УРАВНЕНИЕ СОСТОЯНИЯ -уравнение, к-рое связывает давление р , объём V и абс. темп-ру Т физически однородной системы в состоянии термодинамического равновесия: f (p , V , Т ) = 0. Это ур-ние наз. термическим У. с., в отличие от калорического У. с., определяющего внутр. энергию U системы как ф-цию к--л. двух из трёх параметров р, V, Т . Термическое У. с. позволяет выразить давление через объём и темп-ру, p=p(V, Т) , и определить элементарную работу при бесконечно малом расширении системы . У. с. является необходимым дополнением к термодинамич. законам, к-рое делает возможным их применение к реальным веществам. Оно не может быть выведено с помощью одних только законов , а определяется из опыта или рассчитывается теоретически на основе представлений о строении вещества методами статистич. . Из первого начала термодинамики следует лишь существование калорич. У. с., а из второго начала термодинамики - связь между калорическим и термическим У. с.:

где а и b - постоянные, зависящие от природы газа и учитывающие влияние сил межмолекулярного притяжения и конечность объёма молекул; вириальное У. с. для неидеального газа:

где В (Т), С (Т), ... - 2-й, 3-й и т. д. вириальные коэф., зависящие от сил межмолекулярного взаимодействия. Вириальное У. с. позволяет объяснить многочисл. эксперим. результаты на основе простых моделей межмолекулярного взаимодействия в газах. Предложены также разл. эмпирич. У. с., основанные на эксперим. данных о теплоёмкости и сжимаемости газов. У. с. неидеальных газов указывают на существование критич. точки (с параметрами p к, V K , T к), в к-рой газообразная и жидкая фазы становятся идентичными. Если У. с. представить в виде приведённого У. с., то есть в безразмерных переменных р/р к, V /V K , Т/ Т к , то при не слишком низких темп-pax это ур-ние мало меняется для разл. веществ (закон соответственных состояний),

Для жидкостей из-за сложности учёта всех особенностей межмолекулярного взаимодействия пока не удалось получить общее теоретическое У. с. Ур-ние Ван-дер-Ваальса и его модификации, хотя и применяют для качеств, оценки поведения жидкостей, но по существу оно неприменимо ниже критич. точки, когда возможно сосуществование жидкой и газообразной фаз. У. с., хорошо описывающее свойства ряда простых жидкостей, можно получить из приближённых теорий жидкости. Зная распределение вероятностей взаимного расположения молекул (парной кор-реляц. ф-ции; см. Жидкость ),можно в принципе вычислить У. с. жидкости, однако эта задача сложна и полностью не решена даже с помощью ЭВМ.

Для получения У. с. твёрдых тел используют теорию колебаний кристаллической решётки , однако универсальное У. с. для твёрдых тел не получено.

Для магн. сред элементарная работа при равна

где М -магн. момент вещества, H -напряжённость магн. поля. Следовательно, зависимость М-М(Н,Т )представляет собой магнитное У. с. Для элементарная работа , где Р -поляризация, Е -напряжённость электрич. поля, и У. с. имеет вид Р=Р(Е, Т ).

Лит.: Майер Дж., Гепперт-Майер М., Статистическая механика, пер. с англ., 2 изд., М., 1980; Рид Р., Праусниц Дж., Шервуд Т., Свойства газов и жидкостей, пер. с англ., 3 изд., Л., 1982; Мейсон Э., Сперлинг Т., Вириальное уравнение состояния, пер. с англ., М., 1972; Исихара А., Статистическая физика, пер. с англ., М., 1973; Ашкрофт Н., Мер мин Н., Физика твердого тела, пер. с англ., т. 1-2, М., 1979. Д. Н. Зубарев .

Все параметры, включая температуру, зависят друг от друга. Эта зависимость выражается уравнениями типа

F(X 1 ,X 2 ,...,x 1 ,x 2 ,...,T) = 0,

где Х 1 ,Х 2 ,... - обобщенные силы, х 1 ,х 2 ,... - обобщенные координаты, а Т - температура. Уравнения, устанавливающие зависимость между параметрами, называютсяуравнениями состояния .

Уравнения состояния приводятся для простых систем, преимущественно - для газов. Для жидкостей и твердых тел, принимаемых, как правило, несжимаемыми, уравнения состояния практически не предлагались.

