Определение 51. Критерии, которые позволяют судить, согласуются ли значения х 1 , х 2 ,…, х n случайной величины Х с гипотезой относительно ее функции распределения, называются критериями согласия.

Идея применения критериев согласия

Пусть на основании данного статистического материала предстоит проверить гипотезу Н , состоящую в том, что СВ Х подчиняется некоторому определенному закону распределения. Этот закон может быть задан либо в виде функция распределения F (x ), либо в виде плотности распределения f (x ), или же в виде совокупности вероятностей p i . Так как из всех этих форм функция распределения F (x ) является наиболее общей (существует и для ДСВ и для НСВ) и определяет собой любую другую, будем формулировать гипотезу Н , как состоящую в том, что величина Х имеет функцию распределения F (x ).

Для того, чтобы принять или опровергнуть гипотезу Н , рассмотрим некоторую величину U , характеризующую степень расхождения (отклонения) теоретического и статистического распределений. Величина U может быть выбрана различными способами : 1) сумма квадратов отклонений теоретических вероятностей p i от соответствующих частот , 2) сумма тех же квадратов с некоторыми коэффициентами (весами), 3) максимальное отклонение статистической (эмпирической) функции распределения от теоретической F (x ).

Пусть величина U выбрана тем или иным способом. Очевидно, что это есть некоторая случайная величина. Закон распределения U зависит от закона распределения случайной величины Х , над которой производились опыты, и от числа опытов n . Если гипотеза Н верна, то закон распределения величины U определяется законом распределения величины Х (функцией F (x )) и числом n .

Допустим, что этот закон распределения известен. В результате данной серии опытов обнаружено, что выбранная мера расхождения U приняла некоторое значение u . Вопрос: можно ли объяснить это случайными причинами или же это расхождение слишком велико и указывает на наличие существенной разницы между теоретическим и статистическим (эмпирическим) распределениями и, следовательно, на непригодность гипотезы Н ? Для ответа на этот вопрос предположим, что гипотеза Н верна, и вычислим в этом предположении вероятность того, что за счет случайных причин, связанных с недостаточным объемом опытного материала, мера расхождения U окажется не меньше, чем наблюдаемое в опыте значение u , то есть вычислим вероятность события: .

Если эта вероятность мала, то гипотезу Н следует отвергнуть как мало правдоподобную, если же эта вероятность значительна, то делаем вывод, что экспериментальные данные не противоречат гипотезе Н .

Возникает вопрос: каким же способом следует выбирать меру расхождения (отклонения) U ? Оказывается, что при некоторых способах ее выбора закон распределения величины U обладает весьма простыми свойствами и при достаточно большом n практически не зависит от функции F (x ). Именно такими мерами расхождения и пользуются в математической статистике в качестве критериев согласия.

Определение 51 / . Критерием согласия называется критерий проверки гипотезы о предполагаемом законе неизвестного распределения.

Для количественных данных при распределениях, близких к нормальным, используют параметрические методы, основанные на таких показателях, как математическое ожидание и стандартное отклонение. В частности, для определения достоверности разницы средних для двух выборок применяют метод (критерий) Стьюдента, а для того чтобы судить о различиях между тремя или большим числом выборок, - тест F , или дисперсионный анализ. Если же имеем дело с неколичественными данными или выборки слишком малы для уверенности в том, что популяции, из которых они взяты, подчиняются нормальному распределению, тогда используют непараметрические методы - критерий χ 2 (хи-квадрат) или Пирсона для качественных данных и критерии знаков, рангов, Манна-Уитни, Вилкоксона и др. для порядковых данных.

Кроме того, выбор статистического метода зависит от того, являются ли те выборки, средние которых сравниваются, независимыми (т. е., например, взятыми из двух разных групп испытуемых) или зависимыми (т. е. отражающими результаты одной и той же группы испытуемых до и после воздействия или после двух различных воздействий).

Пп. 1. Критерий Пирсона (- хи-квадрат)

Пусть произведено n независимых опытов, в каждом из которых случайная величина Х приняла определенное значение, то есть дана выборка наблюдений случайной величины Х (генеральной совокупности) объема n . Рассмотрим задачу по проверке близости теоретической и эмпирической функций распределения для дискретного распределения, то есть требуется проверить, согласуются ли экспериментальные данные с гипотезой Н 0 , утверждающей, что случайная величина Х имеет закон распределения F (x ) при уровне значимости α . Назовем этот закон «теоретическим».

