Синапс - это определенная зона контакта отростков нервных клеток и остальных невозбудимых и возбудимых клеток, которые обеспечивают передачу информационного сигнала. Синапс морфологически образуется контактирующими мембранами 2-х клеток. Мембрана, относящаяся к отростку зовется пресинаптической мембраной клетки, в которую поступает сигнал, второе ее название - постсинаптическая. Вместе с принадлежностью постсинаптической мембраны синапс может быть межнейрональным, нейромышечным и нейросекреторным. Слово синапс было введено в 1897 г. Чарльзом Шеррингтоном (англ. физиологом).

Что же такое синапс?

Синапс - это специальная структура, которая обеспечивает передачу от нервного волокна нервного импульса на другое нервное волокно или нервную клетку, а чтобы произошло воздействие на нервное волокно от рецепторной клетки (области соприкосновения друг с другом нервных клеток и другого нервного волокна), требуется две нервные клетки.

Синапс - это небольшой отдел в окончании нейрона. При его помощи идет передача информации от первого нейрона ко второму. Синапс находится в трех участках нервных клеток. Также синапсы находятся в том месте, где нервная клетка вступает в соединение с разными железами или мышцами организма.

Из чего состоит синапс

Строение синапса имеет простую схему. Он образуется из 3-х частей, в каждой из которых осуществляются определенные функции во время передачи информации. Тем самым такое строение синапса можно назвать подходящим для передачи Непосредственно на процесс воздействуют две главные клетки: воспринимающая и передающая. В конце аксона передающей клетки находится пресинаптическое окончание (начальная часть синапса). Оно может повлиять в клетке на запуск нейротрансмиттеров (это слово имеет несколько значений: медиаторы, посредники или нейромедиаторы) - определенные с помощью которых между 2-мя нейронами реализуется передача электрического сигнала.

Синаптической щелью является средняя часть синапса - это промежуток между 2-мя вступающими во взаимодействие нервными клетками. Через эту щель и поступает от передающей клетки электрический импульс. Конечной частью синапса считается воспринимающая часть клетки, которая и является постсинаптическим окончанием (контактирующий фрагмент клетки с разными чувствительными рецепторами в своей структуре).

Медиаторы синапса

Медиатор (от латинского Media - передатчик, посредник или середина). Такие медиаторы синапса очень важны в процессе передачи

Морфологическое различие тормозного и возбуждающего синапса заключается в том, что они не имеют механизм освобождения медиатора. Медиатор в тормозном синапсе, мотонейроне и другом тормозном синапсе считается аминокислотой глицином. Но тормозной или возбуждающий характер синапса определяется не их медиаторами, а свойством постсинаптической мембраны. К примеру, ацетилхолин дает возбуждающее действие в нервно-мышечном синапсе терминалей (блуждающих нервов в миокарде).

Ацетилхолин служит возбуждающим медиатором в холинэргических синапсах (пресинаптическую мембрану в нем играет окончание спинного мозга мотонейрона), в синапсе на клетках Рэншоу, в пресинаптическом терминале потовых желез, мозгового вещества надпочеников, в синапсе кишечника и в ганглиях симпатической нервной системы. Ацетилхоли-нестеразу и ацетилхолин нашли также во фракции разных отделов мозга, иногда в большом количестве, но кроме холинэргического синапса на клетках Рэншоу пока не смогли идентифицировать остальные холинэргические синапсы. По словам ученых, медиаторная возбуждающая функция ацетилхолина в ЦНС весьма вероятна.

Кателхомины (дофамин, норадреналин и адреналин) считаются адренэргическими медиаторами. Адреналин и норадреналин синтезируются в окончании симпатического нерва, в клетке головного вещества надпочечника, спинного и головного мозга. Аминокислоты (тирозин и L-фенилаланин) считаются исходным веществом, а адреналин заключительным продуктом синтеза. Промежуточное вещество, в которое входят норадреналин и дофамин, тоже выполняют функцию медиаторов в синапсе, созданных в окончаниях симпатических нервов. Эта функция может быть либо тормозной (секреторные железы кишечника, несколько сфинктеров и гладкая мышца бронхов и кишечника), либо возбуждающей (гладкие мышцы определенных сфинктеров и кровеносных сосудов, в синапсе миокарда - норадреналин, в подкровных ядрах головного мозга - дофамин).

Когда завершают свою функцию медиаторы синапса, катехоламин поглощается пресинаптическим нервным окончанием, при этом включается трансмембранный транспорт. Во время поглощения медиаторов синапсы находятся под защитой от преждевременного истощения запаса на протяжении долгой и ритмичной работы.

Синапс: основные виды и функции

Лэнгли в 1892 году было предположено, что синаптическая передача у вегетативной ганглии млекопитающих не электрической природы, а химической. Через 10 лет Элиоттом было выяснено, что из надпочечников адреналин получается от того же воздействия, что и стимуляция симпатических нервов.