К середине ХХ в. было известно значительное число уравнений состояния для газов. Однако развитие науки пошло таким путем, что почти все они не нашли применения. Единственное уравнение состояния, которое продолжает широко использоваться в термодинамике, - уравнение состояния идеального газа.

Идеальным газом называется газ, приближающийся по свойствам к газу низкомолекулярного вещества, находящегося при очень низком давлении и сравнительно высокой температуре (достаточно далекой от температуры конденсации).

Для идеального газа выполняются:

    закон Бойля - Мариотта (при постоянной температуре произведение давления газа на его объем остается постоянным для данного количества вещества)

    закон Гей-Люссака (при постоянном давлении отношение объема газа к температуре остается постоянным)

    закон Шарля (при постоянном объеме отношение давления газа к температуре остается постоянным)

С. Карно объединил перечисленные выше соотношения в единое уравнение типа

Б. Клапейрон придал этому уравнению форму, близкую к современной:

Объем V, входящий в уравнение состояния идеального газа, относится к одному молю вещества. Его называют также молярным объемом .

Общепринятое название постоянной R - универсальная газовая постоянная (очень редко можно встретить название «постоянная Клапейрона» ). Значение ее составляет

R=8,31431Дж/моль К.

Приближение реального газа к идеальному означает достижение настолько больших расстояний между молекулами, при которых можно полностью пренебречь их собственным объемом и возможностью взаимодействия, т.е. существования сил притяжения или отталкивания между ними.

Ван-дер-Ваальс предложил уравнение, учитывающее эти факторы, в следующей форме:

где a и b - постоянные, определяемые для каждого газа отдельно. Остальные величины, входящие в уравнение Ван-дер-Ваальса, имеют тот же смысл, что и в уравнении Клапейрона.

Возможность существования уравнения состояния означает, что для описания состояния системы можно указывать не все параметры, а их число, меньшее на единицу, так как один из них может быть определен (хотя бы гипотетически) из уравнения состояния. Например, для описания состояния идеального газа достаточно указать только одну из следующих пар: давление и температуру, давление и объем, объем и температуру.

Объем, давление и температуру иногда называют внешними параметрами системы.

Если допускается одновременное изменение объема, давления и температуры, то система имеет два независимых внешних параметра.

Система, находящаяся в термостате (устройстве, обеспечивающем постоянство температуры) или маностате (устройстве, обеспечивающем постоянство давления), имеет один независимый внешний параметр.

УРАВНЕНИЯ СОСТОЯНИЯ , ур-ния, выражающие связь между физически однородной системы при термодинамич. . Термическое уравнение состояния связывает р с объемом V и т-рой T, а для - также с составом (молярными долями компонентов). Калорическое уравнение состояния выражает внутр. энергию системы как ф-цию V, T и состава. Обычно под уравнением состояния, если специально не оговаривается, подразумевают термич. уравнение состояния. Из него можно непосредственно получить коэф. термич. расширения, коэф. изотермич. сжатия, термич. коэф. (упругости). Уравнение состояния является необходимым дополнением к термодинамич. законам. Пользуясь уравнениями состояния, можно раскрыть зависимость термодинамич. ф-ций от V и р, проинтегрировать дифференц. термодинамич. соотношения, рассчитать (фугитивносги) , через к-рые обычно записывают условия . устанавливает связь между уравнениями состояния и любым из системы, выраженным в виде ф-ции своих естественных переменных. Напр., если известна (свободная энергия) F как ф-ция T и V, то уравнение состояния не может быть получено с помощью одних только законов , оно определяется из опыта или выводится методами статистич. физики. Последняя задача очень сложная и м. б. решена лишь для упрощенных моделей системы, напр, для . Уравнения состояния, применяемые для реальных систем, имеют эмпирич. или полуэмпирич. характер. Ниже рассмотрены нек-рые наиб, известные и перспективные уравнения состояния.

У равнение состояния имеет вид pV=RT, где V-молярный объем, R - . Этому ур-нию подчиняются при высоких разрежениях (см. Клапейрона - Менделеева уравнение).

