3

1 Технический институт (филиал) ФГАОУ ВПО "Северо-Восточный федеральный университет имени М.К. Аммосова"

2 Институт тектоники и геофизики им. Ю.А. Косыгина ДВО РАН

3 Академия наук Республики Саха (Якутия)

Приведены результаты численного моделирования выявления аномальных (пиковых) уровней положительно определенного временного ряда методом Ирвина. Для моделирования использован ряд числовых данных в виде отдельных пиковых значений, осложненных случайной помехой и синусоидальным сигналом. В рамках аддитивной модели исходного ряда задача разделения нормального и аномального уровней методом Ирвина успешно решается в случаях отдельных импульсов. Однако, даже в этом случае, следующий за пиковым значением член ряда с фоновым уровнем интерпретируется как аномальный. В задачах автоматизированной обработки данных ряды пиков осложняются пропорциональным количеством значений фоновых компонент. Для тех случаев, когда количество пиков превышает 50% от общего количества значений ряда и тем более для подряд стоящих пиков сформированный ряд фоновых данных осложняется пиковой компонентой за счет увеличения дисперсии. В результате численного моделирования была разработана методика в виде модифицированного метода Ирвина для адекватного выделения аномальных уровней ряда. Данная задача актуальна для систем электромагнитного мониторинга грозовых разрядов и поиска различных источников электромагнитного излучения тектонической природы.

электромагнитное излучение

разделение уровней ряда

модификация метода Ирвина

метод Ирвина

аномальные уровни ряда

временные ряды

1. Калинина В. Н., Панкин В. Ф. Математическая статистика. – М.: Высшая школа, 2001. – 336 с.

2. Трофименко С.В. Методы и примеры статистических оценок временных рядов //Международный журнал экспериментального образования", №9, 2013.-С.41-42.

3. Трофименко С.В. Проявление землетрясений на фоне стационарного сейсмического процесса Олекмо-Становой зоны (ОСЗ) Горный информационно-аналитический бюллетень (научно-технический журнал). 2007. Т. 17. №1. С. 208-213.

4. Трофименко С.В. Геофизические поля и сейсмичность Южной Якутии //Горный информационно-аналитический бюллетень (научно-технический журнал). 2007. Т. 17. №1. С. 188-196.

5. Трофименко С.В Детальные геолого-геофизические исследования зон активных разломов и сейсмическая опасность Южно-Якутского региона /А.Н. Овсюченко, Трофименко С.В., Мараханов А.В., П.С., Карасев, Е.А. Рогожин, В.С. Имаев, В. М. Никитин, Н.Н.Гриб // Тихоокеанская геология, 2009. – том 28. – №4. – С. 55-74.

6. Трофименко С.В. Очаговые зоны сильных землетрясений Южной Якутии /Овсюченко А.Н., Трофименко С.В., Мараханов А.В., П.С., Карасев, Е.А. Рогожин, В.С. //Физика Земли. 2009. №2. С. 15-33.

7. Трофименко С.В. Сейсмотектоника переходной области от Байкальской рифтовой зоны к орогенному поднятию Станового хребта /А.Н.Овсюченко, Трофименко С.В., Мараханов А.В., П.С., Карасев, Е.А. Рогожин, В.С. //Геотектоника, 2010, № 1, с. 29-51.

8. Трофименко С.В. Тектоническая интерпретация статистической модели распределений азимутов аномалий гравимагнитных полей Алданского щита. – Тихоокеанская геология. – 2010. – Том 29. – №3. – С. 64-77.

9. Трофименко С.В. Активные нектонические нарушения участка Алдан-Нагорный нефтепроводной системы Восточная Сибирь – Тихий океан /Карасев П.С., Овсюченко А.Н., Мараханов А.В., Трофименко С.В. // Нефтяное хозяйство. – 2008. – № 9. –С. 80-84.