После этого предположили, что адреналин способен секретироваться нейронами и при возбуждении выделяться нервным окончанием. Но в 1921 году Леви сделал опыт, в котором установил химическую природу передачи в вегетативном синапсе среди сердца и блуждающих нервов. Он заполнил сосуды физиологическим раствором и стимулировал блуждающий нерв, создавая замедление сердцебиения. Когда жидкость перенесли из заторможенной стимуляции сердца в нестимулированое сердце, оно билось медленнее. Ясно, что стимуляция блуждающего нерва вызвала освобождение в раствор тормозящего вещества. Ацетилхолин целиком воспроизводил эффект этого вещества. В 1930 г. роль в синаптической передаче ацетилхолина в ганглии окончательно установил Фельдберг и его сотрудник.

Синапс химический

Химический синапс принципиально отличается передачей раздражения при помощи медиатора с пресинапса на постсинапс. Поэтому и образуются различия в морфологии химического синапса. Химический синапс более распространен в позвоночной ЦНС. Теперь известно, что нейрон способен выделять и синтезировать пару медиаторов (сосуществующих медиаторов). Нейроны тоже имеют нейромедиаторную пластичность - способность изменять главный медиатор во время развития.

Нервно-мышечный синапс

Данный синапс осуществляет передачу возбуждения, однако эту связь могут разрушить различные факторы. Передача заканчивается во время блокады выбрасывания в синаптическую щель ацетилхолина, также и во время избытка его содержания в зоне постсинаптических мембран. Множество ядов и лекарственных препаратов влияют на захват, выход, который связан с холинорецепторами постсинаптической мембраны, тогда мышечный синапс блокирует передачу возбуждения. Организм гибнет во время удушья и остановки сокращения дыхательных мышц.

Ботулинус - микробный токсин в синапсе, он блокирует передачу возбуждения, разрушая в пресинаптическом терминале белок синтаксин, управляемый выходом в синаптическую щель ацетилхолина. Несколько отравляющих боевых веществ, фармокологических препаратов (неостигмин и прозерин), а также инсектициды блокируют проведение возбуждения в нервно-мышечный синапс при помощи инактивации ацетилхолинэстеразы - фермента, который разрушает ацетилхолин. Поэтому идет накопление в зоне постсинаптической мембраны ацетилхолина, снижается чувствительность к медиатору, производится выход из постсинаптических мембран и погружение в цитозоль рецепторного блока. Ацетилхолин будет неэффективен, и синапс будет заблокирован.

Синапс нервный: особенности и компоненты

Синапс - это соединение места контакта среди двух клеток. Причем каждая из них заключена в свою электрогенную мембрану. Нервный синапс состоит из трех главных компонентов: постсинаптическая мембрана, синаптическая щель и пресинаптическая мембрана. Постсинаптическая мембрана - это нервное окончание, которое проходит к мышце и опускается внутрь мышечной ткани. В пресинаптической области имеются везикулы - это замкнутые полости, имеющие медиатор. Они всегда находятся в движении.

Подходя к мембране нервных окончаний, везикулы сливаются с ней, и медиатор попадает в синаптическую щель. В одной везикуле содержится квант медиатора и митохондрии (они нужны для синтеза медиатора - главного источника энергии), далее синтезируется из холина ацетилхолин и под воздействием фермента ацетилхолинтрансферразы перерабатывается в ацетилСоА).

Синаптическая щель среди пост- и пресинаптических мембран

В разных синапсах величина щели различна. наполнено межклеточной жидкостью, в которой имеется медиатор. Постсинаптическая мембрана накрывает место контакта нервного окончания с иннервируемой клеткой в мионевральном синапсе. В определенных синапсах постсинаптическая мембрана создает складку, возрастает контактная площадь.

Дополнительные вещества, входящие в состав постсинаптической мембраны

В зоне постсинаптической мембраны присутствуют следующие вещества:

Рецептор (холинорецептор в мионевральном синапсе).

Липопротеин (обладает большой схожестью с ацетилхолином). У этого белка присутствует электрофильный конец и ионная головка. Головка поступает в синаптическую щель, происходит взаимодействие с катионовой головкой ацетилхолина. Из-за этого взаимодействия идет изменение постсинаптической мембраны, затем происходит деполяризация, и раскрываются потенциально зависимые Na-каналы. Деполяризация мембраны не считается самоподкрепляющим процессом;

Градуален, его потенциал на постсинаптической мембране зависит от числа медиаторов, то есть потенциал характеризуется свойством местных возбуждений.

Холинэстераза - считается белком, у которого имеется ферментная функция. По строению она схожа с холинорецептором и обладает похожими свойствами с ацетилхолином. Холинэстеразой разрушается ацетилхолин, вначале тот, который связан с холинорецептором. Под действием холинэстеразы холинорецептор убирает ацетилхолин, образуется реполяризация постсинаптической мембраны. Ацетилхолином расщепляется до уксусной кислоты и холина, необходимого для трофики мышечной ткани.

При помощи действующего транспорта выводится на пресинаптическую мембрану холин, он используется для синтеза нового медиатора. Под воздействием медиатора меняется проницаемость в постсинаптической мембране, а под холинэстеразой чувствительность и проницаемость возвращается к начальной величине. Хеморецепторы способны вступать во взаимодействие с новыми медиаторами.

Введение

Классификация синапсов

(по: http://medlec.org/lek-68611.html)

(по: http://medlec.org/lek-68611.html)

Заключение

В работе была рассмотрена структурно-функциональная характеристика синапсов.