Св-ва при небольших и средних хорошо описываются : pV/RT = 1 + B 2 /V+B 3 /V 2 + ..., где B 2 , В 3 - второй, третий и т.д. вириальные коэффициенты. Для данного в-ва они зависят лишь от т-ры. состояния обосновано теоретически; показано, что коэф. B 2 определяется взаимод. , В 3 - взаимод. трех частиц и т.д. При больших плотностях в-ва записанное выше разложение по степеням обратного объема расходится, поэтому вириальное ур-ние непригодно для описания . Оно служит лишь для расчета компонентов газообразных B-B. Обычно ограничиваются членом B 2 /V (редко B 3 /V 2). В лит. приводят эксперим. значения вириальных коэф., разработаны и теоре-тич. методы их определения. Уравнение состояния со вторым вириальным коэф. B 2 широко используют для газовой фазы при расчетах в случае не слишком высоких (до 10 атм). Его применяют также для описания св-в разбавленных р-ров высокомол. в-в (см. ).

Для практич. расчетов в широком диапазоне т-р и важное значение имеют уравнения состояния, способные описать одновременно св-ва жидкой и газовой фаз. В первые такое ур-ние было предложено И. Ван-дер-Ваальсом в 1873:

р = RT(V-b)-a/V 2 ,

где а и b - постоянные Ван-дер-Ваальса, характерные для данного в-ва (см. ). Это уравнение состояния имеет третий порядок относительно объёма V, любая изотерма при , меньших критич. значений (в докри-тич. области), имеет три действит. положит, корня при фиксир. . Наиб, из корней ур-ния соответствует газовой фазе, наименьший - жидкой; средний корень ур-ния физ. смысла не имеет. В сверхкритич. области изотермы имеют лишь один действит. корень.

Кубич. зависимость от объема сохраняется во MH. эмпирич. модификациях ур-ния Ван-дер-Ваальса. Чаще других используют двухпараметрич. ур-ния Пенга - Робинсона (1976) и Редлиха - Квонга - Соаве (1949, 1972). Эмпирич. постоянные этих уравнений состояния можно определить по критич. параметрам в-ва (см. ). Чтобы расширить круг описываемых уравнений состояния систем, набор рассматриваемых CB-B, диапазон т-р и , разработаны кубич. Уравнения состояния, содержащие три и более эмпирич. постоянных. Важное преимущество кубич. уравнений состояния- их простота, благодаря чему при расчетах с помощью ЭВМ не требуется слишком больших затрат машинного времени. Для мн. систем, образованных неполярными или слабо полярными в-вами, эти уравнения состояния обеспечивают требуемую для практич. целей точность.

Для неполярных и слабо полярных в-в ур-ние БВР дает очень точные результаты. Для индивидуального в-ва оно содержит восемь подгоночных параметров, для смеси дополнительно вводятся параметры смешанного ("бинарного") взаимодействия. Оценка большого числа подгоночных параметров - задача очень сложная, требующая многочисленных и разнообразных эксперим. данных. Параметры ур-ния БВР известны лишь для неск. десятков в-в, гл. обр. и неорг. . Модификации ур-ния, направленные, в частности, на повышение точности описания св-в конкретных в-в, содержат еще большее число подгоночных параметров. Несмотря на это, добиться удовлетворит, результатов для полярных в-в не всегда удается. Усложненность формы затрудняет использование уравнений состояния этого типа при расчетах процессов , когда необходимо выполнять многократную оценку компонентов, объема и системы.

При описании смесей в-в эмпирич. постоянные уравнения состояния считаются зависящими от состава. Для кубич. уравнений состояния ван-дер-ва-альсового типа общеприняты квадратичные правила , согласно к-рым постоянные а и b для смеси определяют из соотношений:

где x i , x j - молярные доли компонентов, величины a ij и b ij связывают с постоянными для индивидуальных в-в a ii , a jj и b ii , b jj согласно комбинационным правилам:

a ij = (a ii a jj) 1/2 (1-k ij); 6 ij = (b ii +b jj)/2,

где k ij - подгоночные параметры смешанного взаимод., определяемые по эксперим. данным. Однако квадратичные правила не позволяют получить удовлетворит, результаты для т. наз. асимметричных систем, компоненты к-рых сильно отличаются по полярности и мол. размерам, напр, для смесей с .

M. Гурон и Дж. Видал в 1979 сформулировали правила нового типа, опирающиеся на модели локального состава, к-рые успешно передают асимметрию концснтрац. зависимостей избыточного потенциала Гиббса G E для и позволяют существенно улучшить описание . Суть подхода состоит в том, что приравнивают величины G E жидкого р-ра, получаемые из уравнений состояния и рассчитываемые согласно выбранной модели локального состава [ур-ния Вильсона, NRTL (Non-Random Two Liquids equation), UNIQAC (UNIversal QUAsi-Chemical equation), UNIFAC (UNIque Functional group Activity Coefficients model); CM. ]. Это направление интенсивно развивается.