Геофизический мониторинг атмосферных источников электромагнитного излучения, разработанный для регистрации и контроля движения грозовых разрядов, может быть использован для дистанционного отслеживания геодинамических процессов в земной коре , связанных с формирующимися очагами землетрясений и активными разломами земной коры . Важным вопросом при интерпретации аномалий электромагнитного излучения (ЭМИ) является разделение аномалий по типу источника излучения, что детально исследовано в работе .

Суммарный сигнал ЭМИ, можно представить в виде:

где и импульсная аномальная (пики) и фоновые составляющие сигнала, - случайный компонент. Причем, априори, функция источника сигнала не известна, т.е. для неё не известен тип модели, определяемой по (1).

В линейной теории электромагнитных волн принята аддитивная модель исходного ряда наблюдений ЭМИ на основе принципа суперпозиции. Если временной ряд представляется в виде суммы соответствующих компонент, то полученная модель носит название аддитивной и имеет вид (без учета тренда и сезонной компоненты):

, (2)

где - уровни временного ряда.

В данной работе представлены результаты имитационного моделирования разделения полей ЭМИ на основе статистического анализа временного ряда наблюдений, отражающих реальное состояние геофизической среды.

На рис. 1,2 показаны результаты наблюдений сигналов ЭМИ в периоды слабо возмущенного (рис. 1) и возмущенного (рис. 2) состояния геофизической среды. Качественно выделить фоновую составляющую в возмущенный день весьма проблематично.

Для отработки технологии разделения полей ЭМИ на фоновую и импульсную составляющие в модели (2) был создан имитационный файл в среде электронных таблиц Excel. Совокупный ряд исходных данных (2) был составлен из суммы рядов пиковых значений , количество импульсов которых можно задавать произвольно и фоновой компоненты ряда в виде суммы периодической синусоидальной и случайной компонент ряда (рис.3). Суммарный ряд подвергался алгоритму выделения импульсов по методу Ирвина (метод пиков), который используется в практике статистического анализа временных рядов с целью выделения аномальных уровней ряда.

Рис. 1. Исходный ряд значений амплитуд сигналов ЭМИ в слабо возмущенный день 04.01.2013.

Рис. 2. Исходный ряд значений амплитуд сигналов ЭМИ в сильно возмущенный день 13.01.2013.

Рис. 3. Компоненты модельного ряда для имитации сигналов ЭМИ

Пусть имеется временной ряд . Метод Ирвина предполагает использование соотношения

где - стандартное отклонение, - среднее значение амплитуд, для оценки аномального приращения амплитуды последующего члена ряда в предположении, что предыдущий член ряда относится к фоновой составляющей сигнала . Расчетные значения сравниваются с табличными значениями критерия Ирвина ; если какое-либо из них оказывается больше табличного , то соответствующее значение уровня ряда считается аномальным. Значения критерия Ирвина для уровня значимости приведены в таблице 1.

Таблица 1

Значения критических значений для уровня значимости

Для практических расчетов при известной длине реализации можно использовать аналитическое выражение для определения критических значений , для которой погрешность аппроксимации меньше 1%:

, (4)

Численные эксперименты показали следующее: во-первых, для одиночного пика (аномального уровня) относительно фонового уровня следующий член ряда также интерпретируется как аномальный, хотя амплитуда его импульса сравнима с фоновым значением. Во-вторых, эта же погрешность будет присутствовать при наличии в исходном ряде нескольких аномальных уровней , , …. В данном случае, за аномальный уровень рада будет принят первый аномальный и следующий за серией аномалий фоновый уровень . Все промежуточные аномалии , …, будут отнесены к фоновой составляющей ряда. Это приведет к искажению (завышению) огибающей фоновой компоненты (рис. 4).

При интерактивном способе разделения уровней ряда фиктивные аномальные уровни отбраковываются оператором. В задачах автоматизированной обработки данных ряды пиков осложняются пропорциональным количеством значений фоновых компонент.

