деятельность изобретателя в развитии и распространении электрических железных дорог.

Завод, основанный В. Сименсом, дал миру множество изобретений и усовершенствовании по части телеграфного дела и электротехники: в индукционных электрических машинах стальные магниты были заменены на электромагниты; был разработан электрогенератор с самовозбуждением; сконструирован электрический пирометр; сконструирована промышленная электроплавильная печь и селеновый фотометр.

В настоящее время в различных странах действуют предприятия акционерного общества «Сименс и Гальске» по производству аппаратов и принадлежностей электротехники, по электрическому освещению, по эксплуатации телефонов, телеграфов, электрических железных дорог, по передаче электроэнергии.

В честь учёного, физика и изобретателя Вернера фон Сименса названа единица измерения электрической проводимости – Сименс.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Вплоть до середины XIX века единственным средством сообщения между европейским континентом и Англией, между Америкой и Европой, между Европой и колониями оставалась пароходная почта. О происшествиях и событиях в других странах люди узнавали с опозданием на целые недели, а порой и месяцы.

Например, известия из Европы в Америку доставлялись через две недели, и это был еще не самый долгий срок. Поэтому создание телеграфа отвечало самым настоятельным потребностям человечества. После того как эта техническая новинка появилась во всех концах света и земной шар опоясали телеграфные линии, требовались только , а порой и минуты на то, чтобы новость по электрическим проводам из одного полушария примчалась в другое.

Политические и биржевые сводки, личные и деловые сообщения в тот же день могли быть доставлены заинтересованным лицам. Таким образом, телеграф следует отнести к одному из важнейших изобретений в истории цивилизации, потому что вместе с ним человеческий разум одержал величайшую побед над расстоянием.

Но кроме того что телеграф открыл новую веху в истории связи, изобретение это важно еще и тем, что здесь впервые, и притом в достаточно значительных масштабах, была использована электрическая энергия. Именно создателями телеграфа впервые было доказано, что электрический ток можно заставить работать для нужд человека и, в частности, для передачи сообщений.

Изучая историю телеграфа, можно видеть, как в течение нескольких десятилетий молодая наука об электрическом токе и телеграфия шли рука об руку, так что каждое новое открытие в электричестве немедленно использовалось изобретателями для различных способов связи.

Как известно, с электрическими явлениями люди познакомились в глубокой древности. Еще Фалес, натирая кусочек янтаря шерстью, наблюдал затем, как гот притягивает к себе небольшие тела. Причина этого явления заключалась в том, что при натирании янтарю сообщался электрический заряд.

В XVII веке научились заряжать тела с помощью электростатической машины. Вскоре было установлено, что существуют два вида электрических зарядов: их стали называть отрицательными и положительными, причем заметили, что тела, имеющие одинаковый знак зарядов, отталкиваются друг от друга, а разные знаки - притягиваются.

Долгое время, исследуя свойства электрических зарядов и заряженных тел, не имели понятия об электрическом токе. Он был открыт, можно сказать, случайно болонским профессором Гальвани в 1786 году. Гальвани в течение многих лет экспериментировал с электростатической машиной, изучая ее действие на мускулатуру животных - прежде всего лягушек (Гальвани вырезал лапку лягушки вместе с частью позвоночного столба, один электрод от машины подводил к позвоночнику, а другой - к какой-нибудь мышце, при пропускании разряда мышца сокращалась и лапка дергалась).

Однажды Гальвани подвесил лягушачью лапку с помощью медного крючка к железной решетке балкона и к своему великому изумлению заметил, что лапка дернулась так, словно через нее пропустили электрический разряд. Такое сокращение происходило каждый раз, когда крючок соединялся с решеткой. Гальвани решил, что в этом опыте источником электричества является сама лапка лягушки. Не все согласились с этим объяснением.