Многие двухпараметрич. уравнения состояния (Ван-дер-Ваальса, вириаль-ное с третьим вириальным коэф. и др.) можно представить в виде приведенного уравнения состояния:

f(p пр, Т пр, V пр)= 0,

где p пр = р/р крит, Т пр =Т/Т крит, V пр = V/V крит - приведенные . В-ва с одинаковыми значениями р пр и Т пр имеют одинаковый приведенный объем V np ; совпадают также факторы Z = pV/RT, коэф. и нек-рые др. термодинамич. ф-ции (см. ). Более общий подход, к-рый позволяет расширить круг рассматриваемых в-в, связан с введением в приведенное уравнение состояния дополнит, параметров. Наиб, простые среди них - фактор критич. Z кpит = р крит V кpит /RT кpит. и ацентрич. фактор w = -Ig p пр -1 (при Т пр = 0,7). Ацентрич. фактор является показателем несферичности поля межмол. сил данного в-ва (для он близок к нулю).

К. Питцер предложил пользоваться для расчета фактора линейным разложением

Z(T кpит, р крит) = Z 0 (T кpит, р крит)+ w Z"(T кpит, р крит),

где Z 0 означает фактор "простой" , напр, a Z" характеризует отклонения от модели простой (см. ). Предложены , определяющие зависимости Z°(T кpит, р крит)

и Z"(T кpит, р крит). Наиб, известны корреляции Ли и Кесслера, в к-рых зависимость Z 0 от T кpит и р крит передается с помощью ур-ния БВР для . Зависимость Z" от T кpит и р крит установлена при выборе в качестве "эталонной" н-октана. Принимается, что Z"(T кpит, р крит) = /w *, где w * - фактор ацентричности н-октана, Z* - его фактор согласно ур-нию БВР. Разработана методика применения ур-ния Ли-Кесслера и для . Это уравнение состояния наиб, точно описывает термодинамич. св-ва и для неполярных в-в и смесей.

Наряду с вышеупомянутыми эмпирич. уравнениями состояния важное значение приобрели ур-ния, обладающие возможностями учета особенностей структуры и межмол. взаимод. Они опираются на положения статистич. теории и результаты численных экспериментов для модельных систем. Согласно мол.-статистич. трактовке, ур-ние Ван-дер-Ваальса описывает флюид твердых притягивающихся сфер, рассматриваемый в приближении среднею поля. В новых ур-ниях уточняется прежде всего член ур-ния Ван-дер-Ваальса, обусловливаемый силами межчастичного отталкивания. Значительно точнее приближение Кариахана- Старлинга, опирающееся на результаты численного флюида твердых сфер в широком диапазоне плотностей. Оно используется во многих уравнениях состояния, однако большие возможности имеют уравнения состояния модельных систем твердых частиц, в к-рых учитывается асимметрия мол. формы. Напр., в ур-нии BACK (Boublik-Alder-Chen-Kre-glewski) для оценки вклада сил отталкивания служит уравнение состояния флюида твердых частиц, имеющих форму гантелей. Для учета вклада сил притяжения употребляют выражение, аппроксимирующее результаты, полученные методом мол. динамики для флюида с межчастичными потенциалами типа прямоугольной ямы (см. ). Ур-ние BACK и его аналоги позволяют с достаточной точностью описывать смеси, не содержащие высококипящих компонентов.

Особенность описания смесей высококипящих орг. B-B -необходимость учета дополнительной вращательно-колебат. степени свободы, связанной со смещениями сегментов молекул-цепочек (напр., C 8). Для этих систем наиб, распространение получило ур-ние PHCT (Perturbed Hard Chain Theory), предложенное Дж. Прауснитцем и M. До-нахью в 1978. Индивидуальное в-во характеризуется тремя эмпирич. параметрами в ур-нии PHCT. Комбинационные правила для смеси содержат один параметр смешанного взаимодействия. Дальнейшее усовершенствование ур-ния PHCT основано на замене потенциала прямоугольной ямы, описывающей притяжение

Параметры, совокупностью которых определяется состояние системы, связаны друг с другом. При изменении одного из них изменяется по крайней мере хотя бы еще один. Эта взаимосвязь параметров находит выражение в функциональной зависимости термодинамических параметров .

