Двигатель самолёта Су-30СМ заглох через 40 секунд после взлёта с авиабазы. Высота была около 200 метров. Истребитель не менее трёх раз перевернулся в воздухе и затем упал в море левым боком и хвостом вниз.

Такие подробности со слов очевидцев привёл в своём "Живом журнале" обычно весьма хорошо информированный блогер chervonec-001.

Причины катастрофы неизвестны

Оба пилота при аварии погибли. Скорее всего, у них просто не было шанса катапультироваться из-за хаотичного вращения машины. А то, что она за 40 секунд полёта не поднялась выше 200 метров, говорит, скорее всего, об очень серьёзных проблемах с самолётом. Если, правда, у лётчиков не было специального задания на полёт именно на этой высоте.

3 мая около 9:45 мск при наборе высоты после взлёта с аэродрома Хмеймим над акваторией Средиземного моря потерпел катастрофу российский истребитель Су-30СМ. Оба лётчика, до последних минут боровшиеся за самолёт, по докладу с места, погибли, — говорится в официальном сообщении российского заявлении военного министерства обороны. — По предварительной информации, причиной авиакатастрофы могло стать попадание в двигатель птицы. Никакого огневого воздействия по самолёту не было".

То, что в двигатель попала птица, как сообщает со ссылкой на свои предварительные данные Министерство обороны России, — скорее всего, ерунда, рассказал "Царьграду" собственный источник в близких к военным кругам. Ведь у Су-30 два двигателя АЛ-31ФП с управляемым вектором тяги. Двухконтурные, форсированные, общей тягой на форсаже 25 000 кгс, они не только позволяют самолёту быть сверхманёвренным, но и держать высоту в случае повреждения или вообще выхода из строя одного из них.

Так что вопрос, что случилось, остаётся открытым. Но утверждение российского министерства обороны, что "огневого воздействия не было", подтверждается также и показаниями свидетелей.

Сообщают, что большая часть фюзеляжа самолёта, включая кабину пилотов, уцелела. Оторвалась только хвостовая часть и одно из крыльев. Но при ударе о воду на скорости больше 1000 км/ч она обладает твёрдостью бетона, так что шансов у лётчиков не было. То, что они погибли, подтверждают и военные водолазы, работающие на месте катастрофы. Глубина моря здесь 17 метров.

Скорее всего, верно сообщение, что оба пилота до последних минут боролись за свой самолёт, полагает источник "Царьграда". Ничего другого им не оставалось, как выводить машину из критического режима, поскольку катапультироваться из неё они, как сказано, не могли. Самолётом управлял командир экипажа, майор Альберт Давидян.

Идеальная машина для завоевания господства в воздухе

Двухместный многоцелевой сверхманёвренный истребитель Су-30СМ является модификацией Су-30МКИ (то есть "модернизированного коммерческого индийского") для российских ВВС. Это машина поколения 4+, предназначенная для уничтожения воздушных целей в любых условиях, контроля воздушного пространства, блокирования аэродромов противника и действий по наземным и морским объектам.

Она считается идеальным истребителем для завоевания господства в воздухе. По мнению лётчиков, это отличная машина, которая может "практически всё". Вооружение для Су-30СМ может крепиться на 12 точках подвески. Общая масса бомб и ракет, поднимаемых самолётом, составляет до восьми тонн. Таким образом, он в состоянии выполнять все виды военных "работ".

Он не раз подтверждал своё преимущество перед американскими и английскими конкурентами в воздушных боях — пусть учебных, но тем не менее одни и те же индийские лётчики продемонстрировали практически безоговорочное превосходство даже своих экспортных "коммерческих" самолётов над американскими F-16 и F-15 и европейским Eurofighter Typhoon. В Сирии же, как заявлял заместитель министра обороны Юрий Борисов, Су-30 показали себя "на высшем уровне".