Показано, что синапсы классифицируются: по виду соединяемых клеток, по эффекту, по способу передачи сигналов, в зависимости от местоположения в ЦНС.

Были изучены механизмы передачи возбуждения в синапсах различных видов, в частности химических и электрических.

Установлено, что химические синапсы характеризуются односторонним проведением возбуждения, замедленным распространением возбуждения в ЦНС, низкой лабильностью, утомляемостью и их действие легко блокируется фармакологическими препаратами.

В свою очередь, электрические синапсы проводят сигнал в обе стороны без синаптической задержки, имеют низкую чувствительность к фармакологическим препаратам, обладают практической неутомляемостью.

В работе были приведены характеристики медиаторов и рецепторов синапсов ЦНС, их роль в организме.

Список используемой литературы

1. Ашмарин, И.П. Биохимия мозга: Учеб. пособие / И. П. Ашмарин, П.В. Стукалова, Н.Д. Ещенко. – СПб., 1999. – 432с.

2. Курепина, М.М. Анатомия человека: Учебник для биологических факультетов педагогических институтов / М.М. Курепина, Г.Г. Воккен. – М.: Просвещение, 1979. – 304с.

3. Волкова, О.В. Эмбриональный гистогенез и постнатальное развитие органов человека / О.В. Волкова. – М., 1983. – 123с.

4. Сергеев, П.В. Рецепторы физиологически активных веществ / П.В. Сергеев, Н.Л. Шимановский, В.И. Петров. – М.; 1999.

5. Бабский, Е.Б. Физиология человека: учебник для медицинских институтов / Е.Б. Бабский, В.Д. Глебовский, А.Б. Коган. – Москва: Альянс, 2015. – 560 с.

6. Самко, Ю.Н. Физиология [Электронный ресурс]: Учебное пособие / Ю.Н. Самко. – М.: НИЦ ИНФРА-М, 2014. – 144 с.

7. Ткаченко, Б.И. Основы физиологии человека / Б.И. Ткаченко – СПб.,1994. 114с.

8. Батуев, А. С. Физиология высшей нервной деятельности и сенсорных систем: учебник / А. С. Батуев. - СПб.: Питер, 2009. - 317 с.

9. Данилова, Н. Н. Психофизиология: Учебник / Н. Н. Данилова. - М.: Аспект Пресс, 2000. - 373с.

10. Караулова, Л. К. Физиология: учебное пособие / Л. К. Караулова, Н. А. Красноперова, М. М. Расулов. - М.: Академия, 2009. - 384 с.

11. Семенов, Э. В. Физиология и анатомия: учебное пособие / Э. В. Семенов. - М.: Джангар, 2005. - 480 с.

12. Смирнов, В. М. Физиология центральной нервной системы: учебное пособие / В. М. Смирнов, В. Н. Яковлев. - М. : Академия, 2002. - 352с.

13. Смирнов, В. М. Физиология человека: учебник / В. М. Смирнова. - М. : Медицина, 2002. - 608с.

14. Россолимо, Т. Е. Физиология высшей нервной деятельности: хрестоматия: учебное пособие / Т. Е. Россолимо, И. А. Москвина - Тарханова, Л. Б. Рыбалов. - М.; Воронеж: МПСИ: МОДЭК, 2007. - 336 с.

15. Белов, А.Ф., ред. Системный подход в изучении интегративной деятельности мозга научн. труды / А.Ф. Белов. РМИ. - Т.71. - Рязань, 1980. - 98 с.

16. Ноздрачев, А.Д. . Общий курс физиологии человека и животных: учебник / А.Д. Ноздрачев. - М.: Высшая школа, 1991, т. 1, 528 е.; т. 2, 528 с.

Введение………………………………………………………………………..…….2

Глава 1. Классификация синапсов и их характеристика …………………………3

1.1. Классификация синапсов…………………………………………………..

1.2. Структурно-функциональная характеристика синапсов………………….

Глава 2. Механизм синаптической передачи и ее регуляции ………..……5

Глава 3. Проведение возбуждения в синапсах ………………………….……….11

3.1. Проведение возбуждения в химических синапсах………………….……….11

3.2. Проведение возбуждения в электрических синапсах …………………….….1

Глава 4. Медиаторы и рецепторы синапсов ЦНС ……………….……………...15

Глава 5. Особенности физиологии синапсов у детей……………………………

Заключение……………………………………………………………………….…23

Список используемой литературы…………………………………………...……24

Введение

В нервной ткани имеются различные формы межклеточных контактов, среди которых главное место по функциональной значимости занимают синапсы. Основной функцией межклеточных контактов является их системообразующая роль, т.е. функция интеграции клеток в более сложные системы (тканевые, органные), что обеспечивается передачей от клетки к клетке различных сигналов (Семенов, 2005).

Синапс (греч. synapsis - соединение) - специализированная структура, обеспечивающая передачу возбуждающих или тормозных влияний между двумя возбудимыми клетками. Через синапс наряду с прямым влиянием на возбудимость иннервируемой клетки осуществляется и более медленное трофическое влияние, приводящее к изменению метаболизма иннервируемой клетки, ее структуры и функции. Понятие синапс как тип межклеточного соединения, при котором осуществляется перенос нервной информации, ввел в науку Ч. Шеррингтон (1897). По данным современной нейрофизиологии, в области синапсов происходят важнейшие процессы регуляции нейронной активности. Большое значение имеют синапсы в образовании условных связей, памяти, формировании пластичности нервных центров. Синапсы являются ареной деятельности многих лекарств, механизмов заболевания и выздоровления (Коробков, 1980).

