Понятие валентности сыграло в истории химии большую роль, прояснив, каким образом, в каких соотношениях и почему атомы разных химических элементов могут соединяться друг с другом. В случае простейших неорганических и органических соединений теория работала. Однако со временем, как это обычно и бывает в науке, накапливались сведения, которые постепенно заставили химиков отказаться от понятия валентности как универсального способа для описания строения вещества.

Прежде всего, оказалось, что многие элементы, в отличие от водорода и кислорода, могут иметь не одну, а несколько валентностей, так что водород и кислород скорее исключения. Но с этой трудностью довольно легко справились ещё в XIX веке, приписав ряду элементов несколько возможных валентностей.

В результате стало понятно, почему некоторые вещества, образованные всего двумя элементами, могут так сильно отличаться по составу. Например, в одном из оксидов железа (то есть в соединении железа и кислорода) на одну массовую часть железа приходится примерно 0,3 массовые части кислорода, а в другом оксиде — вдвое больше.

Выяснилось, что железо в этих оксидах имеет разную валентность: в оксиде FeO железо двухвалентно, а в оксиде Fe2О3 — трёхвалентно.

Был известен также оксид железа Fe3О4. Какая же в нём валентность железа?

Если кислород двухвалентен, то получается, что валентность железа 2-4/3 = 8/3! Как такое может быть?

Проблему решили, когда было доказано, что в этом оксиде один атом железа двухвалентен, а два — трёхвалентны, то есть формулу этого оксида можно представить в виде FeO Fe2О3. Аналогично была решена проблема со свинцовым суриком, состав которого отвечает формуле Рb3О4.

Но атомы свинца трёхвалентными не бывают. В данном случае оказалось, что два атома свинца двухвалентны (как в РbО), а один — четырёхвалентен (как в РbО2), так что формулу свинцового сурика можно представить в виде 2РbО РbО2.

Многовалентными могут быть и металлы, и неметаллы. Так, йод в соединениях с фтором может быть одновалентным (IF), трёхвалентным (IF3), пятивалентными (IF5) и семивалентным (IF7), то есть проявлять четыре разные валентности, тогда как фтор всегда одновалентен.

Металл молибден в соединениях с галогенами может проявлять валентности 2, 3,4, 5 и 6. Разная валентность у атомов данного элемента — скорее правило, чем исключение. Такое свойство весьма обогащает химию.

Например, углерод с кислородом образует два газа — угарный СО и углекислый СО2, и понятно, что валентность углерода в этих соединениях разная. Сера с кислородом тоже образует по крайней мере два соединения — сернистый газ SО2 и серный ангидрид SО3, в которых сера, как нетрудно догадаться, имеет валентность соответственно 4 и 6. Существование разнообразных оксидов марганца (МnО, Мn2О3, Мn3О4, МnО2, Мn2О7 и др.) показывает, что марганец может иметь несколько разных валентностей.

Валентность в названиях веществ часто обозначают римскими цифрами — в скобках после символа или названия элемента. Химик может назвать вещество FeO оксидом железа (II), а вещество Fe2О3 — оксидом железа (III). И поскольку кислород образует соединения со значительно большим числом элементов, чем водород, химики чаще всего устанавливали валентности элементов именно по их соединениям с кислородом.

Когда химики изучили сложные органические соединения, оказалось, что атомы углерода в них, как и в молекуле метана, практически всегда четырёхвалентны. Четырёхвалентность атомов углерода сыграла огромную роль в истории органической химии; это свойство исключительно важно также для всего живого, поскольку химия органических соединений — это в подавляющем большинстве случаев химия углерода.

Как же объясняется определённая валентность элемента? Оказывается, это связано со строением атомов, вернее, их внешних (то есть наиболее далёких от ядра) электронных оболочек.

Строение этих оболочек у разных атомов разное, поэтому отличается и их валентность.

Именно благодаря электронам атомы могут связываться друг с другом в определённых соотношениях.

Каким же образом электроны осуществляют химическую связь, то есть связывают атомы друг с другом? Химическая связь бывает разной, и её тип зависит от строения электронных оболочек реагирующих атомов.