Пизанский профессор Вольта первый догадался, что электричество возникает вследствие соединения двух разных металлов в присутствии воды, но только не чистой, а представляющей собой раствор какой-нибудь соли, кислоты или щелочи (такую электропроводящую среду стали называть электролитом). Так, например, если пластинки меди и цинка спаять между собой и погрузить в электролит, в цепи возникнут электрические явления, являющиеся следствием протекающей в электролите химической реакции. Очень важным здесь было следующее обстоятельство - если прежде ученые умели получать лишь моментальные электрические разряды, то теперь они имели дело с принципиально новым явлением - постоянным электрическим током.

Ток, в отличие от разряда, можно было наблюдать в течение длительных промежутков времени (до тех пор, пока в электролите не пройдет до конца химическая реакция), с ним можно было экспериментировать, наконец, его можно было использовать. Правда, ток, возникавший между парой пластинок, получался слабым, но Вольта научился его усиливать. В 1800 году, соединив несколько таких пар вместе, он получил первую в истории электрическую батарею, названную вольтовым столбом.

Эта батарея состояла из положенных одна на другую пластинок меди и цинка, между которыми находились кусочки войлока, смоченные раствором соли. При исследовании электрического состояния такого столба Вольта обнаружил, что на средних парах электрическое напряжение почти вовсе незаметно, но оно возрастает на более удаленных пластинах. Следовательно, напряжение в батарее было тем значительнее, чем больше число пар.

Пока полюса этого столба не были соединены между собой, в нем не обнаруживалось никакого действия, но при замыкании концов с помощью металлической проволоки в батарее начиналась химическая реакция, и в проволоке появлялся электрический ток. Создание первой электрической батареи было событием величайшей важности. С этого времени электрический ток становится предметом самого пристального изучения многих ученых. Вслед за тем появились и изобретатели, которые постарались использовать вновь открытое явление для нужд человека.

Известно, что электрический ток представляет собой упорядоченное движение заряженных частиц. Например, в металле - это движение электронов, в электролитах - положительных и отрицательных ионов и т.д. Прохождение тока через проводящую среду сопровождается рядом явлений, которые называют действиями тока. Самые важные из них - это тепловое, химическое и магнитное. Говоря об использовании электричества, мы обычно подразумеваем, что применение находит то или иное из действий тока (например, в лампе накаливания - тепловое, в электродвигателе - магнитное, при электролизе - химическое).

Поскольку изначально электрический ток был открыт как следствие химической реакции, химическое действие тока, прежде всего, обратило на себя внимание. Замечено было, что при прохождении тока через электролиты наблюдается выделение веществ, содержащихся в растворе, или пузырьков газа. При пропускании тока через воду можно было, к примеру, разложить ее на составные части - водород и кислород (эта реакция называется электролизом воды). Именно это действие тока и легло в основу первых электрических телеграфов, которые поэтому называются электрохимическими.

В 1809 году в Баварскую академию был представлен первый проект такого телеграфа. Его изобретатель Земеринг предложил использовать для средств связи пузырьки газа, выделявшиеся при прохождении тока через подкисленную воду. Телеграф Земеринга состоял из: 1) вольтова столба; 2) алфавита, в котором буквам соответствовали 24 отдельных проводка, соединявшихся с вольтовым столбом посредством проволоки, втыкавшейся в отверстия штифтов; 3) каната из 24-х свитых вместе проводков; 4) алфавита, совершенно соответствующего передающему набору и помещающегося на станции, принимающей депеши (здесь отдельные проводки проходили сквозь дно стеклянного сосуда с водой); 5) будильника, состоявшего из рычага с ложкой.

Когда Земеринг хотел телеграфировать, он сначала подавал другой станции знак с помощью будильника и для этого втыкал два полюса проводника в петли букв B и C. Ток проходил по проводнику и воде в стеклянном сосуде, разлагая ее. Пузырьки скапливались под ложечкой и поднимали ее так, что она принимала положение, обозначенное пунктиром.