Для тех случаев, когда количество пиков превышает 50% от общего количества значений ряда и тем более для подряд стоящих пиков сформированный ряд фоновых данных осложняется пиковой компонентой (рис.5). Видимо эти погрешности до сих пор не позволили методу Ирвина найти достаточно широкое применение в практике статистических исследований временных рядов.

Рис. 4. Иллюстрация осложнения фоновой компоненты ряда аномальными уровнями при использовании метода Ирвина

Рис. 5. Осложнение фоновой составляющей имитационного ряда при 50% соотношении пиковых и фоновых компонент

В результате численного моделирования различных соотношений «сигнал - помеха» была разработана методика в виде модифицированного метода Ирвина для адекватного разделения аномальных (пиковых) и фоновых уровней ряда. Данная задача, как было указано выше, актуальна для систем электромагнитного мониторинга грозовых разрядов и поиска различных источников электромагнитного излучения тектонической природы.

Для исключения указанных погрешностей метода Ирвина было разработано три варианта расчетов для разделения уровней рада, применение которых обосновано сложностью соотношений «сигнал-помеха» в реальных экспериментальных данных, например, как это показано на рис. 1, 2.

В простейшем случае, для выделения одиночных пиков положительно определенного ряда к условию Ирвина (3) добавляется условие не отрицательности разности , т.е. . Все аномальные уровни в фоновой компоненте ряда заменяются значениями по формуле параболического интерполирования:

, (5)

где члены ряда фоновой компоненты, предшествующие аномальному уровню . Так как первый член ряда может быть с аномальной амплитудой, то в начале ряда проставляются три дополнительных члена ряда с минимальной амплитудой. Результаты численного моделирования по данному алгоритму показаны на рис. 6.

Рис. 6. Выделение фоновой составляющей имитационного ряда при наличии одиночных пиковых компонент с дополнительным условием не отрицательности разности сравниваемых амплитуд последовательных членов ряда

Сравнение с результатами расчетов с применением простого алгоритма Ирвина (рис. 4) наглядно показывает необходимость введения в алгоритм дополнительного условия не отрицательности разности .

При увеличении количества аномальных уровней до 50% замена пиковых значений по формуле (5) приводит к осложнению фоновой компоненты усредненными значениями амплитуд аномальных уровней (рис. 5). В данном случае применяется алгоритм последовательного исключения аномальных уровней.

Амплитуды сигнала аномальных уровней в фоновой компоненте заменяются по формуле (5) с возвратом на начало цикла расчетов. При этом значение стандартного отклонения рассчитывается для первоначального ряда и при повторных расчетах принимается за константу.

Данный алгоритм позволяет адекватно разделять фоновую и импульсную компоненты, однако требует большего времени для расчетов, так как в массиве данных за сутки накапливается до 80000 импульсов и более, что приведет к задержке отображения результатов в реальном времени в системах автоматизированного мониторинга.

Для случаев возмущенного состояния геофизической среды (см. рис. 2) разработан алгоритм с построением вариационного ряда с возрастающими амплитудами сигнала. Для = (20-40)% от общего количества членов вариационного ряда рассчитывается стандартное отклонение и применяется метод Ирвина до появления первого аномального уровня . Максимальное значение из первых (k-1) уровней вариационного ряда принимается за граничное значение фоновой компоненты, по которому производится разделение компонент исходного ряда.

Численное моделирование с использованием данных натурного эксперимента показало, что, если в исходном ряде присутствует только две компоненты, то фоновая компонента выделяется из исходного ряда без искажений. При наличии нескольких источников ЭМИ метод чувствителен к выбору количества членов вариационного ряда для расчета . Это может привести к пропуску аномальных источников сигнала либо к выделению мнимых источников (ошибки первого и второго родов). Для исключения данных погрешностей в системе автоматического мониторинга предполагается производить расчеты с использованием различных процентных выборок из вариационного ряда для расчета и применения метода Ирвина. Адекватность модели во всех случаях проверяется по статистическим характеристикам остаточного ряда . Проведенные расчеты для двух дней с различным состоянием возмущенности геофизической среды (рис.1, 2) показали сходимость моделей фоновых компонент, выделенных по методам исключения пиков и построения вариационного ряда при = (35 - 45)%.