Известно, что металлический натрий бурно (с пламенем) реагирует с хлором, образуя хлорид натрия NaCl (поваренную соль). Как происходит образование этого вещества?

Рассмотрим изолированный атом натрия. У него 11 электронов, расположенных на трёх электронных оболочках.

На самой близкой к ядру находятся 2 электрона. Дальше — 8 электронов.

По этой же причине натрий находится в 1 — й группе периодической системы. Электронную оболочку, на которой расположен этот «дальний» электрон, называют валентной, а находящийся на ней электрон (или электроны, если их несколько) — валентными электронами.

Cтраница 3


А (для которых уравнение (1) дает порядок связи 0 19); кроме того, приходится принять валентность железа равной 6 вместо первоначальной величины 5 78, а для связей Fe-Si и Fe-Fe использовать различные радиусы атома Fe (VI) па том основании, что вклад d - электропов в эти связи различен. В дальнейшем было показано , что уравнение Полипга не согласуется с межатомными расстояниями при К. Поэтому остается неясным, следует ли использовать это уравнение при обсуждении межатомных расстояний в пптерметаллических соединениях.  

Обе полученные соли железа - хлориды железа - обладают различными свойствами, поэтому необходимо дать им названия, которые указывали бы валентность железа.  

Титриметрическое определение общего железа предусматривает перевод всего имеющегося в образце железа в одно и то же валентное состояние и последующее титрование, в процессе которого валентность железа меняется. Титрование окисных ионов железа никогда не было общераспространенным, и наиболее широко используются методы, в которых закисное железо при титровании переходит в окисное.  

Гемоглобин при помощи железа может присоединять не только кислород, но и окись углерода. Валентность железа при этом тоже не меняется. Ядовитое действие окиси углерода проявляется в том, что образующийся карбоксигемоглобин становится непригодным к переносу кислорода, в результате чего наступает кислородное голодание. При связывании 70 % гемоглобина окисью углерода наступает смерть.  

К шестой координационной связи железа цитохрома а могут присоединиться HCN, H2S, CO. При этом валентность железа (Fe3) становится постоянной и поток электронов прекращается.  


Скорость образования акролеина возрастает с увеличением концентрации железа в катализаторе, а скорость образования СО2 растет значительно меньше, что указывает на участие иона Fe3 в образовании я-аллильного комплекса, ведущего мягкое окисление пропилена. В условиях окисления пропилена валентность железа изменяется обратимо. Если в исходном катализаторе ионы Мо64 окружены октаэдрами кислородных ионов, то образовавшиеся ионы Мо5 находятся в координации квадратной пирамиды. Перестройка решетки катализаторов изменяет ее дефектность и влияет на каталитические свойства.  

Однако деструкция их легко протекает как в сильнокислой, так и в сильнощелочной среде. Последнее нами было использовано для установления валентности железа в этих соединениях. С этой целью вещество 66 (CeH6COC2HN3) 2Fe - H20 в токе азота было обработано 0 02N раствором КОН, приготовленным из перегнанной дважды в токе азота воды. При нагревании наблюдается образование зеленого коллоидного раствора и осадка гидрата закиси железа. Следовательно, в полученном комплексе валентность железа равна двум.  

Зависимость скорости растворения различных базальтов от времени и температуры выщелачивания.| Зависимость развития кремнеземистого скелета, образующегося из обожженных и необожженных образцов базальта от длительности и температуры выщелачивания.  

Извлечение железа до седьмого цикла остается почти экви-пропорциональным, а с восьмого цикла оно также частично остается в скелете и не поддается извлечению. Вероятно, здесь играет роль изменение валентности железа и его координационного числа.  

В тканях, где содержание кислорода незначительно, кислород отщепляется от гемоглобина. Легкость диссоциации оксигемоглобина объясняется тем, что валентность железа остается всегда постоянной.  