Цель данной работы изучить механизмы передачи возбуждения в синапсах различных видов. Для достижения этой цели был поставлен ряд задач: рассмотреть структурно-функциональную характеристику синапсов, выявить роль медиаторов и рецепторов синапсов ЦНС.

Глава 1. Классификация синапсов и их характеристика

Классификация синапсов

Имеется несколько критериев, согласно которым классифицируются синапсы.

По виду соединяемых клеток синапсы можно разделить на межнейронные, нейроэффекторные и нейрорецепторные. Межнейронные синапсы находятся в ЦНС и вегетативных ганглиях. Нейроэффекторные (нейромышечные и ней-росекреторные) синапсы соединяют эфферентные нейроны соматической и вегетативной нервной системы с исполнительными клетками - поперечнополосатыми и гладкими миоцитами, секреторными клетками. К нейрорецепторным синапсам относят контакты во вторичных рецепторах между рецепторной клеткой и дендритом афферентного нейрона (Ашмарин,1999).

По развитию в онтогенезе: стабильные (например, синапсы дуг безусловного рефлекса) и динамичные, появляющиеся в процессе индивидуального развития.

По эффекту синапсы делят на возбуждающие, т.е. запускающие генерацию потенциала действия, и тормозные, препятствующие возникновению потенциала действия.

По способу передачи сигнала синапсы делят на химические, электрические и смешанные.

Химические синапсы являются специфическим межклеточным контактом для нервной системы. В них передача влияния на постсинаптическую клетку осуществляется с помощью химического посредника - медиатора. Этот тип синапсов преобладает в нервной системе человека и высших позвоночных, пример химического синапса проиллюстрирован на рисунке 1.

Рисунок 1. Строение химического синапса

(по: http://medlec.org/lek-68611.html)

В электрических синапсах потенциалы действия непосредственно (электротонически) передаются на постсинаптическую клетку. Эти синапсы являются разновидностью щелевых межклеточных контактов (высокопроводимые контакты), которые встречаются и в других тканях (например, нексусы в миокарде и гладкомышечной ткани). Электрические синапсы немногочисленны в нервной системе млекопитающих, особенно в постнатальном периоде. Пример строения электрического синапса представлен на рисунке 2.

Рисунок 2. Строение электрического синапса

(по: http://medlec.org/lek-68611.html)

Обнаружены также смешанные синапсы, в которых наряду с химической передачей имеются участки с электротоническим механизмом передачи (например, в реснитчатом ганглии птиц, спинном мозге лягушки).

По природе медиатора химические синапсы делят на холинергические (медиатор - ацетилхолин), адренергические (норадреналин), дофаминергические (дофамин), ГАМКергические (у-аминомасляная кислота), глутаматергические (глутамат), аспартатергические (аспартат), пептидергичес-кие (пептиды), пуринергические (Волкова, 1983).

В зависимости от локализации окончаний терминальных веточек аксона, межнейрональные синапсы различают: аксо-дендритические, аксо-соматические, аксо-аксональные, пример представлен на рисунке 3.

Рисунок 3. Классификация синапсов в зависимости от локализации окончаний терминальных веточек аксона.

(по: http://medlec.org/lek-68611.html)

В зависимости от механизма передачи нервного импульса различают

  • -химические;
  • -электрические - клетки соединяются высокопроницаемыми контактами с помощью особых коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе - 3,5 нм (обычное межклеточное - 20 нм). Так как сопротивление внеклеточной жидкости мало (в данном случае), импульсы проходят не задерживаясь через синапс. Электрические синапсы обычно бывают возбуждающими. Для нервной системы млекопитающих электрические синапсы менее характерны, чем химические.
  • -смешанные синапсы: Пресинаптический потенциал действия создает ток, который деполяризует постсинаптическую мембрану типичного химического синапса, где пре- и постсинаптические мембраны не плотно прилегают друг к другу. Таким образом, в этих синапсах химическая передача служит необходимым усиливающим механизмом.

Наиболее распространены химические синапсы

Химические синапсы можно классифицировать по их местоположению и принадлежности соответствующим структурам:

  • -периферические;
  • -нервно-мышечные;
  • -нейросекреторные (аксо-вазальные);
  • -рецепторно-нейрональные;
  • -центральные;
  • -аксо-дендритические - с дендритами, в т. ч.;
  • -аксо-шипиковые - с дендритными шипиками, выростами на дендритах;
  • -аксо-соматические - с телами нейронов;
  • -аксо-аксональные - между аксонами;
  • -дендро-дендритические - между дендритами;

В зависимости от медиатора синапсы разделяются на:

  • -аминергические, содержащие биогенные амины (например, серотонин, дофамин);
  • -в том числе адренергические, содержащие адреналин или норадреналин;
  • -холинергические, содержащие ацетилхолин;
  • -пуринергические, содержащие пурины;
  • -пептидергические, содержащие пептиды.