Рецензенты:

Омельяненко А.В., д.т.н., профессор, главный научный сотрудник лаборатории инженерной геокриологии Института мерзлотоведения им. П.И.Мельникова СО РАН, г. Якутск;

Имаев В.С., д.г.-м.н., профессор, гл. научный сотрудник Института земной коры СО РАН, г.Иркутск.

Библиографическая ссылка

Трофименко С.В., Трофименко С.В., Маршалов А.Я., Гриб Н.Н., Колодезников И.И. МОДИФИКАЦИЯ МЕТОДА ИРВИНА ДЛЯ ВЫЯВЛЕНИЯ АНОМАЛЬНЫХ УРОВНЕЙ ВРЕМЕННЫХ РЯДОВ: МЕТОДИКА И ЧИСЛЕННЫЕ ЭКСПЕРИМЕНТЫ // Современные проблемы науки и образования. – 2014. – № 5.;
URL: http://science-education.ru/ru/article/view?id=15130 (дата обращения: 18.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Используется для оценки сомнительных значений выборки на грубые ошибки. Порядок его применения следующий.

Находят расчётное значение критерия λ расч = (|х к - х к пред |)/σ ,

где х к – сомнительное значение, х к пред – предыдущее значение в вариационном ряду, если х к оценивается от максимальных значений вариационного ряда, или последующее, если х к оценивается от минимальных значений вариационного ряда (Ирвин использовал в общем случае термин «первое значение»); σ – генеральное среднеквадратическое отклонение (СКО) непрерывной нормально распределённой случайной величины.

Если λ расч > λ табл , х к – грубая ошибка. Здесь λ табл – табличное значение (процентная точка) критерия Ирвина.

Возникающие при этом вопросы описаны на странице . В частности, в статье-первоисточнике табличные значения критерия рассчитаны для нормально распределенной случайной величины при известном генеральном среднеквадратическом отклонении (СКО) σ . Поскольку σ чаще всего неизвестно, Ирвином предложено использовать в расчётах вместо σ выборочное СКО s, определяемое по формуле

где n – объём выборки, х i – элементы выборки, х ср – среднее значение выборки.

Такой подход обычно и используется на практике. Однако приемлемость использования выборочного СКО, и при этом процентных точек для генерального СКО, не подтверждена.

В данной статье приведены табличные значения (процентные точки) критерия Ирвина, рассчитанные методом статистического компьютерного моделирования при использовании выборочного СКО для максимального значения вариационного ряда при стандартном нормальном распределении случайной величины (при других параметрах нормального распределения, а также для минимального значения вариационного ряда получаются такие же результаты). Для каждого объёма выборки n моделировали 10 6 выборок. Как показали предварительные расчёты, при параллельных определениях различия в значениях процентной точки могут достигать 0,003. Поскольку значения округляли до 0,01, в сомнительных случаях проводили от 2 до 4 параллельных определений.

Кроме того, по данным рассчитали табличные значения критерия Ирвина для известного генерального СКО и сопоставили их с приведёнными в .

Поскольку при практическом применении критерия Ирвина нередко возникают определённые затруднения из-за отсутствия в литературных источниках табличных значений критерия при некоторых объёмах выборок, были рассчитаны тем же методом статистического компьютерного моделирования некоторые из отсутствующих в табличных значений.

Ясно, что при объёме выборки 2 применение критерия с использованием выборочного СКО не имеет смысла. Это подтверждается тем, что упрощение выражения для расчётного значения критерия при выборочном СКО даёт квадратный корень из двух, что наглядно показывает бессмысленность применения критерия при объёме выборки 2 и выборочном СКО.

Полученные результаты приведены в табл. 1.

Таблица 1 - Табличные значения критерия Ирвина для крайних элементов вариационного ряда.