Когда такой протопорфирин железа присоединяется к определенному белку, образуется собственно фермент. Связывание происходит, по-видимому, через одну из валентностей железа, а дополнительно и за счет взаимодействия белка с двумя группами пропионовой кислоты протопорфирина. В случае каталазы четыре группы ферригема, или гемина, присоединяются к одной молекуле белка такой величины, что общее содержание железа составляет около 0 1 вес. Каталаза из различных источников или разных видов (например, бактериальная, печеночная или эритроцитная) может обладать разной активностью. Ферригемы каталазы не легко восстанавливаются до феррогема; действительно, только в последнее время выяснена возможность такого восстановления без разрушения фермента. Фермент пероксидаза также образуется подобным образом путем присоединения ферригема к белку. Весьма отчетливое различие заключается в том, что в пероксидазе имеется только одна группа ферригема на молекулу. Молекула белка также меньше и обладает способностью к соединению с протопорфири-ном марганца без потери пероксидатической активности. Пероксидаза отличается еще тем, что она труднее инактивируется при нагревании, чем каталаза.  

Механизм окисления и восстановление цитохромов еще не вполне изучен. Различие между окисленной и восстановленной формами цитохрома с состоит в изменении валентности железа. Функция цитохрома заключается в снятии электрона с атома водорода, активированного дегидразами. Следовательно, цитохром принимает и отдает электроны, являясь переносчиком именно их, а не водорода. В конечном итоге, электроны переносятся на кислород, и последний таким путем приобретает способность вступать в соединение с ионизированным водородом.  


Валентность - это способность атома данного элемента образовывать определенное количество химических связей.

Образно говоря, валентность - это число "рук", которыми атом цепляется за другие атомы. Естественно, никаких "рук" у атомов нет; их роль играют т. н. валентные электроны.

Можно сказать иначе: валентность - это способность атома данного элемента присоединять определенное число других атомов.

Необходимо четко усвоить следующие принципы:

Существуют элементы с постоянной валентностью (их относительно немного) и элементы с переменной валентностью (коих большинство).

Элементы с постоянной валентностью необходимо запомнить:


Остальные элементы могут проявлять разную валентность.

Высшая валентность элемента в большинстве случаев совпадает с номером группы, в которой находится данный элемент.

Например, марганец находится в VII группе (побочная подгруппа), высшая валентность Mn равна семи. Кремний расположен в IV группе (главная подгруппа), его высшая валентность равна четырем.

Следует помнить, однако, что высшая валентность не всегда является единственно возможной. Например, высшая валентность хлора равна семи (убедитесь в этом!), но известны соединения, в которых этот элемент проявляет валентности VI, V, IV, III, II, I.

Важно запомнить несколько исключений : максимальная (и единственная) валентность фтора равна I (а не VII), кислорода - II (а не VI), азота - IV (способность азота проявлять валентность V - популярный миф, который встречается даже в некоторых школьных учебниках).

Валентность и степень окисления - это не тождественные понятия.

Эти понятия достаточно близки, но не следует их путать! Степень окисления имеет знак (+ или -), валентность - нет; степень окисления элемента в веществе может быть равна нулю, валентность равна нулю лишь в случае, если мы имеем дело с изолированным атомом; численное значение степени окисления может НЕ совпадать с валентностью. Например, валентность азота в N 2 равна III, а степень окисления = 0. Валентность углерода в муравьиной кислоте = IV, а степень окисления = +2.

Если известна валентность одного из элементов в бинарном соединении, можно найти валентность другого.

Делается это весьма просто. Запомните формальное правило: произведение числа атомов первого элемента в молекуле на его валентность должно быть равно аналогичному произведению для второго элемента .

В соединении A x B y: валентность (А) x = валентность (В) y


Пример 1 . Найти валентности всех элементов в соединении NH 3 .

Решение . Валентность водорода нам известна - она постоянна и равна I. Умножаем валентность Н на число атомов водорода в молекуле аммиака: 1 3 = 3. Следовательно, для азота произведение 1 (число атомов N) на X (валентность азота) также должно быть равно 3. Очевидно, что Х = 3. Ответ: N(III), H(I).


Пример 2 . Найти валентности всех элементов в молекуле Cl 2 O 5 .

Решение . У кислорода валентность постоянна (II), в молекуле данного оксида пять атомов кислорода и два атома хлора. Пусть валентность хлора = Х. Составляем уравнение: 5 2 = 2 Х. Очевидно, что Х = 5. Ответ: Cl(V), O(II).