При этом в синапсе не всегда вырабатывается только один медиатор. Обычно основной медиатор выбрасывается вместе с другим, играющим роль модулятора.

По знаку действия: возбуждающие и тормозные.

Если первые способствуют возникновению возбуждения в постсинаптической клетке (в них в результате поступления импульса происходит деполяризация мембраны, которая может вызвать потенциал действия при определённых условиях.), то вторые, напротив, прекращают или предотвращают его появление, препятствуют дальнейшему распространению импульса. Обычно тормозными являются глицинергические (медиатор - глицин) и ГАМК-ергические синапсы (медиатор - гамма-аминомасляная кислота).

Тормозные синапсы бывают двух видов: 1) синапс, в пресинаптических окончаниях которого выделяется медиатор, гиперполяризующий постсинаптическую мембрану и вызывающий возникновение тормозного постсинаптического потенциала; 2) аксо-аксональный синапс, обеспечивающий пресинаптическое торможение. Синапс холинергический (s. cholinergica) - синапс, медиатором в котором является ацетилхолин.

В некоторых синапсах присутствует постсинаптическое уплотнение - электронно-плотная зона, состоящая из белков. По её наличию или отсутствию выделяют синапсы асимметричные и симметричные. Известно, что все глутаматергические синапсы асимметричны, а ГАМКергические - симметричны.

В случаях, когда с постсинаптической мембраной контактирует несколько синаптических расширений, образуются множественные синапсы.

К специальным формам синапсов относятся шипиковые аппараты, в которых с синаптическим расширением контактируют короткие одиночные или множественные выпячивания постсинаптической мембраны дендрита. Шипиковые аппараты значительно увеличивают количество синаптических контактов на нейроне и, следовательно, количество перерабатываемой информации. "Не-шипиковые" синапсы называются "сидячими". Например, сидячими являются все ГАМК-ергические синапсы.

Синапс – это мембранное образование двух (или более) клеток, в котором происходит передача возбуждения (информации) от одной клетки к другой.

Существует следующая классификация синапсов:

1) по механизму передачи возбуждения (и по строению):

Химические;

Электрические (эфапсы);

Смешанные.

2) по выделяемому нейромедиатору:

Адренергические – нейромедиатор норадреналин;

Холинергические – нейромедиатор ацетилхолин;

Дофаминергические – нейромедиатор дофамин;

Серотонинергические – нейромедиатор серотонин;

ГАМК-ергические – нейромедиатор гамма-аминомасляная кислота (ГАМК)

3) по влиянию:

Возбуждающие;

Тормозные.

4) по местоположению:

Нервно-мышечные;

Нейро-нейрональные:

а) аксо-соматические;

б) аксо-аксональные;

в) аксо-дендрические;

г) дендросоматические.

Рассмотрим три типа синапсов: химический, электрический и смешанный (совмещающий свойства химического и электрического синапсов).

Независимо от типа, синапсы имеют общее черты строения: нервный отросток на конце образует расширение (синаптическую бляшку , СБ); конечная мембрана СБ отлична от других участков мембраны нейрона и носит название пресинаптической мембраны (ПреСМ); специализированная мембрана второй клетки обозначается постсинаптической мембраной (ПостСМ); между мембранами синапса находится синаптическая щель (СЩ, рис. 1, 2).

Рис. 1. Схема строения химического синапса

Электрические синапсы (эфапсы, ЭС) сегодня обнаружены в НС не только ракообразных, но и моллюсков, членистоногих, млекопитающих. ЭС обладают рядом уникальных свойств. Они имеют узкую синаптическую щель (около 2-4 нм), благодаря чему возбуждение может передаваться электрохимическим способом (как по нервному волокну за счет ЭДС) с высокой скоростью и в обоих направлениях : как от ПреСМ мембраны к ПостСМ, так и от ПостСМ к ПреСМ. Между клетками имеются щелевые контакты (коннексусы или коннексоны), образованные двумя белками коннексинами. Шесть субъединиц каждого коннексина формируют каналы ПреСМ и ПостСМ, через которые клетки могут обмениваться низкомолекулярными веществами молекулярной массой 1000-2000 Дальтон. Работа коннексонов может регулироваться ионами Са 2+ (рис. 2).

Рис. 2. Схема электрического синапса

ЭС обладают большей специализацией по сравнению с химическими синапсами и обеспечивают высокую скорость передачи возбуждения . Однако он, по-видимому, лишен возможности более тонкого анализа (регуляции) передаваемой информации.



Химические синапсы доминируют в НС . История их изучения начинается с работ Клода Бернара, который в 1850 г. опубликовал статью «Исследование о кураре». Вот что он писал: «Кураре – сильный яд, приготовляемый некоторыми народностями (большей частью людоедами), обитающими в лесах... Амазонки». И далее, «Кураре сходен с ядом змеи в том отношении, что его можно безнаказанно ввести в пищеварительный тракт человека или животных, в то время как впрыскивание его под кожу или в какую-либо часть тела быстро приводит к смерти. …через несколько мгновений животных ложатся, как будто они устали. Затем дыхание останавливается и их чувствительность и жизнь исчезают, причем животные не издают крика и не проявляют никаких признаков боли». Хотя К.Бернар не пришел к мысли о химической передачи нервного импульса, его классические опыты с кураре позволили этой мысли зародиться. Прошло более полувека, когда Дж. Ленгли установил (1906 г.), что парализующее действие кураре связано с особой частью мышцы, которую он назвал рецептивной субстанцией. Впервые предположение о передаче возбуждения с нерва на эффекторный орган с помощью химического вещества было высказано Т. Элиотом (1904).