Эти машины выпускаются на авиазаводах в Иркутске и Комсомольске-на-Амуре, а также в Индии на предприятиях Hindustan Aeronautics Limited. По словам Юрия Борисова, истребители будут и далее модернизироваться и на вооружении смогут стоять ещё как минимум 35-40 лет.

Правительственный грант на строительство рабочей модели термоядерного реактора в рамках проекта «Развитие фундаментальных основ и технологий термоядерной энергетики будущего» получил , передаёт Сиб.фм .

«До сих пор мы занимались физическими опытами для создания класса ядерных реакторов, которые можно использовать в реакциях синтез-деления. Мы добились в этом прогресса, и перед нами встала задача – построить прототип термоядерной станции. К настоящему моменту мы накопили базу и технологии и полностью готовы к началу работ. Это будет полномасштабная модель реактора, которую можно использовать для проведения исследований или, к примеру, для переработки радиоактивных отходов. Технологий для создания такого комплекса много. Они новые и сложные, и требуется некоторое время, чтобы их освоить. Все задачи физики плазмы, которые мы будем решать, актуальны для мирового научного сообщества», – сообщил руководитель проекта Александр Иванов .

Как пояснил заместитель директора института по научной работе Юрий Тихонов , разработанный реактор будет отличаться от реальной термоядерной станции тем, что здесь не будет использоваться тритий, а только дейтерий. К тому же реактор не предназначен для выработки электроэнергии, к чему стремятся учёные, работающие над управляемым термоядерным синтезом во всём мире.

«Мы будем проводить только моделирующие эксперименты с генерацией электронов, но все параметры реакций будут соответствовать реальным. Электроэнергию тоже вырабатывать не будем – только доказывать, что реакция может протекать, что параметры плазмы достигнуты. Прикладные технические задачи будут реализовываться в других реакторах», – подчеркнул Юрий Тихонов.

«В существующих установках достигнута температура плазмы в 10 миллионов градусов. Это ключевой параметр, который определяет качество реактора. Надеемся повысить температуру плазмы во вновь созданном реакторе в два или в три раза. На таком уровне мы можем использовать установку как нейтронный драйвер для энергетического реактора. На основе нашей модели могут создаваться безнейтронные реакторы на тритии-дейтерии. Другими словами, созданные нами установки позволят создавать безнейтронное топливо», – пояснил заместитель директора ИЯФ по научной работе Александр Бондарь .

Учёные надеются построить действующую модель реактора за пять лет.

ИЯФ СО РАН – один из двух сибирских институтов (второй – Институт археологии и этнографии), выигравший грант Российского научного фонда на проведение фундаментальных научных исследований.

На этой неделе появились сенсационные сообщения о прорыве в области практического использования технологии управляемого термоядерного синтеза. Как уверяют исследователи, термоядерные реакторы могут быть достаточно компактными. Это делает их пригодными для использования на кораблях, самолетах, в небольших городах и даже на космических станциях.

Верифицирован реактор холодного термоядерного синтеза

8 октября 2014 года была завершена проверка независимыми исследователями из Италии и Швеции созданного Андреа Росси устройства E-CAT для выработки электроэнергии на основе реактора холодного термоядерного синтеза. В апреле-марте этого года шесть профессоров 32 дня изучали работу генератора и измеряли все возможные параметры, а потом полгода занимались обработкой результатов. По результатам проверки был опубликован отчет .

Установка включает в себя от 52 до 100 и более отдельных “модулей” E-Cat, каждый из которых состоит из 3 маленьких внутренних реакторов холодного термоядерного синтеза. Все модули собраны внутри обычного стального контейнера (размером 5м × 2,6м × 2,6м), который может быть установлен в любом месте. Возможна доставка сухопутным, морским или воздушным транспортом.

Согласно отчету комиссии, генератор Е-САТ действительно производит огромное количество тепла - в течение 32 дней он произвел энергии более 1,5 мегаватт-часов. В самом устройстве меняется изотопный состав “горючих” материалов, то есть происходят ядерные реакции.