При получении критерия согласия для проверки гипотезы определяют меру D отклонения эмпирической функции распределения данной выборки от предполагаемой (теоретической) функции распределения F (x ).

Наиболее употребительной является мера, введенная Пирсоном. Рассмотрим эту меру. Разобьем множество значений случайной величины Х на r множеств - групп S 1 , S 2 ,…, S r , без общих точек. Практически такое разбиение осуществляется с помощью (r - 1) чисел c 1 < c 2 < … < c r -1 . При этом конец каждого интервала исключают из соответствующего множества, а левый – включают.

S 1 S 2 S 3 …. S r -1 S r

c 1 c 2 c 3 c r -1

Пусть p i , , - вероятность того, что СВ Х принадлежит множеству S i (очевидно ). Пусть n i , , - количество величин (вариант) из числа наблюдаемых, принадлежащих множеству S i (эмпирические частоты). Тогда относительная частота попадания СВ Х во множество S i при n наблюдениях. Очевидно, что , .

Для разбиения, приведенного выше, p i есть приращение F (x ) на множестве S i , а приращение на этом же множестве. Cведем результаты опытов в таблицу в виде группированного статистического ряда.

Границы группы Относительная частота
S 1: x 1 – x 2
S 2: x 2 – x 3
S r : x r x r +1

Зная теоретический закон распределения, можно найти теоретические вероятности попадания случайной величины в каждую группу: р 1 , р 2 , …, p r . Проверяя согласованность теоретического и эмпирического (статистического) распределений, будем исходить из расхождений между теоретическими вероятностями p i и наблюдаемыми частотами .

За меру D расхождения (отклонения) эмпирической функции распределения от теоретической принимают сумму квадратов отклонений теоретических вероятностей p i от соответствующих частот , взятых с некоторыми «весами» c i : .

Коэффициенты c i вводятся потому, что в общем случае отклонения, относящиеся к разным группам, нельзя считать равноправными по значимости: одно и то же по абсолютной величине отклонение может быть мало значительным, если сама вероятность p i велика, и очень заметным, если она мала. Поэтому естественно «веса» c i взять обратно пропорциональным вероятностям. Как выбрать этот коэффициент?

К.Пирсон показал, что если положить , то при больших n закон распределения величины U обладает весьма простыми свойствами: он практически не зависит от функции распределения F (x ) и от числа опытов n , а зависит только от количества групп r , а именно, этот закон при увеличении n приближается к так называемому распределению «хи-квадрат» .

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Так как все предположения о характере того или иного распределения - это гипотезы, а не категорические утверждения, то они, естественно, должны быть подвергнуты статистической проверке с помощью так называемых критериев согласия.

Критерии согласия, опираясь на установленный закон распределения, дают возможность установить, когда расхождения между теоретическими и эмпирическими частотами следует признать несущественными (случайными), а когда - существенными (неслучайными). Таким образом, критерии согласия позволяют отвергнуть или подтвердить правильность выдвинутой при выравнивании ряда гипотезы

о характере распределения в эмпирическом ряду и дать ответ, можно ли принять для данного эмпирического распределения модель, выраженную некоторым теоретическим законом распределения.

Существует ряд критериев согласия. Чаще других применяют критерии Пирсона, Романовского и Колмогорова. Рассмотрим их.

Критерий согласия Пирсона %2 (хи-квадрат) - один из основных критериев согласия. Критерий предложен английским математиком Карлом Пирсоном (1857-1936) для оценки случайности (существенности) расхождений между частотами эмпирического и теоретического распределений. Критерий Пирсона где к

число групп, на которые разбито эмпирическое распределение;

наблюдаемая частота признака в і-й группе; теоретическая частота, рассчитанная по предполагаемому распределению. Для распределения у} составлены таблицы, где указано критическое значение критерия согласия %2 для выбранного уровня значимости а и данного числа степеней свободы V (см. Приложение 4).

Уровень значимости а - вероятность ошибочного отклонения выдвинутой гипотезы, т.е. вероятность того, что будет отвергнута правильная гипотеза. В статистических исследованиях в зависимости от важности и ответственности решаемых задач пользуются следующими тремя уровнями значимости: 1)

а = 0,10, тогда Р = 0,90; 2)

а = 0,05, тогда Р = 0,95; 3)

а = 0,01, тогда Р = 0,99.