Однако окончательно утвердили гипотезу химического синапса только работы Г. Дейла и О. Лёви. Дейл в 1914 г. установил, что раздражение парасимпатического нерва имитируется ацетилхолином. Лёви в 1921 г. доказал, что ацетилхолин выделяется из нервного окончания блуждающего нерва, а в 1926 г. открыл ацетилхолинэстеразу – фермент, разрушающий ацетилхолин.

Возбуждение в химическом синапсе передается с помощью медиатора . Этот процесс включает в себя несколько стадий. Рассмотрим эти особенности на примере ацетилхолинового синапса, который широко распространении в ЦНС, вегетативной и периферической нервной системе (рис. 3).

Рис. 3. Схема функционирования химического синапса



1. Медиатор ацетилхолин (АХ) синтезируется в синаптической бляшке из ацетил-СоА (ацетил-кофермент А образуется в митохондриях) и холина (синтезируется печенью) с помощью ацетилхолинтрансферазы (рис. 3, 1).

2. Медиатор упакован в синаптические везикулы (Кастильо, Катц; 1955 г.). Количество медиатора в одной везикуле составляет несколько тысяч молекул (квант медиатора ). Часть везикул расположена на ПреСМ и готова к высвобождению медиатора (рис. 3, 2).

3. Высвобождается медиатор путем экзоцитоза при возбуждении ПреСМ. Важную роль в разрыве мембран и квантовом высвобождении медиатора играет входящий ток Са 2+ (рис. 3, 3).

4. Высвободившийся медиатор связывается со специфическим белком-рецептором ПостСМ (рис. 3, 4).

5. В результате взаимодействия медиатора и рецептора изменяется ионная проводимость ПостСМ: при открытии Na + каналов происходит деполяризации; открытие K + или Cl - каналов приводит к гиперполяризации (рис. 3, 5).

6 . Вслед за деполяризацией запускаются биохимические процессы в постсинаптической цитоплазме (рис. 3, 6).

7. Рецептор освобождается от медиатора: АХ разрушается ацетилхолинэстеразой (АХЭ, рис. 3. 7).

Обратите внимание, что медиатор в норме взаимодействует со специфическим рецептором с определенной силой и длительностью . Почему кураре - яд? Местом действия кураре как раз является АХ синапс. Кураре более прочно связывается с ацетилхолиновым рецептором и лишает его взаимодействия с медиатором (АХ). Возбуждение с соматических нервов на скелетные мышцы, в том числе с диафрагмального нерва на основную дыхательную мышцу (диафрагму) передается с помощью АХ, поэтому кураре вызывает релаксацию (расслабление) мышц и остановку дыхания (из-за чего, собственно, и наступает смерть).

Отметим основные особенности передачи возбуждения в химическом синапсе .

1. Возбуждение передается с помощью химического посредника – медиатора.

2. Возбуждение передается в одном направлении: от ПреСм к ПостСМ.

3. В химическом синапсе происходит временная задержка в проведении возбуждения, поэтому синапс обладает низкой лабильностью .

4. Химический синапс обладает высокой чувствительностью к действию не только медиаторов, но и других биологически активных веществ, лекарств и ядов.

5. В химическом синапсе происходит трансформация возбуждений: электрохимическая природа возбуждения на ПреСМ продолжается в биохимический процесс экзоцитоза синаптических везикул и связывания медиатора со специфическим рецептором. За этим следует изменение ионной проводимости ПостСМ (тоже электрохимический процесс), который продолжается биохимическими реакциями в постсинаптической цитоплазме.

В принципе, такая многостадийность передачи возбуждения должна иметь весомое биологическое значения. Обратите внимание, что на каждом из этапов возможна регуляция процесса передачи возбуждения. Несмотря на ограниченное количество медиаторов (чуть больше десятка), в химическом синапсе имеются условия для широкого разнообразия в решении судьбы приходящего в синапс нервного возбуждения. Совокупность особенностей химических синапсов объясняет индивидуальное биохимическое разнообразие нервных и психических процессов.

Теперь остановимся на двух важных процессах, протекающих в постсинаптическом пространстве. Мы отметили, что в результате взаимодействия АХ с рецептором на ПостСМ могут развиваться как деполяризация, так и гиперполяризация. От чего же зависит, будет ли медиатор возбуждающим или тормозным? Результат взаимодействия медиатора и рецептора определяется свойствами рецепторного белка (еще одно важное свойство химического синапса – ПостСМ активна по отношению к приходящему к ней возбуждению). В принципе химический синапс – динамическое образование, изменяя рецептор, клетка, принимающая возбуждение, может влиять на его дальнейшую судьбу. Если свойства рецептора таковы, что его взаимодействие с медиатором открывает Na + каналы, то при выделении одного кванта медиатора на ПостСМ развивается локальный потенциал (для нервно-мышечного синапса он носит название миниатюрного потенциала концевой пластинки – МПКП).