Уравнение, связывающее термодинамические параметры системы в равновесном состоянии (например, для однородного тела – давление, объем, температура) называется уравнением состояния . Общее число уравнений состояния системы равно числу ее степеней свободы (вариантности равновесной системы), т.е. числу независимых параметров, характеризующих состояние системы .

При изучении свойств равновесных систем термодинамика прежде всего рассматривает свойства простых систем. Простой системой называют систему с постоянным числом частиц, состояние которой определяется только одним внешним параметром «а» и температурой, т.е. простая система-это однофазная система, определяемая двумя параметрами.

Так, уравнение

является уравнением состояния чистого вещества при отсутствии внешних электрических, магнитных, гравитационных полей. Графически уравнение состояния выразится поверхностью в координатах P -V -T , которую называют термодинамической поверхностью . Каждое состояние системы на такой поверхности изобразится точкой, которую называют фигуративной точкой . При изменении состояния системы фигуративная точка перемещается по термодинамической поверхности, описывая некоторую кривую . Термодинамическая поверхность представляет геометрическое место точек, изображающих равновесное состояние системы в функциях от термодинамических параметров .

Вывести уравнение состояния на основе законов термодинамики нельзя; они или устанавливаются из опыта, или находятся методами статистической физики.

Уравнения состояния связывают температуру Т , внешний параметр а i (например, объем) и какой-либо равновесный внутренний параметр b k (например, давление).

Если внутренним параметром b k является внутренняя энергия U , то уравнение

называется уравнением энергии или калорическим уравнением состояния .

Если внутренним параметром b k является сопряженная внешнему параметру а i сила А i (например, давление Р является силой объема V ), то уравнение

называется термическим уравнением состояния.

Термические и калорические уравнения состояния простой системы имеют вид:

Если А = Р (давление) и, следовательно, а = V (объем системы), то уравнения состояния системы запишутся соответственно:

Например, при изучении газообразного состояния используют понятие идеального газа. Идеальный газ представляет собой совокупность материальных точек (молекул или атомов), находящихся в хаотическом движении. Эти точки рассматриваются как абсолютно упругие тела, обладающие нулевым объемом и не взаимодействующие между собой.



Для такой простой системы как идеальный газ термическим уравнением состояния является уравнение Клапейрона-Менделеева

где Р – давление, Па; V – объем системы, м 3 ; n – количество вещества, моль; Т – термодинамическая температура, К; R – универсальная газовая постоянная:

Калорическим уравнением состояния идеального газа является закон Джоуля о независимости внутренней энергии идеального газа от объема при постоянной температуре:

где С V – теплоемкость при постоянном объеме. Для одноатомного идеального газа С V не зависит от температуры, поэтому

или, если Т 1 = 0 К, то .

Для реальных газов эмпирически установлено более 150 термических уравнений состояния. Наиболее простым из них и качественно правильно передающим поведение реальных газов даже при переходе их в жидкость является уравнение Ван-дер-Ваальса :

или для n молей газа:

Это уравнение отличается от уравнения Клапейрона-Менделеева двумя поправками: на собственный объем молекул b и на внутреннее давление а /V 2 , определяемое взаимным притяжением молекул газа (а и b – константы, не зависящие от Т и Р , но разные для различных газов; в газах с бóльшим а при постоянных Т и V давление меньше, а с бóльшим b – больше).

Более точными двухпараметрическими термическими уравнениями состояния являются:

первое и второе уравнения Дитеричи :

уравнение Бертло :

уравнение Редлиха-Квонга :

Приведенные уравнения Бертло, Дитеричи и особенно Редлиха-Квонга имеют более широкую область применимости, чем уравнение Ван-дер-Ваальса. Следует отметить, однако, что постоянные а и b для данного вещества не зависят от температуры и давления только в небольших интервалах этих параметров. Двухпараметрические уравнения типа Ван-дер-Ваальса описывают и газообразную, и жидкую фазы, и отражают фазовый переход жидкость-пар, а также наличие критической точки этого перехода , хотя точных количественных результатов для широкой области газообразного и жидкого состояний с помощью этих уравнений при постоянных параметрах а и b получить не удается.

Изотермы идеального и реального газов, а также газа Ван-дер-Ваальса представлены на рис. 1.1.