Однако в отличие от широко используемых ядерных реакторов деления, реактор холодного синтеза E-Cat не потребляет радиоактивные вещества, не выделяет радиоактивных излучений в окружающую среду, не вырабатывает ядерных отходов и не несет в себе потенциальных опасностей расплавления оболочки или ядра реактора. В качестве топлива установка использует мизерное количество никеля и водорода.

Первая публичная демонстрация Е-САТ состоялась еще в январе 2011 года. Тогда она натолкнулась на полное отрицание и игнорирование академическими учеными кругами. Подозрения в фальсификации подкреплялись рядом соображений: во-первых, Росси не ученый, а инженер, закончивший заштатный вуз; во-вторых, за ним тянулся шлейф судебных преследований за неудачные проекты, и в-третьих, он сам не мог объяснить с научной точки зрения, что происходит в его реакторе.

Итальянское патентное агентство выдало патент на изобретение Андреа Росси после формальной (не технической) экспертизы, а заявка на международный патент получила отрицательный предварительный отзыв из-за вероятного «противоречия общепризнанным законам физики и установленным теориям», в связи с чем заявку следовало дополнить экспериментальными доказательствами или твёрдым теоретическим обоснованием, исходящим из современных научных теорий.

Потом прошел ряд других показов и тестов, в ходе которых Росси не сумели уличить в мошенничестве. В последнем тесте в марте-апреле этого года, как заявляется, были учтены все возможные замечания.

Профессора завершили отчет словами: “Это, конечно, не удовлетворительно, что у этих результатов до сих пор нет убедительного теоретического объяснения, но результат эксперимента не может быть отклонен или проигнорирован только из-за отсутствия теоретического понимания”.

Почти два года было неясно, куда пропал Росси. Противники «холодного синтеза» ликовали. По их мнению, аферист провалился там, где и должен был. Они уверяли, что Андреа Росси не знает основ теоретической физики и обречен на неудачу в силу своего невероятного невежества, - говорит руководитель Центра экономических исследований ИГСО Василий Колташов . - Помню, как в 2013 году на Петербургском международном экономическом форуме я под видом журналиста спросил у президента РАН Владимира Фортова, что он думает о перспективах холодной трансмутации ядер и работе Росси. Фортов ответил, что все это не заслуживает внимания и не имеет перспектив, а имеет их только традиционная ядерная энергетика. Выходит же все совсем не так. Выходит все, как мы прогнозировали в докладе «Энергетическая революция: проблемы и перспективы мировой энергетики» . Старая энергетика должна будет погибнуть и никакая «сланцевая революция» ее не спасет. С удешевлением генерации электроэнергии появится возможность для скачка в автоматизации производства, внедрении роботов. Изменится вся мировая экономика. Но первыми, видимо, будут США. А все почему? Потому, что там плохо разбираются в теоретической физике, зато стремятся к уменьшению себестоимости производства и росту рентабельности. Но Росси не поставит точку в энергетической революции, все только начинается. Будут и другие прорывы.

Между тем, американская компания Lockheed Martin Corp накануне заявила о своем технологическом прорыве в области практического использования технологии управляемого термоядерного синтеза. В последующем десятилетии она обещает представить коммерческий образец компактного термоядерного реактора, а первый опытный образец должен появиться уже через год.

Lockheed Martin сообщает о прорыве в области управляемого термоядерного синтеза

Управляемый термоядерный синтез - Священный Грааль современной энергетики. С учётом повсеместной радиофобии, сильно мешающей развитию классических ядерных технологий, многие считают его единственной реальной альтернативой ископаемому топливу. Но путь к этому Граалю весьма тернист, и лишь недавно китайским учёным, работавшим на установке EAST, удалось добиться превышения критерия Лоусона и получить коэффициент выхода энергии в районе 1,25. Надо отметить, что все основные успехи в области достижения термоядерного синтеза достигнуты на установках типа «токамак», и к ним же относится экспериментальный реактор ITER , строительство которого ведётся на территории Европейского Союза.