Например, вероятность 0,01 означает, что в одном случае из 100 может быть отвергнута правильная гипотеза. В экономических исследованиях считается практически приемлемой вероятность ошибки 0,05, т.е. в 5 случаях из 100 может быть отвергнута правильная гипотеза.

Кроме того, %2-критерий, определяемый по таблице, зависит и от числа степеней свободы. Число степеней свободы V определяется как число групп в ряду распределения к минус число связей с V

Под числом связей понимается число показателей эмпирического ряда, использованных при исчислении теоретических частот, т.е. показателей, связывающих эмпирические и теоретичес- / л

кие частоты

Так, в случае выравнивания по кривой нормального распределения имеется три связи:

х ~ х" " СУ = а" * х Ш = У

ЭМП теор’ ЭМП ТеОр> ^ 1ЭМП ^ /теор*

Поэтому при выравнивании по кривой нормального распределения число степеней свободы определяется как V = к - 3, где к - число групп в ряду.

В случае выравнивания по кривой Пуассона V = к - 2, так как при построении частот используются две ограничивающие связи: х, 1тг /

Для оценки существенности расчетное значение %2расч сравнивается с табличным %2табл.

При полном совпадении теоретического и эмпирического распределений %2 = 0, в противном случае %2 > 0.

Если Храсч > Xтабл’ Т0 ПРИ заданном уровне значимости а и числе степеней свободы V гипотезу о несущественности (случайности) расхождений отклоняем.

В случае если %2асч ^ Х2табЛ’ заключаем, что эмпирический ряд хорошо согласуется с гипотезой о предполагаемом распределении и с вероятностью (1 - а) можно утверждать, что расхождение между теоретическими и эмпирическими частотами случайно.

Используя критерий согласия?2, необходимо соблюдать следующие условия: 1)

объем исследуемой совокупности должен быть достаточно большим (УУ> 50), при этом частота или численность каждой группы должна быть не менее 5. Если это условие нарушается, необходимо предварительно объединить маленькие частоты; 2)

эмпирическое распределение должно состоять из данных, полученных в результате случайного отбора, т.е. они должны быть независимыми.

Если в эмпирическом ряду распределение задано частостями / \ т.

то у} следует исчислять по формуле

Критерий Романовского Кр основан на использовании критерия Пирсона %2, т.е. уже найденных значений %2, и числа степеней свободы v:

Он весьма удобен при отсутствии таблиц для %2.

Если Кр 3, то не случайны

и, соответственно, теоретическое распределение не может служить моделью для изучаемого эмпирического распределения.

Критерий Колмогорова X основан на определении максимального расхождения между накопленными частотами или частостями эмпирических и теоретических распределений:

X = -2= или X = , iN

где Dud- соответственно максимальная разность между накопленными частотами (F - F") и между накоплен-

ными частостями (р - р") эмпирического и теоретического рядов распределений;

N - число единиц в совокупности.

Рассчитав значение X, по таблице Р(к) (см.

Приложение 6) определяют вероятность, с которой можно утверждать, что отклонения эмпирических частот от теоретических случайны. Вероятность Р(к) может изменяться от 0 до 1. При Р(к) = 1 происходит полное совпадение частот, при Р(к) = 0 - полное расхождение. Если А, принимает значения до 0,3, то Р(к) = 1.

Основное условие для использования критерия Колмогорова - достаточно большое число наблюдений.

Пример. Используя данные табл. 5.17, проверить правильность выдвинутой гипотезы о распределении призывников района по закону нормального распределения. Величины, необходимые для расчета критериев согласия, приведены в табл. 5.19.

Таблица 5.19

Расчет величин для определения критериев согласия Пирсона х2 и Колмогорова X Рост, см Частоты ряда распределения (/п - т")2 т" F F" к- р,\ т т" А 1 2 3 4 5 6 156-160 8 5 1,8 8 5 3 161-165 17 16 0,1 25 21 4 166-170 42 40 0,1 67 61 6 171-175 54 65 1,9 121 126 5 176-180 73 73 0 194 199 5 181-185 57 57 0 251 256 5 186-190 38 30 2,1 289 286 3 191-195 11 11 0 300 297 3 X 300 297 6,0 Сначала рассчитаем критерий Пирсона

Затем выберем уровень значимости а = 0,05 и определим число степеней свободы V. В данном распределении 8 групп и число связей (параметров) равно 3, следовательно, V = 8 - 3 = 5. По таблице Приложения 4 найдем при а = 0,05 и V = 5 критерий Пирсона %2 = 11,07.