Объём выборки По генеральному СКО По выборочному СКО
Уровень значимости
0,1 0,05 0,01 0,1 0,05 0,01
2 2,33* 2,77* 3,64* - - -
3 1,79* 2,17* 2,90* 1,62 1,68 1,72
4 1,58 1,92 2,60 1,55 1,70 1,88
5 1,45 1,77 2,43 1,45 1,64 1,93/
6 1,37 1,67 2,30 1,38 1,60 1,94
7 1,31 1,60 2,22 1,32 1,55 1,93
8 1,26 1,55 2,14 1,27 1,51 1,92
9 1,22 1,50 2,09 1,23 1,47 1,90
10 1,18* 1,46* 2,04* 1,20 1,44 1,88
11 1,15 1,43 2,00 1,17 1,42 1,87
12 1,13 1,40 1,97 1,15 1,39 1,85
13 1,11 1,38 1,94 1,13 1,37 1,83
14 1,09 1,36 1,91 1,11 1,35 1,82
15 1,08 1,34 1,89 1,09 1,33 1,80
20 1,03* 1,27* 1,80* 1,03 1,27 1,75
25 0,99 1,23 1,74 0,99 1,22 1,70
30 0,96* 1,20* 1,70* 0,96 1,19 1,66
35 0,93 1,17 1,66 0,94 1,16 1,63
40 0,91* 1,15* 1,63* 0,92 1,14 1,61
45 0,89 1,13 1,61 0,90 1,12 1,59
50 0,88* 1,11* 1,59* 0,89 1,10 1,57
60 0,86* 1,08* 1,56* 0,87 1,08 1,54
70 0,84* 1,06* 1,53* 0,85 1,06 1,52
80 0,83* 1,04* 1,51* 0,83 1,04 1,50
90 0,82* 1,03* 1,49* 0,82 1,03 1,48
100 0,81* 1,02* 1,47* 0,81 1,02 1,46
200 0,75* 0,95* 1,38* 0,75 0,95 1,38
300 0,72* 0,91* 1,33* 0,72 0,91 1,33
500 0,69* 0,88* 1,28* 0,69 0,88 1,28
1000 0,65* 0,83* 1,22* 0,65 0,83 1,22
Примечание: значения, помеченные звёздочкой, рассчитаны по данным и при необходимости уточнены при статистическом компьютерном моделировании. Остальные значения рассчитаны при статистическом компьютерном моделировании.

Если сравнить процентные точки для известного генерального СКО, приведённые в табл. 1, с соответствующими процентными точками, приведёнными в , то они в нескольких случаях различаются на 0,01, и в одном случае на 0,02. Видимо, приведённые в данной статье процентные точки более точны, поскольку в сомнительных случаях они проверялись статистическим компьютерным моделированием.

Из табл.1 видно, что процентные точки критерия Ирвина при использовании выборочного СКО при сравнительно небольших объёмах выборки заметно отличаются от процентных точек при использовании генерального СКО. Только при значительных объёмах выборки, примерно около 40, процентные точки становятся близки. Таким образом, при использовании критерия Ирвина следует пользоваться процентными точками, приведёнными в табл. 1, с учётом того, получено расчётное значение критерия по генеральному или по выборочному СКО.

ЛИТЕРАТУРА

1. Irvin J.O. On a criterion for the rejection of outlying observation //Biometrika.1925. V. 17. P. 238 – 250.

2. Кобзарь А.И. Прикладная математическая статистика. – М.: ФИЗМАТЛИТ, 2006. – 816с. © В.В. Заляжных
При использовании материалов ставьте ссылку.