В этом положении подвижный свинцовый шарик под действием собственной тяжести скатывался в воронку и по ней спускался в чашечку, вызывая действие будильника. После того как на принимающей станции все было подготовлено к приему депеши, отдающий ее соединял полюса проволоки таким образом, что электрический ток проходил последовательно через все буквы, составляющие передаваемое сообщение, причем пузырьки отделялись у соответствующих букв другой станции.

Впоследствии этот телеграф значительно упростил Швейгер, сократив количество проводов всего до двух. Швейгер ввел различные комбинации в пропускании тока. Например, различную продолжительность действия тока и, следовательно, различную продолжительность разложения воды. Но этот телеграф все еще оставался слишком сложным: наблюдать за выделением пузырьков газа было очень утомительно. Работа шла медленно. Поэтому электрохимический телеграф так и не получил практического применения.

Следующий этап в развитии телеграфии связан с открытием магнитного действия тока. В 1820 году датский физик Эрстед во время одной из лекций случайно обнаружил, что проводник с электрическим током оказывает влияние на магнитную стрелку, то есть ведет себя как магнит. Заинтересовавшись этим, Эрстед вскоре открыл, что магнит с определенной силой взаимодействует с проводником, по которому проходит электрический ток - притягивает или отталкивает его.

В том же году французский ученый Арго сделал другое важное открытие. Проволока, по которой он пропускал электрический ток, случайно оказалась погруженной в ящик с железными опилками. Опилки прилипли к проволоке, как будто это был магнит. Когда же ток отключили, опилки отпали. Исследовав это явление, Арго создал первый электромагнит - одно из важнейших электротехнических устройств, которое используется во множестве электрических приборов.

Простейший электромагнит легко приготовит каждый. Для этого надо взять брусок железа (лучше всего незакаленного «мягкого» железа) и плотно намотать на него медную изолированную проволоку (эта проволока называется обмоткой электромагнита). Если теперь присоединить концы обмотки к батарейке, брусок намагнитится и будет вести себя как хорошо всем известный постоянный магнит, то есть притягивать мелкие железные предметы. С исчезновением тока в обмотке при размыкании цепи брусок мгновенно размагнитится. Обычно электромагнит представляет собой катушку, внутрь которой вставлен железный сердечник.

Наблюдая за взаимодействием электричества и магнетизма, Швейгер в том же 1820 году изобрел гальваноскоп. Этот прибор состоял из одного витка проволоки, внутри которой помещалась в горизонтальном состоянии магнитная стрелка. Когда через проводник пропускали электрический ток, стрелка отклонялась в сторону.

В 1833 году Нервандар изобрел гальванометр, в котором сила тока измерялась непосредственно по углу отклонения магнитной стрелки. Пропуская ток известной силы, можно было получить известное отклонение стрелки гальванометра. На этом эффекте и была построена система электромагнитных телеграфов.

Первый такой телеграф изобрел русский подданный барон Шиллинг. В 1835 году он демонстрировал свой стрелочный телеграф на съезде естествоиспытателей в Бонне. Передаточный прибор Шиллинга состоял из клавиатуры в 16 клавиш, служивших для замыкания тока. Приемный прибор состоял из 6 гальванометров с магнитными стрелками, подвешенными на шелковых нитях к медным стойкам. Выше стрелок были укреплены на нитках двухцветные бумажные флажки одна сторона их была окрашена в белый, другая — в черный цвет.

Обе станции телеграфа Шиллинга были соединены восемью проводами; из них шесть соединялись с гальванометрами, одна служила для обратного тока и одна - для призывного аппарата (электрического звонка). Когда на отправной станции нажимали клавишу и пускали ток, на приемной станции отклонялась соответствующая стрелка. Различные положения черных и белых флажков на различных дисках давали условные сочетания, соответствовавшие буквам алфавита или цифрам. Позднее Шиллинг усовершенствовал свой аппарат, причем 36 различных отклонений его единственной магнитной стрелки соответствовали 36 условным сигналам.