Так как %2расч Проверим выдвинутую гипотезу, используя критерий Романовского:

I X2 - V I 16,0 - 5 I 1

кр = ] Г=^ = 1 = --г = 0,3.

Так как Кр Критерий Романовского также подтверждает, что расхождения между эмпирическими и теоретическими частотами несущественны.

Рассмотрим теперь применение критерия Колмогорова А,. Как видно из табл. 5.19, максимальная разность между кумулятивными частотами равна 6, т.е. Б = шах!/1- Р"\ = 6. Следовательно, критерий Колмогорова

X = -?= = = 0,35.

По таблице Приложения 6 находим значение вероятности при X = 0,35: Р(Х) = 0,9997. Это означает, что с вероятностью, близкой к единице, можно утверждать, что гипотеза о нормальном распределении не отвергается, а расхождения эмпирического и теоретического распределений носят случайный характер.

Теперь, подтвердив правильность выдвинутой гипотезы с помощью известных критериев согласия, можно использовать результаты распределения для практической деятельности.

Пример. Используя данные табл. 5.18, проверить гипотезу о подчинении распределения числа неисправностей в автомобилях закону Пуассона.

Исходные данные и расчет величин, необходимых для определения критериев согласия, приведены в табл. 5.20.

Подсчитаем величину %2: 2

Дфасч ^ / 9

(см. табл. 5.20). хХтабл = 9>49

(см. Приложение 4).

Поскольку %2расч Таким образом, выдвинутая гипотеза о распределении числа неисправностей в автомобилях по закону Пуассона не отвергается.

При анализе вариационных рядов распределения большое значение имеет, насколько эмпирическое распределение признака соответствует нормальному . Для этого частоты фактического распределения нужно сравнить с теоретическими, которые характерны для нормального распределения. Значит, нужно по фактическим данным вычислить теоретические частоты кривой нормального распределения , являющиеся функцией нормированных отклонений.

Иначе говоря, эмпирическую кривую распределения нужно выровнять кривой нормального распределения.

Объективная характеристика соответствия теоретических и эмпирических частот может быть получена при помощи специальных статистических показателей, которые называют критериями согласия .

Критерием согласия называют критерий, который позволяет установить, является ли расхождение эмпирического и теоретического распределений случайным или значимым, т. е. согласуются ли данные наблюдений с выдвинутой статистической гипотезой или не согласуются. Распределение генеральной совокупности, которое она имеет в силу выдвинутой гипотезы, называют теоретическим.

Возникает необходимость установить критерий (правило), которое позволяло бы судить, является ли расхождение между эмпирическим и теоретическим распределениями случайным или значимым. Если расхождение окажется случайным , то считают, что данные наблюдений (выборки) согласуются с выдвинутой гипотезой о законе распределения генеральной совокупности и, следовательно, гипотезу принимают; если же расхождение окажется значимым , то данные наблюдений не согласуются с гипотезой и ее отвергают.

Обычно эмпирические и теоретические частоты различаются в силу того, что:

  • расхождение случайно и связано с ограниченным количеством наблюдений;
  • расхождение неслучайно и объясняется тем, что статистическая гипотеза о том, что генеральная совокупность распределена нормально — ошибочна.

Таким образом, критерии согласия позволяют отвергнуть или подтвердить правильность выдвинутой при выравнивании ряда гипотезы о характере распределения в эмпирическом ряду.

Эмпирические частоты получают в результате наблюдения. Теоретические частоты рассчитывают по формулам.

Для закона нормального распределения их можно найти следующим образом:

  • Σƒ i - сумма накопленных (кумулятивных) эмпирических частот
  • h — разность между двумя соседними вариантами
  • σ — выборочное среднеквадратическое отклонение
  • t–нормированное (стандартизированное) отклонение
  • φ(t)–функция плотности вероятности нормального распределения (находят по для соответствующего значения t)

Имеется несколько критериев согласия, наиболее распространенными из которых являются: критерий хи-квадрат (Пирсона), критерий Колмогорова, критерий Романовского.