Так выглядит работающее сердце токамака

А у токамаков, помимо очевидных достоинств, есть и ряд недостатков. Главный из них то, что все реакторы такого типа проектируются для работы в импульсном режиме, что не слишком удобно для промышленного применения в энергетике. Другой тип реакторов, так называемые «стеллараторы», обещает интересные результаты, но конструкция стелларатора очень сложна из-за особой топологии магнитных катушек и самой плазменной камеры, а условия зажигания реакции более жёсткие. И каждый раз речь идёт о больших стационарных установках.

Один из вариантов конфигурации стелларатора

Но, похоже, корпорации Lockheed Martin удалось добиться прорыва на направлении, которое давно признано безнадёжным. Больше всего схема, опубликованная сотрудниками лаборатории Skunk Works , принадлежащей Lockheed Matrin, напоминает линейную плазменную ловушку с магнитными зеркалами, которую для краткости принято называть «пробкотроном» . Не исключено, что учёным, занятым в этом проекте, удалось решить основную проблему «пробкотрона», связанную с нарушением сверхпроводимости под влиянием сильных магнитных полей при недостаточной длине конструкции. Ранее работы над этим проектом велись под покровом секретности, но теперь он снят, и Lockheed Martin приглашает к открытому сотрудничеству как государственных, так и частных партнёров.

Упрощённая схема реактора Skunk Works

Но надо отметить, что речь по-прежнему идёт о дейтериево-тритиевой реакции, дающей на выходе нейтрон, который человечество пока не умеет использовать иначе, чем через абсорбцию бланкетом реактора с последующим выводом тепловой энергии в классический пароводяной цикл. А значит, никуда не деваются высокие давления, высокоскоростные турбины и, к сожалению, наведённая в бланкете радиоактивность, так что отработавшие компоненты плазменной камеры будут нуждаться в захоронении. Конечно, радиационная опасность термоядерного синтеза типа дейтерий-тритий на несколько порядков ниже, чем у классических реакций деления, но всё же о ней следует помнить и не пренебрегать правилами безопасности.

Разумеется, полных данных о своей работе корпорация не раскрывает, но намекает, что речь идёт о создании реактора мощностью порядка 100 мегаватт при габаритах в районе 2×3 метра, то есть спокойно умещающегося на платформе обычного грузовика. В этом уверен Том МакГайр (Tom McGuire) , возглавляющий проект.

Том МакГайр на фоне экспериментальной установки T-4

В течение года должен быть построен и протестирован первый экспериментальный прототип, а появление промышленных прототипов установки обещается в течение следующих пяти лет. Это куда быстрее темпов работ над ITER. А через 10 лет, если всё пойдёт по плану, появятся и серийные реакторы этого типа. Пожелаем команде МакГайра удачи, ведь если у них всё получится, то мы имеем все шансы увидеть новую эру в энергетике человечества ещё при жизни этого поколения.

Реакция российских учёных

Президент НИЦ "Курчатовский институт" Евгений Велихов сообщил в интервью ТАСС, что о подобных разработках в американской компании ему ничего неизвестно. "Я этого не знаю, я думаю, что это фантазии. Мне неизвестно о проектах Lockheed Martin в этой области, - сказал он. - Пусть заявляют. Разработают - покажут".

По мнению руководителя проектного офиса "ИТЭР-Россия" (ITER - международный проект по созданию экспериментального термоядерного реактора. - ТАСС), доктора физико-математических наук Анатолия Красильникова , заявления американского концерна - это рекламная акция, не имеющая никакого отношения к науке.

"Не будет у них никакого опытного образца. Человечество работает десятилетия, а Lockheed Martin возьмет и запустит? - сказал он, отвечая на вопрос ТАСС. - Я думаю, что они делают хорошую рекламную акцию, привлекая внимание к своему имени. К реальному термоядерному реактору это отношения не имеет".