При демонстрации опытов Шиллинга присутствовал англичанин Уильям Кук. В 1837 году он несколько усовершенствовал аппарат Шиллинга (у Кука стрелка при каждом отклонении указывала на ту или иную букву, изображенную на доске, из этих букв складывались слова и целые фразы) и попытался устроить телеграфное сообщение в Англии. Вообще, телеграфы, работавшие по принципу гальванометра, получили некоторое распространение, но весьма ограниченное.

Главным их недостатком была сложность эксплуатации (телеграфисту приходилось быстро и безошибочно улавливать на глаз колебания стрелок, что было достаточно утомительно), а так же то обстоятельство, что они не фиксировали передаваемые сообщения на бумаге. Поэтому магистральный путь развития телеграфной связи пошел другим путем. Однако устройство первых телеграфных линий позволило разрешить некоторые важные проблемы, касавшиеся передачи электрических сигналов на большие расстояния.

Поскольку проведение проволоки очень затрудняло распространение телеграфа, немецкий изобретатель Штейнгель попытался ограничиться только одним проводом и вести ток обратно по железнодорожным рельсам. С этой целью он проводил опыты между Нюрнбергом и Фюртом и выяснил, что в обратном проводе вообще нет никакой надобности, так как для передачи сообщения вполне достаточно заземлить другой конец провода. После этого стали на одной станции заземлять положительный полюс батареи, а на другой - отрицательный, избавляясь, таким образом, от необходимости проводить вторую проволоку, как это делали до этого. В 1838 году Штейнгель построил в Мюнхене телеграфную линию длиной около 5 км, используя землю как проводник для обратного тока.

Но для того чтобы телеграф стал надежным устройством связи, необходимо было создать аппарат, который бы мог записывать передаваемую информацию. Первый такой аппарат с самопишущим прибором был изобретен в 1837 г. американцем Морзе.

Морзе был по профессии художник. В 1832 году во время долгого плавания из Европы в Америку он ознакомился с устройством электромагнита. Тогда же у него появилась идея использовать его для передачи сигналов. К концу путешествия он уже успел придумать аппарат со всеми необходимыми принадлежностями электромагнитом, движущейся полоской бумаги, а также своей знаменитой азбукой, состоящей из системы точек и тире. Но потребовалось еще много лет упорного труда, прежде чем Морзе удалось создать работоспособную модель телеграфного аппарата.

Дело осложнялось тем, что в то время в Америке очень трудно было достать какие-либо электрические приборы. Буквально все Морзе приходилось делать самому или при помощи своих друзей из нью-йоркского университета (куда он был приглашен в 1835 году профессором литературы и изящных искусств).

Морзе достал в кузнице кусок мягкого железа и изогнул его в виде подковы. Изолированная медная проволока тогда еще не была известна. Морзе купил несколько метров проволоки и изолировал ее бумагой. Первое большое разочарование постигло его, когда обнаружилось недостаточное намагничивание электромагнита. Это объяснялось малым числом оборотов проволоки вокруг сердечника Только ознакомившись с книгой профессора Генри, Морзе смог исправить допущенные ошибки и собрал первую действующую модель своего аппарата.

На деревянной раме, прикрепленной к столу, он установил электромагнит и часовой механизм, приводивший в движение бумажную ленту. К маятнику часов он прикрепил якорь (пружину) магнита и карандаш. Производимое при помощи особого приспособления, телеграфного ключа, замыкание и размыкание тока заставляло маятник качаться взад и вперед, причем карандаш чертил на движущейся ленте бумаги черточки, которые соответствовали поданным посредством тока условным знакам.

Это было крупным успехом, но тут явились новые затруднения. При передаче сигнала на большое расстояние из-за сопротивления проволоки сила сигнала ослабевала настолько, что он уже не мог управлять магнитом. Чтобы преодолеть это затруднение, Морзе изобрел особый электромагнитный замыкатель, так называемое реле. Реле представляло собой чрезвычайно чувствительный электромагнит, который отзывался даже на самые слабые токи, поступавшие из линии. При каждом притяжении якоря реле замыкало ток местной батареи, пропуская его через электромагнит пишущего прибора.