Критерий согласия Пирсона χ 2 – один из основных, который можно представить как сумму отношений квадратов расхождений между теоретическими (f Т ) и эмпирическими (f) частотами к теоретическим частотам:

  • k–число групп, на которые разбито эмпирическое распределение,
  • f i –наблюдаемая частота признака в i-й группе,
  • f T –теоретическая частота.

Для распределения χ 2 составлены таблицы, где указано критическое значение критерия согласия χ 2 для выбранного уровня значимости α и степеней свободы df (или ν).
Уровень значимости α – вероятность ошибочного отклонения выдвинутой гипотезы, т.е. вероятность того, что будет отвергнута правильная гипотеза. Р — статистическая достоверность принятия верной гипотезы. В статистике чаще всего пользуются тремя уровнями значимости:

α=0,10, тогда Р=0,90 (в 10 случаях из 100)

α=0,05, тогда Р=0,95 (в 5 случаях из 100)

α=0,01, тогда Р=0,99 (в 1 случае из 100) может быть отвергнута правильная гипотеза

Число степеней свободы df определяется как число групп в ряду распределения минус число связей: df = k –z. Под числом связей понимается число показателей эмпирического ряда, использованных при вычислении теоретических частот, т.е. показателей, связывающих эмпирические и теоретические частоты. Например, при выравнивании по кривой нормального распределения имеется три связи. Поэтому при выравнивании по кривой нормального распределения число степеней свободы определяется как df =k–3. Для оценки существенности, расчетное значение сравнивается с табличным χ 2 табл

При полном совпадении теоретического и эмпирического распределений χ 2 =0, в противном случае χ 2 >0. Если χ 2 расч > χ 2 табл , то при заданном уровне значимости и числе степеней свободы гипотезу о несущественности (случайности) расхождений отклоняем. В случае, если χ 2 расч < χ 2 табл то гипотезу принимаем и с вероятностью Р=(1-α) можно утверждать, что расхождение между теоретическими и эмпирическими частотами случайно. Следовательно, есть основания утверждать, что эмпирическое распределение подчиняется нормальному распределению . Критерий согласия Пирсона используется, если объем совокупности достаточно велик (N>50), при этом, частота каждой группы должна быть не менее 5.

Основан на определении максимального расхождения между накопленными эмпирическими и теоретическими частотами:

где D и d – соответственно, максимальная разность между накопленными частотами и накопленными частостями эмпирического и теоретического распределений.
По таблице распределения статистики Колмогорова определяют вероятность, которая может изменяться от 0 до 1. При Р(λ)=1- происходит полное совпадение частот, Р(λ)=0 – полное расхождение. Если величина вероятности Р значительна по отношению к найденной величине λ, то можно предположить, что расхождения между теоретическим и эмпирическим распределениями несущественны, т. е. носят случайный характер.
Основное условие использования критерия Колмогорова – достаточно большое число наблюдений.

Критерий согласия Колмогорова

Рассмотрим как критерий Колмогорова (λ) применяется при проверке гипотезы о нормальном распределении генеральной совокупности. Выравнивание фактического распределения по кривой нормального распределения состоит из нескольких этапов:

  1. Сравнивают фактические и теоретические частоты.
  2. По фактическим данным определяют теоретические частоты кривой нормального распределения, которая является функцией нормированного отклонения.
  3. Проверяют на сколько распределение признака соответствует нормальному.

Для IV колонки таблицы:

В MS Excel нормированное отклонение (t) рассчитывается с помощью функции НОРМАЛИЗАЦИЯ. Необходимо выделить диапазон свободных ячеек по количеству вариант (строк электронной таблицы). Не снимая выделения, вызвать функцию НОРМАЛИЗАЦИЯ. В появившемся диалоговом окне указать следующие ячейки, в которых размещены, соответственно, наблюдаемые значения (X i), средняя (X) и среднеквадратическое отклонение Ϭ. Операцию обязательно завершить одновременным нажатием клавиш Ctrl+Shift+Enter

Для V колонки таблицы:

Функцию плотности вероятности нормального распределения φ(t) находим по таблице значений локальной функции Лапласа для соответствующего значения нормированного отклонения (t)

Для VI колонки таблицы:

Критерий согласия Колмогорова (λ) определяется путем деления модуля max разности между эмпирическими и теоретическими кумулятивными частотами на корень квадратный из числа наблюдений:

По специальной таблице вероятности для критерия согласия λ определяем, что значению λ=0,59 соответствует вероятность 0,88 (λ

Распределение эмпирических и теоретических частот, плотности вероятности теоретического распределения

Применяя критерии согласия для проверки соответствия наблюдаемого (эмпирического) распределения теоретическому, следует различать проверку простых и сложных гипотез.