Рис. 1. Изотермы различных газов.

Точное описание поведения реального газа можно получить с помощью уравнения, предложенного в 1901 году Каммерлинг-Оннесом и Кизомом и получившего название уравнения состояния с вириальными коэффициентами или вириального уравнения состояния :

которое записывается как разложение фактора сжимаемости

по степеням обратного объема . Коэффициенты В 2 (Т ), В 3 (Т ) и т.д. зависят только от температуры , называются вторым, третьим и т.д. вириальным коэффициентом и описывают отклонения свойств реального газа от идеального при заданной температуре . Вириальные коэффициенты В i (Т ) вычисляются из опытных данных по зависимости PV для заданной температуры.


УРАВНЕНИЯ СОСТОЯНИЯ , ур-ния, выражающие связь между физически однородной системы при термодинамич. равновесии. Термическое У.с. связывает р с объемом V и температурой T, а для - также с составом (молярными долями компонентов). Калорическое У. с. вьюажает внутр. энергию системы как ф-цию V, T и состава. Обычно под У. с., если специально не оговаривается, подразумевают термич. У. с. Из него можно непосредственно получить коэф. термич. расширения, коэф. изотермич. сжатия, термич. коэф. (упругости). У. с. является необходимым дополнением к термодинамич. законам. Пользуясь У. с., можно раскрыть зависимость термодинамич. ф-ций от V и р, проинтегрировать дифференц. термодинамич. соотношения, рассчитать (фугитивносги) , через которые обычно записывают условия . устанавливает связь между У. с. и любым из системы, выраженным в виде ф-ции своих естественных переменных. Напр., если известна (свободная энергия) F как ф-ция T и V, то У. с. не может быть получено с помощью одних только законов , оно определяется из опыта или выводится методами статистич. физики. Последняя задача очень сложная и м. б. решена лишь для упрощенных моделей системы, напр, для . У. с., применяемые для реальных систем, имеют эмпирич. или полуэмпирич. характер. Ниже рассмотрены некоторые наиб, известные и перспективные У. с.

Для неполярных и слабо полярных веществ ур-ние БВР дает очень точные результаты. Для индивидуального вещества оно содержит восемь подгоночных параметров, для смеси дополнительно вводятся параметры смешанного ("бинарного") взаимодействия. Оценка большого числа подгоночных параметров - задача очень сложная, требующая многочисленных и разнообразных эксперим. данных. Параметры ур-ния БВР известны лишь для неск. десятков веществ, главным образом и неорг. . Модификации ур-ния, направленные, в частности, на повышение точности описания свойств конкретных веществ, содержат еще большее число подгоночных параметров. Несмотря на это, добиться удовлетворит, результатов для полярных веществ не всегда удается. Усложненность формы затрудняет использование У. с. этого типа при расчетах процессов , когда необходимо выполнять многократную оценку компонентов, объема и энтальпии системы.

При описании смесей веществ эмпирич. постоянные У. с. считаются зависящими от состава. Для кубич. У. с. ван-дер-ва-альсового типа общеприняты квадратичные правила , согласно которым постоянные а и b для смеси определяют из соотношений:

где x i , x j - молярные доли компонентов, величины a ij и b ij связывают с постоянными для индивидуальных веществ a ii , a jj и b ii , b jj согласно комбинационным правилам:

a ij = (a ii a jj) 1/2 (1-k ij); 6 ij = (b ii +b jj)/2,

где k ij - подгоночные параметры смешанного взаимод., определяемые по эксперим. данным. Однако квадратичные правила не позволяют получить удовлетворит, результаты для т. наз. асимметричных систем, компоненты которых сильно отличаются по полярности и мол. размерам, напр, для смесей с .

M. Гурон и Дж. Видал в 1979 сформулировали правила нового типа, опирающиеся на модели локального состава, которые успешно передают асимметрию концснтрац. зависимостей избыточного потенциала Гиббса G E для жидких смесей и позволяют существенно улучшить описание . Суть подхода состоит в том, что приравнивают величины G E жидкого раствора, получаемые из У. с. и рассчитываемые согласно выбранной модели локального состава [ур-ния Вильсона, NRTL (Non-Random Two Liquids equation), UNIQAC (UNIversal QUAsi-Chemical equation), UNIFAC (UNIque Functional group Activity Coefficients model); CM. неэлектролитов]. Это направление интенсивно развивается.