При относительном скольжении деталей пар трения происходит повреждение контактирующих поверхностей. Этот вид повреждения поверхностных объемов детали называют износом. Потеря всего одной тысячной массы машины в результате изнашивания приводит к полной утрате работоспособности. Каждые три года...
(Механика. Основы расчёта и проектирования деталей машин)
  • КРИТЕРИИ УСТОЙЧИВОСТИ СИСТЕМ И МЕТОДЫ ОПРЕДЕЛЕНИЯ КРИТИЧЕСКИХ НАГРУЗОК
    Известны три основных критерия устойчивости сооружений: динамический, статический и энергетический, которые определяют и методику расчета сооружений на устойчивость. 1. Динамический (по Ляпунову) критерий основан на исследовании решений уравнений динамического движения отклоненной от начального...
    (Строительная механика плоских стержневых систем)
  • КРИТЕРИИ ВЫБОРА КАНАЛОВ РАСПРОСТРАНЕНИЯ РЕКЛАМЫ
    Среди всех решений, которые принимаются в процессе планирования, наиболее важным является выбор конкретных медианосителей внутри каждого медиа. Как правило, медиапланеры стремятся выбирать те носители, которые позволяют добиться следующих целей: 1) добиться заданной частоты предъявления рекламного сообщения...
    (Психология массовых коммуникаций)
  • Корреляционно-регрессионный анализ
    Корреляция и регрессия относятся к методам выявления статистической зависимости между исследуемыми переменными. “На основе анализа эмпирических данных, собранных в ходе проведения исследования, описывается не только сам факт существования статистической зависимости, но и математическая формула функции...
    (Маркетинговые исследования)
  • КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ МЕТОД ИССЛЕДОВАНИЯ
    Одним из методов моделирования экономических процессов является корреляционно-регрессионный метод исследования. Моделирование представляет собой процесс выражения сложных взаимосвязанных экономических явлений средствами математических формул и символов. Сочетание качественного анализа с применением математических...
    (Общая и прикладная статистика)
  • КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ
    Статистическое исследование экономических и технологических процессов в настоящее время является одним из важнейших инструментов при разработке систем управления процессами. Знание связей между параметрами позволяет выделить ключевые факторы, влияющие на качество готовой продукции или на исследуемые...
    (Математика и экономико-математические модели)
  • Кроме того, аномальные уровни во временных рядах могут возникать из-за воздействия факторов, имеющих объективный характер, но проявляющихся эпизодически или очень редко – ошибки второго рода , они устранению не подлежат.

    Для выявления аномальных уровней временных рядов используются методы, рассчитанные для статистических совокупностей.

    Метод Ирвина.

    Метод Ирвина предполагает использование следующей формулы:

    где среднее квадратическое отклонение рассчитывается в свою очередь с использованием формул:

    . (2)

    Расчетные значения сравниваются с табличными значениями критерия Ирвина , и если оказываются больше табличных, то соответствующее значение уровня ряда считается аномальным. Значение критерия Ирвина для уровня значимости , т.е. с 5%-ной ошибкой, приведены в таблице 4.

    Таблица 4.

    2,8 2,3 1,5 1,3 1,2 1,1 1,0

    После выявления аномальных уровней ряда обязательно определение причин их возникновения!

    Если точно установлено, что аномалия вызвана ошибками первого рода, то соответствующие уровни ряда «поправляются» либо заменой простой средней арифметической соседних уровней ряда, либо значениями, полученными по кривой, аппроксимирующей данный временной ряд в целом.

    Метод проверки разностей средних уровней.

    Реализация этого метода состоит из четырех этапов.

    1. Исходный временной ряд разбивается на две примерно равные по числу уровней части: в первой части первых уровней исходного ряда, во второй – остальных уровней .

    2. для каждой из этих частей вычисляются среднее значение и дисперсии:

    3. проверка равенства (однородности) дисперсий обеих частей ряда с помощью F-критерия Фишера, которая основана на сравнении расчетного значения этого критерия:

    с табличным (критическим) значением критерия Фишера с заданным уровнем значимости (уровнем ошибки) . В качестве чаще всего берут значения 0,1 (10%-ная ошибка), 0,05 (5%-ная ошибка), 0,01 (1%-ная ошибка). Величина называется доверительной вероятностью. Если расчетное (эмпирическое) значение F меньше табличного , то гипотеза о равенстве дисперсий принимается и переходят к четвертому этапу. В противном случае, гипотеза о равенстве дисперсий отвергается и делается вывод, что данный метод для определения наличия тренда ответа не дает.