Одновыборочный критерий нормальности Колмогорова-Смирнова основан на максимуме разности между кумулятивным эмпирическим распределением выборки и предполагаемым (теоретическим) кумулятивным распределением. Если D статистика Колмогорова-Смирнова значима, то гипотеза о том, что соответствующее распределение нормально, должна быть отвергнута.

Смотри также

Для проверки гипотезы о соответствии эмпирического распределения теоретическому закону распределения используются особые статистические показатели - критерии согласия (или критерии соответствия). К ним относятся критерии Пирсона, Колмогорова, Романовского, Ястремского и др. Большинство критериев согласия базируется на использовании отклонений эмпирических частот от теоретических. Очевидно, что чем меньше эти отклонения, тем лучше теоретическое распределение соответствует эмпирическому (или описывает его).

Критерии согласия - это критерии проверки гипотез о соответствии эмпирического распределения теоретическому распределению вероятностей. Такие критерии подразделяются на два класса: общие и специальные. Общие критерии согласия применимы к самой общей формулировке гипотезы, а именно, к гипотезе о согласии наблюдаемых результатов с любым априорно предполагаемым распределением вероятностей. Специальные критерии согласия предполагают специальные нулевые гипотезы, формулирующие согласие с определенной формой распределения вероятностей.

Критерии согласия, опираясь на установленный закон распределения, дают возможность установить, когда расхождения между теоретическими и эмпирическими частотами следует признать несущественными (случайными), а когда - существенными (неслучайными). Из этого следует, что критерии согласия позволяют отвергнуть или подтвердить правильность выдвинутой при выравнивании ряда гипотезы о характере распределения в эмпирическом ряду и дать ответ, можно ли принять для данного эмпирического распределения модель, выраженную некоторым теоретическим законом распределения.

Критерий согласия Пирсона c 2 (хи-квадрат) - один из основных критериев согласия. Предложен английским математиком Карлом Пирсоном (1857-1936) для оценки случайности (существенности) расхождений между частотами эмпирического и теоретического распределений:

Схема применения критерия c 2 к оценке согласованности теоретического и эмпирического распределений сводится к следующему:

1. Определяется расчетная мера расхождения .

2. Определяется число степеней свободы.

3. По числу степеней свободы n с помощью специальной таблицы определяется .

4. Если , то при заданном уровне значимости α и числе степеней свободы n гипотезу о несущественности (случайности) расхождений отклоняют. В противном случае гипотезу можно признать не противоречащей полученным экспериментальным данным и с вероятностью (1 – α) можно утверждать, что расхождения между теоретическими и эмпирическими частотами случайны.

Уровень значимости - это вероятность ошибочного отклонения выдвинутой гипотезы, т.е. вероятность того, что будет отвергнута правильная гипотеза. В статистических исследованиях в зависимости от важности и ответственности решаемых задач пользуются следующими тремя уровнями значимости:

1) a = 0,1, тогда Р = 0,9;

2) a = 0,05, тогда Р = 0,95;

3) a = 0,01, тогда Р = 0,99.

Используя критерий согласия c 2 , необходимо соблюдать следующие условия:

1. Объем исследуемой совокупности должен быть достаточно большим (N ≥ 50), при этом частота или численность группы должна быть не менее 5. Если это условие нарушается, необходимо предварительно объединить небольшие частоты (меньше 5).

2. Эмпирическое распределение должно состоять из данных, полученных в результате случайного отбора, т.е. они должны быть независимыми.

Недостатком критерия согласия Пирсона является потеря части первоначальной информации, связанная с необходимостью группировки результатов наблюдений в интервалы и объединения отдельных интервалов с малым числом наблюдений. В связи с этим рекомендуется дополнять проверку соответствия распределений по критерию c 2 другими критериями. Особенно это необходимо при сравнительно малом объеме выборки (n ≈ 100).