"Да, это для тех, кто не понимает, кажется правдой. Нельзя вести работы в закрытом режиме, которые человечество ведет в открытом, - добавил ученый, комментируя информацию о секретности проведенной работы. - У них что, другая физика и другие законы природы?"

По мнению Красильникова, Lockheed Martin не раскрывает подробностей своего открытия, потому что профессиональное сообщество сразу разоблачит компанию. "Они не называют установку, и как только они скажут, то профессионалы поймут, что это пиар-акция. Они неспроста так себя ведут, потому что будут разоблачены, - заявил он. - Это не наука, это совсем другая деятельность. Наукой они не занимаются, по крайней мере я об этом не знаю. Это группа инициативных людей решила привлечь к себе внимание, капитализировать потом в акции и получить прибыль".

Красильников напомнил о проекте пилотного термоядерного гибридного реактора, который разрабатывается в России. Как сообщалось, его строительство может начаться только в 2030 году.

"Сейчас в России разрабатывается проект экспериментального гибридного реактора. Он представляет собой сочетание технологий ядерного реактора, работающего на принципе деления ядер, и термоядерного реактора, работающего на принципе синтеза, - пояснил он. - Реальный реактор будет следующим шагом на основании результатов, которые получены на экспериментальном (этапе), - это 2030 год".

Испанские инженеры разработали прототип экологически чистого термоядерного реактора с инерционным удержанием плазмы, в основе работы которого используется ядерный синтез вместо ядерного деления. Утверждается, что изобретение позволит сущест­венно экономить на топливе и избежать загрязнения окружающей среды.

Профессор Политехнического университета Мадрида Хосе Гонсалес Диез запатентовал реактор, использующий в качестве топлива изотоп водорода, который можно выделить из воды, что позволяет существенно экономить при производстве электроэнергии. Синтез в реакторе происходит посредством лазерного излучения в 1000 МВт.

На протяжении многих лет ядерный синтез изучался на предмет создания альтернативы ядерному делению с точки зрения безопасности и финансовых преимуществ. Тем не менее сегодня не существует ни одного термоядерного реактора для производства непрерывной электрической энергии высокого напряжения. Примером естественного термоядерного реактора может служить Солнце, внутри которого нагретая до огромных температур плазма удерживается в состоянии с высокой плотностью.

В рамках проекта Fusion Power Гонсалес Диез создал прототип термоядерного реактора с инерциальным удержанием плазмы. Синтезирующая камера реактора может адаптироваться к типу используемого топлива. Теоретически возможными реакциями могут стать реакции дейтерий-тритий, дейтерий-дейтерий или водород-водород.

Размеры камеры, а также ее форма могут быть адаптированы в зависимости от типа топлива. Кроме того, можно будет менять форму внешнего и внутреннего оборудования, тип охлаждающей жидкости и т.д.

По словам кандидата физико-математических наук Бориса Бояршинова, проекты по созданию термоядерного реактора реализуются на протяжении сорока лет.

«С 70-х годов остро стоит проблема управляемого термоядерного синтеза, но пока многочисленные попытки создать термоядерный реактор были неудачными. Работы по его изобретению до сих пор ведутся и, скорее всего, вскоре увенчаются успехом», - отметил г-н Бояршинов.

Руководитель энергетической программы «Гринпис России» Владимир Чупров скептически относится к идее использования термоядерного синтеза.

«Это далеко не безопасный процесс. Если разместить рядом с термоядерным реактором «бланкет» из урана-238, то все нейтроны будут поглощаться этой оболочкой и уран-238 будет превращаться в плутоний-239 и 240. С точки зрения экономики даже если термоядерный синтез удастся реализовать и ввести в коммерческую эксплуатацию, его стоимость такова, что позволить его себе сможет далеко не каждая страна, хотя бы потому, что для обслуживания этого процесса нужны очень компетентные кадры», - говорит эколог.