Пример 3 . Найти валентность хлора в молекуле SCl 2 , если известно, что валентность серы равна II.

Решение . Если бы авторы задачи не сообщили нам валентность серы, решить ее было бы невозможно. И S, и Cl - элементы с переменной валентностью. С учетом дополнительной информации, решение строится по схеме примеров 1 и 2. Ответ: Cl(I).

Зная валентности двух элементов, можно составить формулу бинарного соединения.

В примерах 1 - 3 мы по формуле определяли валентность, попробуем теперь проделать обратную процедуру.

Пример 4 . Составьте формулу соединения кальция с водородом.

Решение . Валентности кальция и водорода известны - II и I соответственно. Пусть формула искомого соединения - Ca x H y . Вновь составляем известное уравнение: 2 x = 1 у. В качестве одного из решений этого уравнения можно взять x = 1, y = 2. Ответ: CaH 2 .

"А почему именно CaH 2 ? - спросите вы. - Ведь варианты Ca 2 H 4 и Ca 4 H 8 и даже Ca 10 H 20 не противоречат нашему правилу!"

Ответ прост: берите минимально возможные значения х и у. В приведенном примере эти минимальные (натуральные!) значения как раз и равны 1 и 2.

"Значит, соединения типа N 2 O 4 или C 6 H 6 невозможны? - спросите вы. - Следует заменить эти формулы на NO 2 и CH?"

Нет, возможны. Более того, N 2 O 4 и NO 2 - это совершенно разные вещества. А вот формула СН вообще не соответствует никакому реальному устойчивому веществу (в отличие от С 6 Н 6).

Несмотря на все сказанное, в большинстве случаев можно руководствоваться правилом: берите наименьшие значения индексов.


Пример 5 . Составьте формулу соединения серы с фтором, если известно, что валентность серы равна шести.

Решение . Пусть формула соединения - S x F y . Валентность серы дана (VI), валентность фтора постоянна (I). Вновь составляем уравнение: 6 x = 1 y. Несложно понять, что наименьшие возможные значения переменных - это 1 и 6. Ответ: SF 6 .

Вот, собственно, и все основные моменты.

А теперь проверьте себя! Предлагаю пройти небольшой тест по теме "Валентность" .

Трудно переоценить роль железа для человеческого организма, ведь именно оно способствует «творению» крови, его содержание влияет на уровень гемоглобина и миоглобина, железо нормализует работу ферментной системы. Но что это за элемент с точки зрения химии? Какая валентность железа? Об этом будет рассказано в данной статье.

Немного истории

Человечество знало об этом химическом элементе и даже владело изделиями из него еще в IV веке до нашей эры. Это были народы Древнего Египта и Шумеры. Именно они первые начали изготавливать украшения, оружие из сплава железа и никеля, которые были найдены при археологических раскопках и тщательно исследованы химиками.

Немного позже, племена арийцев, переселившиеся в Азию, научилось добывать твердое железо из руды. Оно было настолько ценным для людей того времени, что изделия покрывали золотом!

Характеристика железа

Железо (Fe) стоит на четвертом месте по содержанию его в недрах земной коры. Оно занимает место в 7 группе 4 периода и имеет номер 26 в химической таблице элементов Менделеева. Валентность железа имеет прямую зависимость от своего положения в таблице. Но об этом позже.

Данный металл наиболее всего распространен в природе в виде руды, встречается в воде как минерал, а также в различных соединениях.

Наибольшее количество запасов железа в виде руды, находится в России, Австралии, Украине, Бразилии, США, Индии, Канаде.

Физические свойства

Прежде чем переходить к валентности железа, необходимо подробнее рассмотреть его физические свойства, так сказать, приглядеться к нему поближе.

Этот металл имеет достаточно пластичный, но способен к увеличению твердости путем его взаимодействия с другими элементами (например, с углеродом). Также он обладает магнитными свойствами.

Во влажной среде железо может корродировать, то есть ржаветь. Хотя абсолютно чистый металл устойчивее к влаге, но если в нем есть примеси, именно они провоцируют коррозию.

Железо хорошо взаимодействует с кислотной средой, даже может образовывать соли железной кислоты (при условии сильного окислителя).