В статистике критерий согласия Колмогорова (также известный, как критерий согласия Колмогорова - Смирнова) используется для того, чтобы определить, подчиняются ли два эмпирических распределения одному закону, либо определить, подчиняется ли полученное распределение предполагаемой модели. Критерий Колмогорова основан на определении максимального расхождения между накопленными частотами или частостями эмпирических или теоретических распределений. Критерий Колмогорова исчисляется по следующим формулам:

где D и d - соответственно максимальная разность между накопленными частотами (f f ¢) и между накопленными частостями (p p ¢) эмпирического и теоретического рядов распределений; N - число единиц в совокупности.

Рассчитав значение λ, по специальной таблице определяется вероятность, с которой можно утверждать, что отклонения эмпирических частот от теоретических случайны. Если признак принимает значения до 0,3, то это означает, что происходит полное совпадение частот. При большом числе наблюдений критерий Колмогорова способен обнаружить любое отступление от гипотезы. Это означает, что любое отличие распределения выборки от теоретического будет с его помощью обнаружено, если наблюдений будет достаточно много. Практическая значимость этого свойства не существенна, так как в большинстве случаев трудно рассчитывать на получение большого числа наблюдений в неизменных условиях, теоретическое представление о законе распределения, которому должна подчиняться выборка, всегда приближенное, а точность статистических проверок не должна превышать точность выбранной модели.

Критерий согласия Романовского основан на использовании критерия Пирсона, т.е. уже найденных значений c 2 , и числа степеней свободы:

где n - число степеней свободы вариации.

Критерий Романовского удобен при отсутствии таблиц для . Если < 3, то расхождения распределений случайны, если же > 3, то не случайны и теоретическое распределение не может служить моделью для изучаемого эмпирического распределения.

Б. С. Ястремский использовал в критерии согласия не число степеней свободы, а число групп (k ), особую величину q, зависящую от числа групп, и величину хи-квадрат. Критерий согласия Ястремского имеет тот же смысл, что и критерий Романовского, и выражается формулой

где c 2 - критерий согласия Пирсона; - число групп; q - коэффициент, для числа групп меньше 20 равный 0,6.

Если L факт > 3, расхождениz между теоретическими и эмпирическими распределениями неслучайны, т.е. эмпирическое распределение не отвечает требованиям нормального распределения. Если L факт < 3, расхождения между эмпирическим и теоретическим распределениями считаются случайными.

Опр Критерий проверки гипотезы о предполагаемом законе неизвестного распределения называется критерием согласия.

Имеется несколько критериев согласия: $\chi ^2$ { хи-квадрат } К. Пирсона, Колмогорова, Смирнова и др.

Обычно теоретические и эмпирические частоты различаются. Случай расхождения может быть не случайным, значит и объясняется тем, что не верно выбрана гипотеза. Критерий Пирсона отвечает на поставленный вопрос, но как любой критерий он ничего не доказывает, а лишь устанавливает на принятом уровне значимости её согласие или несогласие с данными наблюдений.

Опр Достаточно малую вероятность, при которой событие можно считать практически невозможным называют уровнем значимости.

На практике обычно принимают уровни значимости, заключённые между 0,01 и 0,05, $\alpha =0,05$ - это $5 { \% } $ уровень значимости.

В качестве критерия проверки гипотезы примем величину \begin{equation} \label { eq1 } \chi ^2=\sum { \frac { ({ n_i -n_i" })^2 } { n_i" } } \qquad (1) \end{equation}

здесь $n_i -$ эмпирические частоты, полученные из выборки, $n_i" -$ теоретические частоты, найденные теоретическим путём.

Доказано, что при $n\to \infty $ закон распределения случайной величины { 1 } независимо от того, по какому закону распределена генеральная совокупность, стремится к закону $\chi ^2$ { хи-квадрат } с $k$ степенями свободы.

Опр Число степеней свободы находят по равенству $k=S-1-r$ где $S-$ число групп интервалов, $r-$ число параметров.

1) равномерное распределение: $r=2, k=S-3 $

2) нормальное распределение: $r=2, k=S-3 $

3) показательное распределение: $r=1, k=S-2$.

Правило . Проверка гипотезы по критерию Пирсона.

  1. Для проверки гипотезы вычисляют теоретические частоты и находят $\chi _ { набл } ^2 =\sum { \frac { ({ n_i -n_i" })^2 } { n_i" } } $
  2. По таблице критических точек распределения $\chi ^2$ по заданному уровню значимости $\alpha $ и числу степеней свободы $k$ находят $\chi _ { кр } ^2 ({ \alpha ,k })$.
  3. Если $\chi _ { набл } ^2 <\chi _ { кр } ^2 $ то нет оснований отвергать гипотезу, если не выполняется данное условие - то отвергают.