Когда же возникает ПД? Возбуждение ПостСМ (возбуждающий постсинаптический потенциал – ВПСП) возникает как результат суммации локальных потенциалов. Можно выделить два типа суммационных процессов . При последовательном выделении нескольких квантов медиатора в одном и том же синапсе (вода и камень точит) возникает временна я суммация . Есликванты медиаторы выделяются одновременно в разных синапсах (на мембране нейрона их может быть несколько тысяч) возникаетпространственная суммация . Реполяризация ПостСМ мембраны происходит медленно и после выделения отдельных квантов медиатора ПостСМ некоторое время находится в состоянии экзальтации (так называемая синаптическая потенциация, рис. 4). Возможно, таким образом, происходит обучение синапса (выделение квантов медиатора в определенных синапсах могут «подготовить» мембрану к решающему взаимодействию с медиатором).

При открытии K + или Cl - каналов на ПостСМ возникает тормозный постсинаптический потенциал (ТПСП, рис. 4).

Рис. 4. Потенциалы постсинаптической мембраны

Естественно, что в случае развития ТПСП дальнейшее распространение возбуждения может быть остановлено. Другой вариант прекращения процесса возбуждения – пресинаптическое торможение. Если на мембране синаптической бляшки образуется тормозный синапс, то в результате гиперполяризации ПреСМ экзоцитоз синаптических визикул может быть заблокирован.

Второй важный процесс – развитие биохимических реакций в постсинаптической цитоплазме. Изменение ионной проводимости ПостСМ активирует так называемые вторичные мессенджеры (посредники) : цАМФ, цГМФ, Са 2+ -зависимую протеинкиназу, которые, в свою очередь активируют различные протеинкиназы путем их фосфорилирования. Эти биохимические реакции могут «спускаться» вглубь цитоплазмы вплоть до ядра нейрона, регулируя процессы белкового синтеза. Таким образом, нервная клетка может ответить на пришедшее возбуждение не только решением его дальнейшим судьбы (ответить ВПСП или ТПСП, т.е. провести или не провести далее), а изменить количество рецепторов, или синтезировать белок-рецептор с новыми свойствами по отношению к определенному медиатору. Следовательно, еще одно важное свойство химического синапса: благодаря биохимическим процессам постсинаптической цитоплазмы клетка готовится (обучается) к будущим взаимодействиям.

В нервной системе функционируют разнообразные синапсы, которые отличаются медиаторами и рецепторами. Название синапсов определяется медиатором, точнее названием рецептора к конкретному медиатору. Поэтому, рассмотрим классификацию основных медиаторов и рецепторов нервной системы (смотрите так же материал, розданный на лекции!!).

Мы уже отмечали, что эффект взаимодействия медиатора и рецептора определяется свойствами рецептора. Поэтому известные медиаторы, за исключением g-аминомасляной кислоты, могут выполнять функции как возбуждающих, так и тормозных медиаторов.По химической структуре выделяют следующие группы медиаторов.

Ацетилхолин , широко распространен в ЦНС, является медиатором в холинергических синапсах вегетативной нервной системы, а также в соматических нервно-мышечных синапсах (рис. 5).

Рис. 5. Молекула ацетилхолина

Известны два типа холинорецепторов : никотиновые (Н-холинорецепторы ) и мускариновые (М-холинорецепторы ). Название получили по веществам, вызывающим сходный с ацетилхолином эффект в этих синапсах: Н-холиномиметиком является никотин , аМ-холиномиметиком - токсин мухомора Amanita muscaria (мускарин ). Блокатором (холинолитиком) Н-холинорецептора являетсяd-тубокурарин (основной компонент яда кураре), а М-холинолитиком является токсин красавки Atropa belladonna –атропин . Интересно, что свойства атропина давно известно и было время, когда женщины использовали атропин красавки, чтобы вызвать расширение зрительных зрачков (сделать глаза темными и «красивыми»).

Четыре следующих основных медиаторов имеют сходство в химической структуре, поэтому их относят к группе моноаминов . Этосеротонин или 5-гидрокситриптами (5-HT), играет важную роль в механизмах подкрепления (гормон радости). Синтезируется из незаменимой для человека аминокислоты – триптофана (рис. 6).

Рис. 6. Молекула серотонина (5-гидрокситриптамина)

Три других медиатора синтезируются из незаменимой аминокислоты фенилаланина, поэтому объединены общим названиемкатехоламинов – это дофамин (допамин), норадреналин (норэпинефрин) и адреналин (эпинефрин, рис. 7).

Рис. 7. Катехоламины

Среди аминокислот к медиаторам относят гамма-аминомасляную кислоту (g-АМК или ГАМК – известна как только тормозный медиатор), глицин, глутаминовую кислоту, аспарагиновую кислоту.

К медиаторам относят ряд пептидов . В 1931 г. Эйлером в экстрактах мозга и кишечника было обнаружено вещество, вызывающее сокращение гладких мышц кишечника, расширение кровеносных сосудов. Этот медиатор был в чистом виде выделен из гипоталамуса и получил название вещества Р (от англ. powder – порошок, состоит из 11 аминокислот). В дальнейшем установлено, что вещество Р играет важную роль в проведении болевых возбуждений (название не пришлось менять, т.к. боль по англ. - pain).