В воздушной среде быстро покрывается оксидной пленкой, которая защищает его от взаимодействий.

Химические свойства

Также этот элемент обладает рядом химических свойств. Железо, как и остальные элементы таблицы Менделеева, имеет заряд атомного ядра, который соответствует порядковому номеру +26. А возле ядра вращается 26 электронов.

А вообще, если рассматривать свойства железа - химического элемента, то он является металлом с невысокой активной способностью.

Взаимодействуя с окислителями более слабыми, железо образует соединения, где оно двухвалентно (то есть его степень окисления +2). А если с сильными окислителями, то степень окисления железа достигает +3 (то есть валентность его становится равной 3).

При взаимодействии с химическими элементами, которые не являются металлами, Fe выступает по отношению к ним восстановителем, при этом степень окисления его становиться, кроме +2 и +3, даже +4, +5, +6. Такие соединения имеют очень сильные окислительные свойства.

Как уже отмечалось выше, железо в воздушной среде покрывается оксидной пленкой. А при нагревании скорость реакции повышается и может образоваться оксид железа с валентностью 2 (температура менее 570 градусов по Цельсию) или оксид с валентностью 3 (температурный показатель более 570 градусов).

Взаимодействие Fe с галогенами, приводит к образованию солей. Элементы фтор и хлор окисляют его до +3. Бром же - до +2 или +3 (все зависит от того, какие условия осуществления химического превращения при взаимодействии с железом).

Вступая во взаимодействия с йодом, элемент окисляется до +2.

Нагревая железо и серу, получается сульфид железа с валентностью 2.

Если феррум расплавить и соединить его с углеродом, фосфором, кремнием, бором, азотом, то получатся соединения называемые сплавами.

Железо является металлом, поэтому оно вступает во взаимодействие и с кислотами (об этом кратко также говорилось чуть выше). Например, кислоты серная и азотная, имеющие высокую концентрацию, в среде с пониженной температурой, на железо не оказывают воздействия. Но стоит ей повысится, как происходит реакция, в результате которой железо окисляется до +3.

Чем выше концентрация кислоты, тем большую температуру необходимо дать.

Нагревая 2-х валентное железо в воде, получим его оксид и водород.

Также Fe обладает способностью вытеснять из водных растворов солей металлы, которые имеют пониженную активность. При этом он окисляется до +2.

При повышении температуры, железо восстанавливает металлы из оксидов.

Что такое валентность

Уже в предыдущем разделе немного встречалось понятие валентности, а также степени окисления. Пришло время рассмотреть валентность железа.

Но для начала необходимо понять, что это вообще за такое свойство химических элементов.

Химические вещества почти всегда постоянны в своем составе. Например, в формуле воды Н2О - 1 атом кислорода и 2 атома водорода. То же самое и с другими соединениями, в которых задействованы два химических элемента, один из которых водород: к 1 атому химического элемента может добавиться 1-4 атома водорода. Но никак не наоборот! А потому, видно, что водород присоединяет к себе всего 1 атом другого вещества. И именно это явление называют валентностью - способностью атомов химического элемента присоединять конкретное количество атомов других элементов.

Значение валентности и графическая формула

Есть элементы таблицы Менделеева, которые обладают постоянной валентностью - это кислород и водород.

А есть такие химические элементы, у которых она изменяется. Например, железо чаще 2-х и 3-х валентно, сера 2, 4, 6-ти, углерод 2 и 4-х. Это элементы с переменной валентностью.

Также, зная валентность одного из элементов в соединении, можно определить валентность другого.

Валентность железа

Как было отмечено, железо относится к элементам с переменной валентностью. И она может колебаться не только между показателями 2 и 3, но и достигать 4, 5 и даже 6.

Конечно, более подробно изучает валентность железа Рассмотрим этот механизм кратко на уровне простейших частиц.

Железо является д-элементом, к которому причисляется еще 31 элемент таблицы Менделеева (это 4-7 периоды). С возрастанием порядкового номера, свойства д-элементов приобретают небольшие изменения. Атомный радиус у этих веществ также медленно возрастает. Они обладают переменной валентностью, которая зависит от того, что предвнешний д-электронный подуровень является незавершенным.