Многие двухпараметрич. У. с. (Ван-дер-Ваальса, вириаль-ное с третьим вириальным коэф. и др.) можно представить в виде приведенного У. с.:

f(p пр, Т пр, V пр)= 0,

где p пр = р/р крит, Т пр =Т/Т крит, V пр = V/V крит - состояния. В-ва с одинаковыми значениями р пр и Т пр имеют одинаковый приведенный объем V np ; совпадают также факторы Z = pV/RT, коэф. и некоторые др. термодинамич. ф-ции (см. Соответственных состояний закон). Более общий подход, который позволяет расширить круг рассматриваемых веществ, связан с введением в приведенное У. с. дополнит, параметров. Наиб, простые среди них - фактор критич. Z кpит = р крит V кpит /RT кpит. и ацентрич. фактор w= -Ig p пр -1 (при Т пр = 0,7). Ацентрич. фактор является показателем несферичности поля межмол. сил данного вещества (для он близок к нулю).

К. Питцер предложил пользоваться для расчета фактора линейным разложением

Z(T кpит, р крит) = Z 0 (T кpит, р крит)+ wZ"(T кpит, р крит),

где Z 0 означает фактор "простой" , напр, a Z" характеризует отклонения от модели простой (см. Жидкость). Предложены , определяющие зависимости Z°(T кpит, р крит)

и Z"(T кpит, р крит). Наиб, известны корреляции Ли и Кесслера, в которых зависимость Z 0 от T кpит и р крит передается с помощью ур-ния БВР для . Зависимость Z" от T кpит и р крит установлена при выборе в качестве "эталонной" н-октана. Принимается, что Z"(T кpит, р крит) = /w*, где w* - фактор ацентричности н-октана, Z* - его фактор согласно ур-нию БВР. Разработана методика применения ур-ния Ли-Кесслера и для жидких смесей. Это У. с. наиб, точно описывает термодинамич. свойства и для неполярных веществ и смесей.

Наряду с вышеупомянутыми эмпирич. У. с. важное значение приобрели ур-ния, обладающие возможностями учета особенностей структуры и межмол. взаимод. Они опираются на положения статистич. теории и результаты численных экспериментов для модельных систем. Согласно мол.-статистич. трактовке, ур-ние Ван-дер-Ваальса описывает флюид твердых притягивающихся сфер, рассматриваемый в приближении среднею поля. В новых ур-ниях уточняется прежде всего член ур-ния Ван-дер-Ваальса, обусловливаемый силами межчастичного отталкивания. Значительно точнее приближение Кариахана- Старлинга, опирающееся на результаты численного флюида твердых сфер в широком диапазоне плотностей. Оно используется во многих У. с., однако большие возможности имеют У. с. модельных систем твердых частиц, в которых учитывается асимметрия мол. формы. Напр., в ур-нии BACK (Boublik-Alder-Chen-Kre-glewski) для оценки вклада сил отталкивания служит У. с. флюида твердых частиц, имеющих форму гантелей. Для учета вклада сил притяжения употребляют выражение, аппроксимирующее результаты, полученные методом мол. динамики для флюида с межчастичными потенциалами типа прямоугольной ямы (см. Молекулярная динамика). Ур-ние BACK и его аналоги позволяют с достаточной точностью описывать смеси, не содержащие высококипящих компонентов.

Особенность описания смесей высококипящих орг. B-B -необходимость учета дополнительной вращательно-колебат. степени свободы, связанной со смещениями сегментов молекул-цепочек (напр., C 8). Для этих систем наиб, распространение получило ур-ние PHCT (Perturbed Hard Chain Theory), предложенное Дж. Прауснитцем и M. До-нахью в 1978. Индивидуальное вещество характеризуется тремя эмпирич. параметрами в ур-нии PHCT. Комбинационные правила для смеси содержат один параметр смешанного взаимодействия. Дальнейшее усовершенствование ур-ния PHCT основано на замене потенциала прямоугольной ямы, описывающей притяжение , потенциалом Леннард-Джонса [ур-ние PSCT (Perturbed Soft Chain Theory)] и на учете межмол. сил [ур-ние PACT (Perturbed Anisotropic Chain Theory)]. Последнее ур-ние хорошо описывает в системах с полярными компонентами даже без использования подгоночных параметров парного взаимодействия.