Пептид дельта сна получил свое название за способность вызывать в электроэнцефалограмме медленные высокоамплитудные ритмы (дельта-ритмы).

В мозге синтезируется целый ряд белковых медиаторов наркотической (опиатной) природы. Это пентапептиды Met-энкефалин иLeu-энкефалин , а также эндорфины . Это важнейшие блокаторы болевых возбуждений и медиаторы подкрепления (радости и удовольствия). Другими словами, наш мозг является отличной фабрикой эндогенных наркотиков. Главное, научить мозг их вырабатывать. «Как?» - спросите вы. Все просто – эндогенные опиаты вырабатываются, когда мы получаем удовольствие. Делайте все с удовольствием, заставляйте свою эндогенную фабрику синтезировать опиаты! Нам от природы с рождения дана эта возможность – подавляющее большинство нейронов реактивны на положительное подкрепление.

Исследования последних десятилетий позволили открыть еще один очень интересный медиатор – оксид азота (NO). Оказалось, что NO не только играет важную роль в регуляции тонуса кровеносных сосудов (известный вам нитроглицерин является источником NO и расширяет коронарные сосуды), но и синтезируется в нейронах ЦНС.

В принципе, история медиаторов еще не закончена, есть целый ряд веществ, которые участвуют в регуляции нервного возбуждения. Просто пока точно не установлен факт их синтеза в нейронах, они не обнаружены в синаптических везикулах, не найдены специфические к ним рецепторы

Синапс - это специализированная структура, которая обеспечивает передачу возбуждения с одной возбудимой структуры на другую. Термин "синапс" введен Ч. Шеррингтоном и означает "сведение", "соединение", "застежка". Классификация синапсов . Синапсы можно классифицировать по: 1) их местоположению и принадлежности соответствующим структурам: периферические (нервно-мышечные, нейро-секреторные, рецеп-торнонейрональные); центральные (аксо-соматические, аксо-дендритные, аксо-аксо-нальные, сомато-девдритные, сомато-соматические);2) знаку их действия - возбуждающие и тормозящие; 3) способу передачи сигналов - химические, электрические, смешанные. 4) медиатору, с помощью которого осуществляется передача - холинергические, адренергические, серотонинергические, глицинергические и т. д. Строение синапса . Все синапсы имеют много общего, поэтому строение синапса и механизм передачи возбуждения в нем можно рассмотреть на примере нервно-мышечного синапса. Синапс состоит из трех основных элементов: пресинаптической мембраны; постсинаптической мембраны; синаптической щели.Пресинаптическая мембрана - это часть мембраны нервного окончания в области контакта его с мышечным волокном. Постсинаптическая мембрана - часть мембраны мышечного волокна. Часть постсинаптической мембраны, которая расположена напротив пресинаптической, называется субсинаптической мембраной. Осо-бенностью субсинаптической мембраны является наличие в ней специальных рецепторов, чувствительных к определенному медиатору, и наличие хемозависимых каналов. В постсинаптической мембране, за пределами субсинаптической, имеются потенциалозависимые каналы.

Химические тормозные синапсы. Физиологические свойства химических синапсов.

Химические тормозные синапсы . Эти синапсы по механизму передачи возбуждения сходны с синапсами возбуждающего действия. тормозных синапсах медиатор (например, глицин) взаимодействует с рецепторами субсинаптической мембраны и открывает в ней хлорные каналы, это приводит к движению ионов хлора по концентрационному градиенту внутрь клетки и развитию гиперполяризации на субсинаптической: мембране. Возникает так называемый тормозной постсинаптический потенциал (ТПСП). Ранее полагали, что каждому медиатору соответствует специфическая реакция постсинаптической клетки - возбуждение или торможение в той или иной форме. В настоящее время установлено, что одному медиатору чаще всего соответствует не один, а несколько различных рецепторов. Например, ацетилхолин в нервно-мышечных синапсах скелетных мышц действует на Н-холинорецепторы (чувствительные к никотину), которые открывают широкие каналы для натрия (и калия), что порождает ВПСП (ПКП) В вагосердечных синапсах тот же ацетилхолин действует на М-холинорецепторы (чувствительные к мускарину), открывающие селективные каналы для ионов калия, поэтому здесь генерируется тормозной постсинаптический потенциал (ТПСП). Следовательно, возбуждающий или тормозной характер действия медиатора определяется свойствами субсинаптической мембраны (точнее, видом рецептора), а не самого медиатора. Физиологические свойства химических синапсов . Синапсы с химической передачей возбуждения обладают рядом общих свойств: Возбуждение через синапсы проводится только в одном направлении (односторонне). Это обусловлено строением синапса: медиатор выделяется только из пресинаптического утолщения и взаимодействует с рецепторами субсинаптической мембраны; передача возбуждения через синапсы осуществляется медленнее, чем по нервному волокну - синаптическая задержка; передача возбуждения осуществляется с помощью специальных химических посредников - медиаторов; в синапсах происходит трансформация ритма возбуждения; синапсы обладают низкой лабильностью; синапсы обладают высокой утомляемостью; синапсы обладают высокой чувствительностью к химическим (в том числе и к фармакологическим) веществам.