Таким образом, Морзе изобрел все основные части своего телеграфа. Он закончил работу в 1837 году. Еще шесть лет ушло у него на тщетные попытки заинтересовать правительство США своим изобретением. Только в 1843 году конгресс США принял решение ассигновать 30 тысяч долларов на строительство первой телеграфной линии длиной 64 км между Вашингтоном и Балтимором.

Сначала ее прокладывали под землей, но потом обнаружилось, что изоляция не выдерживает сырости. Пришлось срочно исправлять положение и тянуть проволоку над землей. 24 мая 1844 года была торжественно отправлена первая телеграмма. Через четыре года телеграфные линии имелись уже в большинстве штатов.

Телеграфный аппарат Морзе оказался чрезвычайно практичным и удобным в обращении. Вскоре он получил широчайшее распространение во всем мире и принес своему создателю заслуженную славу и богатство. Конструкция его очень проста. Главными частями аппарата были передающее устройство - ключ, и принимающее - пишущий прибор.

Неудобство аппарата Морзе заключалось в том, что передаваемые им сообщения были понятны лишь профессионалам, знакомым с азбукой Морзе. В дальнейшем многие изобретатели работали над созданием буквопечатающих аппаратов, записывающих не условные комбинации, а сами слова телеграммы.

Широкое распространение получил изобретенный в 1855 году буквопечатающий аппарат Юза. Главными его частями были: 1) клавиатура с вращающимся замыкателем и доской с отверстием (это принадлежность передатчика); 2) буквенное колесо с приспособлением для печатания (это приемник). На клавиатуре размещалось 28 клавиш, с помощью которых можно было передать 52 знака. Каждая клавиша системой рычагов соединялась с медным стержнем.

В обычном положении все эти стержни находились в гнездах, а все гнезда располагались на доске по окружности. Над этими гнездами вращался со скоростью 2 оборота в секунду замыкатель, так называемая тележка. Она приводилась во вращение опускающейся гирей весом 60 кг и системой зубчатых колес.

На станции приема с точно такой же скоростью вращалось буквенное колесо. На его ободе находились зубцы со знаками. Вращение тележки и колеса происходило синхронно, то есть в тот момент, когда тележка проходила над гнездом, соответствующим определенной букве или знаку, этот же самый знак оказывался в самой нижней части колеса над бумажной лентой. При нажатии клавиши один из медных стерженьков приподнимался и выступал из своего гнезда.

Когда тележка касалась его, цепь замыкалась. Электрический ток мгновенно достигал станции приема и, проходя через обмотки электромагнита, заставлял бумажную ленту (которая двигалась с постоянной скоростью) приподняться и коснуться нижнего зубца печатного колеса. Таким образом, на ленте отпечатывалась нужная буква. Несмотря на кажущуюся сложность, телеграф Юза работал довольно быстро и опытный телеграфист передавал на нем до 40 слов в минуту.

Зародившись в 40-х годах XIX века, телеграфная связь в последующие десятилетия развивалась стремительными темпами. Провода телеграфа пересекли материки и океаны. В 1850 году подводным кабелем были соединены Англия и Франция. Успех первой подводной линии вызвал ряд других: между Англией и Ирландией, Англией и Голландией, Италией и Сардинией и т.д.

В 1858 году после ряда неудачных попыток удалось проложить трансатлантический кабель между Европой и Америкой. Однако он работал только три недели, после чего связь оборвалась. Только в 1866 году между Старым и Новым светом была, наконец, установлена постоянная телеграфная связь. Теперь события, происходящие в Америке, в тот же день становились известны в Европе, и наоборот. В последующие годы бурное строительство телеграфных линий продолжалось по всему земному шару. Их суммарная длина только в Европе составила 700 тыс. км.