Замечание Для контроля вычислений применяют формулу для $\chi ^2$ в виде $\chi _ { набл } ^2 =\sum { \frac { n_i^2 } { n_i" } -n } $

Проверка гипотезы о равномерном распределении

Функция плотности равномерного распределения величины $X$ имеет вид $f(x)=\frac { 1 } { b-a } x\in \left[ { a,b }\right]$.

Для того, чтобы при уровне значимости $\alpha $ проверить гипотезу о том, что непрерывная случайная величина распределена по равномерному закону, требуется:

1) Найти по заданному эмпирическому распределению выборочное среднее $\overline { x_b } $ и $\sigma _b =\sqrt { D_b } $. Принять в качестве оценки параметров $a$ и $b$ величины

$a = \overline x _b -\sqrt 3 \sigma _b $, $b = \overline x _b +\sqrt 3 \sigma _b $

2) Найти вероятность попадания случайной величины $X$ в частичные интервалы $({ x_i ,x_ { i+1 } })$ по формуле $ P_i =P({ x_i

3) Найти теоретические { выравнивающие } частоты по формуле $n_i" =np_i $.

4) Приняв число степеней свободы $k=S-3$ и уровень значимости $\alpha =0,05$ по таблицам $\chi ^2$ найдём $\chi _ { кр } ^2 $ по заданным $\alpha $ и $k$, $\chi _ { кр } ^2 ({ \alpha ,k })$.

5) По формуле $\chi _ { набл } ^2 =\sum { \frac { ({ n_i -n_i" })^2 } { n_i" } } $ где $n_i -$ эмпирические частоты, находим наблюдаемое значение $\chi _ { набл } ^2 $.

6) Если $\chi _ { набл } ^2 <\chi _ { кр } ^2 -$ нет оснований, отвергать гипотезу.

Проверим гипотезу на нашем примере.

1) $\overline x _b =13,00\,\,\sigma _b =\sqrt { D_b } = 6,51$

2) $a=13,00-\sqrt 3 \cdot 6,51=13,00-1,732\cdot 6,51=1,72468$

$b=13,00+1,732\cdot 6,51=24,27532$

$b-a=24,27532-1,72468=22,55064$

3) $P_i =P({ x_i

$ P_2 =({ 3

$ P_3 =({ 7

$ P_4 =({ 11

$ P_5 =({ 15

$ P_6 =({ 19

В равномерном распределении если одинакова длина интервала, то $P_i -$ одинаковы.

4) Найдём $n_i" =np_i $.

5) Найдём $\sum { \frac { ({ n_i -n_i" })^2 } { n_i" } } $ и найдём $\chi _ { набл } ^2 $.

Занесём все полученные значения в таблицу

\begin{array} { |l|l|l|l|l|l|l| } \hline i& n_i & n_i" =np_i & n_i -n_i" & ({ n_i -n_i" })^2& \frac { ({ n_i -n_i" })^2 } { n_i" } & Контроль~ \frac { n_i^2 } { n_i" } \\ \hline 1& 1& 4,43438& -3.43438& 11,7950& 2,659898& 0,22551 \\ \hline 2& 6& 4,43438& 1,56562& 2,45117& 0,552765& 8,11838 \\ \hline 3& 3& 4,43438& -1,43438& 2,05744& 0,471463& 2,0296 \\ \hline 4& 3& 4,43438& -1,43438& 2,05744& 0,471463& 2,0296 \\ \hline 5& 6& 4,43438& 1,56562& 2,45117& 0,552765& 8,11838 \\ \hline 6& 6& 4,43438& 1,56562& 2,45117& 0,552765& 8,11838 \\ \hline & & & & & \sum = \chi _ { набл } ^2 =3,261119& \chi _ { набл } ^2 =\sum { \frac { n_i^2 } { n_i" } -n } =3,63985 \\ \hline \end{array}

$\chi _ { кр } ^2 ({ 0,05,3 })=7,8$

$\chi _ { набл } ^2 <\chi _ { кр } ^2 =3,26<7,8$

Вывод отвергать гипотезу нет оснований.