По его словам, сложность и дороговизна этих технологий представляет собой тот камень преткновения, о который запнется любой проект, даже если он состоится на техническом уровне. «Но даже в случае успеха максимальная установленная мощность термоядерных станций к концу столетия составит 100 ГВт, что составляет около 2% от того, что потребуется человечеству. В итоге термоядерный синтез не решает глобальной проблемы», - уверен г-н Чупров.

«Lockheed Martin начала разработку компактного термоядерного реактора… На сайте фирмы говорится о постройке первого опытного образца уже через год. Если это окажется правдой, через год мы будем жить в совершенно ином мире», - это начало одной из «Чердака». Со времени ее публикации прошло три года, и мир с тех пор не так уж сильно изменился.

Сегодня в реакторах атомных электростанций энергия вырабатывается за счет распада тяжелых ядер. В термоядерных же реакторах энергия получается в ходе процесса слияния ядер, при котором образуются ядра меньшей массы, чем сумма исходных, а «остаток» уходит в виде энергии. Отходы ядерных реакторов радиоактивны, их безопасное захоронение - это большая головная боль. Термоядерные реакторы такого недостатка лишены, а также используют широко доступное топливо, такое как водород.

У них есть только одна большая проблема - промышленных образцов еще не существует. Задача непростая: для термоядерных реакций нужно сжать топливо и нагреть до сотен миллионов градусов - горячее, чем на поверхности Солнца (где термоядерные реакции происходят естественным путем). Достичь такой высокой температуры сложно, но можно, только вот потребляет такой реактор энергии больше, чем вырабатывает.

Однако потенциальных достоинств у них все равно так много, что разработкой занимается, конечно же, не только Lockheed Martin.

ITER

ITER - cамый крупный проект в этой области. В нем участвуют Евросоюз, Индия, Китай, Корея, Россия, США и Япония, а сам реактор строится на территории Франции с 2007 года, хотя его история уходит намного глубже в прошлое: о его создании договаривались еще Рейган с Горбачевым в 1985-м. Реактор представляет собой тороидальную камеру, «бублик», в которой плазму удерживают магнитные поля, потому и называется токамак - то роидальная ка мера с ма гнитными к атушками. Энергию реактор будет вырабатывать за счет слияния изотопов водорода - дейтерия и трития.

Планируется, что ITER будет получать энергии в 10 раз больше, чем потреблять, однако будет это не скоро. Изначально планировалось, что в экспериментальном режиме реактор начнет работать в 2020 году, однако затем этот срок перенесли на 2025-й. При этом промышленное производство энергии начнется не раньше 2060 года, а уж ждать распространения этой технологии можно только где-то в конце XXI века.

Wendelstein 7-X

Wendelstein 7-X - крупнейший термоядерный реактор типа стелларатор. Стелларатор решает проблему, которая преследует токамаки, - «расползание» плазмы из центра тора к его стенкам. То, с чем токамак пытается справиться за счет мощи магнитного поля, стелларатор решает за счет своей сложной формы: удерживающее плазму магнитное поле изгибается, чтобы пресечь поползновения заряженных частиц.

Wendelstein 7-X, как надеются его создатели, в 21-м году сможет проработать полчаса, что даст «билет в жизнь» идее термоядерных станций подобной конструкции.

National Ignition Facility

Еще один тип реакторов использует для сжатия и разогрева топлива мощные лазеры. Увы, крупнейшая лазерная установка для получения термоядерной энергии, американская NIF, не смогла выдать энергии больше, чем потребляет.

Какие из всех этих проектов действительно «взлетят», а кого постигнет участь NIF, предсказать сложно. Остается ждать, надеяться и следить за новостями: 2020-е обещают стать интересным временем для ядерной энергетики.

«Ядерные технологии » - один из профилей Олимпиады НТИ для школьников.