    4. проверяется гипотеза об отсутствии тренда с использованием критерия Стьюдента. Для этого определяется расчетное значение критерия Стьюдента по формуле:

    (3)

    где среднее квадратическое отклонение разности средних:

    .

    Если расчетное значение меньше табличного значения статистики Стьюдента с заданным уровнем значимости , гипотеза принимается, то есть тренда нет, в противном случае тренд есть. Заметим, что в данном случае табличное значение берется для числа степеней свободы, равного , при этом данный метод применим только для рядов с монотонной тенденцией.

    Метод Фостера-Стьюарта.

    Этот метод обладает большими возможностями и дает более надежные результаты по сравнению с предыдущими. Кроме тренда самого ряда (тренда в среднем), он позволяет установить наличие тренда дисперсии временного ряда: если тренда дисперсии нет, то разброс уровней ряда постоянен; если дисперсия увеличивается, то ряд «раскачивается» и т.д.

    Реализация метода также состоит из четырех этапов.

    1. производится сравнение каждого уровня со всеми предыдущими, при этом определяются две числовые последовательности:

    2. вычисляются величины:

    Нетрудно видеть, что величина , характеризующая изменение временного ряда, принимает значения от 0 (все уровни ряда равны между собой) до (ряд монотонный). Величина характеризует изменение дисперсии уровней временного ряда и изменяется от (ряд монотонно убывает) до (ряд монотонно возрастает).

    1. отклонение величины от величины математического ожидания величины для ряда, в котором уровни расположены случайным образом;

    2. отклонение величины от нуля.

    Эта проверка проводится с использованием расчетных (эмпирических) значений критерия Стьюдента для средней и для дисперсии:

    где математическое ожидание величины , определенной для ряда, в котором уровни расположены случайным образом;


    Задания для самостоятельного изучения дисциплины.

    Задание 1. В соответствии с вариантом, осуществить имитацию набора эмпирических данных, получаемых в результате измерения одномерного признака. Для этого необходимо осуществить табулирование функции:

    , ,

    и получить 15 – 20 последовательных данных. Здесь, предположительно характеристика признака (отражает основную тенденцию признака), а помехи (ошибки) измерений, которые явились следствием проявления случайностей различного рода.

    Варианты исходных данных:

    Осуществить выявление аномальных уровней получаемого при табулировании функции ряда данных и выполнить их сглаживание:

    а). методом Ирвина, по формуле

    ,

    .

    Расчетные значения сравниваются с табличными значениями критерия Ирвина:

    Таблица критерия Ирвина

    В таблице приведены значения критерия Ирвина для уровня значимости (с 5% ошибкой).

    б). методом проверки разностей средних уровней, разбивая временной ряд данных, примерно на две равные части и вычисляя для каждой из частей среднее значение и дисперсию. Далее, проверить равенство дисперсий обеих частей с помощью критерия Фишера. Если гипотеза о равенстве дисперсий принимается, перейти к проверке гипотезы об отсутствии тренда с использованием критерия Стьюдента. Для вычисления эмпирического значения статистики, использовать формулы:

    ,

    где среднее квадратическое отклонение разностей средних:

    .

    Расчетное значение статистики сравнить с табличным.

    в). Методом Фостера-Стьюарта.

    2. Осуществить механическое сглаживание уровней ряда:

    а). методом простой скользящей средней;

    б). методом взвешенной скользящей средней;

    в). Методом экспоненциального сглаживания.

    Задание 2. В таблице данных экономических показателей, приведен временной ряд ежемесячных объемов перевозок (привязанных к определенной местности) сельскохозяйственных грузов в условных единицах.

    Применяя метод Четверикова для выделения компонент временного ряда:

    а). провести выравнивание эмпирического ряда с использованием центрированной скользящей средней с периодом сглаживания ;

    б). полученную предварительную оценку тренда вычесть из исходного эмпирического ряда: .

    в). Вычислить для каждого года (по строке) среднее квадратическое отклонение величины , используя для этого формулу

    г). найти предварительное значение средней сезонной волны: .

    д). получить ряд, лишенный сезонной волны: .

    е). полученный ряд сгладить с использованием простой скользящей средней с интервалом сглаживания, равным пяти, и получить новую оценку тренда .

    ж). вычислить отклонения ряда от исходного эмпирического ряда :

    .

    з). полученные отклонения подвергнуть обработке в соответствии с пп. в). и г). для выявления новых значений сезонной волны.

    и). произвести вычисление коэффициента напряженности сезонной волны по формулам и далее (сам коэффициент):

    .

    Коэффициент напряженности не вычисляется для первого и последнего года.

    к). Используя коэффициент напряженности, вычислить окончательные значения сезонной компоненты временного ряда: .

    Задание 3. Временной ряд задан в таблице:

    Осуществить предварительный выбор наилучшей кривой роста:

    а). методом конечных разностей (Тинтнера);

    б). методом характеристик прироста.

    2. Для исходного ряда построить линейную модель , определив ее параметры методом наименьших квадратов.

    3. Для исходного временного ряда построить адаптивную модель Брауна с параметром сглаживания и ; выбрать наилучшую модель Брауна , где период упреждения (количество шагов вперед).

    4. Оценить адекватность моделей на основе исследований:

    а). близости математического ожидания остаточной компоненты нулю; критическое значение статистики Стьюдента принять (для доверительной вероятности 0,70);

    б). случайности отклонений остаточной компоненты по критерию пиков (поворотных точек); расчеты выполнить на основе соотношения ;

    в). независимости (отсутствия автокорреляции) уровней рядя остатков либо по критерию Дарбина-Уотсона (в качестве критических используйте уровни и ), либо по первому коэффициенту автокорреляции (критический уровень принять равным );

    г). нормальности закона распределения остаточной компоненты на основе RS-критерия (в качестве критических уровней принять интервал (2,7 – 3,7)).

    5. Оценить точность моделей используя показатели среднего квадратического отклонения и средней относительной ошибки аппроксимации.

    6. На основе сравнительного анализа адекватности и точности моделей выбрать лучшую модель, по которой построить точечный и интервальный прогнозы на два шага вперед (). Результаты прогнозирования отразить графически.

    Задание 4. Проведена оценка процессоров 10-ти рабочих станций локальной сети, построенной на базе машин приблизительно одного типа, но разных производителей (что предполагает некоторые отклонения параметров работы машин от базовой модели). Для тестирования работы процессоров использована смесь типа ICOMP 2.0 в основу которой положены два основных теста:

    1. 125.turb3D – тест моделирования турбулентности в кубическом объеме (прикладное ПО);

    2. NortonSI32 – инженерная программа типа AutoCaD

    и вспомогательный тест для нормирования времени обработки данных SPECint_base95. Оценка процессоров производилась по взвешенному времени выполнения смеси, нормированному по эффективности базового процессора, в соответствии с формулой

    где время выполнения го теста;

    вес го теста;

    эффективность базового процессора на м тесте.

    Если выражение (1) логарифмировать, то получим:

    и после переобозначения переменных:

    базовое время обработки теста SPECint_base95 ;

    логарифм времени обработки первого теста,

    логарифм времени обработки второго теста, регрессионный коэффициент, получаемый в оценках (вес теста);

    регрессионный коэффициент – вес теста обработки арифметических операций в целых числах (базовый тест).

    1. По данным измерений, приведенным в таблице, построить регрессионную (эмпирическую) функцию, оценить коэффициенты регрессии и проверить модель на адекватность (вычислить ковариационную матрицу, коэффициенты парной корреляции, коэффициент детерминации).

    Варианты данных:

    Вариант 1.

    Вариант 2.

    Вариант 3.

    Вариант 4.