Потому для железа валентными есть не только с-электроны, находящиеся во внешнем слое, но и неспаренные 3д-электроны предвнешнего слоя. И, как следствие, валентность Fe в химических соединениях может равнятся 2, 3, 4, 5, 6. В основном, она равна 2 и 3 - это более устойчивые с другими веществами. В менее устойчивых - он проявляет валентность 4, 5, 6. Но, такие соединения встречаются реже.

Двухвалентный феррум

При взаимодействии 2 валентного железа с водой получается оксид железа (2). Такое соединение обладает черным цветом. Достаточно легко взаимодействует с соляной (малой концентрации) и азотной (высокой концентрации) кислотами.

Если такому оксиду 2-х валентного железа провзаимодействовать или с водородом (температура 350 градусов по Цельсию), или с углеродом (коксом) при 1000 градусов, то оно восстанавливается до чистого состояния.

Добывают оксид железа 2-х валентного такими способами:

  • через соединение оксида 3-х валентного железа с угарным газом;
  • при нагревании чистого Fe, при этом низкое давление кислорода;
  • при раскладывании оксалата 2-х валентного железа в вакуумной среде;
  • при взаимодействии чистого железа с его оксидами, температура при этом 900-1000 градусов по Цельсию.

Что касается природной среды, то оксид железа 2-х валентного, присутствует в виде минерала вюстита.

Есть еще способ, как в растворе определить валентность железа - в данном случае, имеющего ее показатель 2. Необходимо провести реакции с красной солью (гексацианоферрат калия) и с щелочью. В первом случае наблюдается получение осадка темно-синего цвета - комплексной соли железа 2-х валентного. Во втором - получение темного серо-зеленого осадка - гидроксида железа также 2-х валентного, в то время, как гидроксид железа 3-х валентного имеет цвет в растворе темно-бурый.

Трехвалентное железо

Оксид 3-х валентного феррума имеет порошкообразную структуру, цвет которой красно-коричневый. Имеет также наименования: окись железа, красный пигмент, пищевой краситель, крокус.

В природе это вещество встречается в виде минерала - гематита.

Оксид такого железа с водой уже не взаимодействует. Но соединяется с кислотами и щелочами.

Применяется оксид железа (3) для окрашивания материалов, применяемых в строительстве:

  • кирпичей;
  • цемента;
  • керамических изделий;
  • бетона;
  • тротуарной плитки;
  • напольных покрытий (линолеум).

Железо в организме человека

Как отмечалось в начале статьи, вещество железо является важной составляющей человеческого организма.

Когда этого элемента является недостаточно, то могут возникнуть следующие последствия:

  • повышенная усталость и чувствительность к холоду;
  • сухость кожи;
  • снижение мозговой деятельности;
  • ухудшение прочности ногтевой пластины;
  • головокружение;
  • проблемы с пищеварением;
  • седина и выпадение волос.

Накапливается железо, как правило, в селезенке и печени, а также почках и поджелудочной железе.

В рационе человека должны быть продукты, содержащие железо:

  • говяжья печень;
  • гречневая каша;
  • арахис;
  • фисташки;
  • зеленый горошек консервированный;
  • сушенные белые грибы;
  • куриные яйца;
  • шпинат;
  • кизил;
  • яблоки;
  • груши;
  • персики;
  • свекла;
  • морепродукты.

Недостаток железа в крови, приводит к снижению гемоглобина и развитию такого заболевания, как железодефицитная анемия.

На уроках химии вы уже познакомились с понятием валентности химических элементов. Мы собрали в одном месте всю полезную информацию по этому вопросу. Используйте ее, когда будете готовиться к ГИА и ЕГЭ.

Валентность и химический анализ

Валентность – способность атомов химических элементов вступать в химические соединения с атомами других элементов. Другими словами, это способность атома образовывать определенное число химических связей с другими атомами.

С латыни слово «валентность» переводится как «сила, способность». Очень верное название, правда?

Понятие «валентность» - одно из основных в химии. Было введено еще до того, как ученым стало известно строение атома (в далеком 1853 году). Поэтому по мере изучения строения атома пережило некоторые изменения.

Так, с точки зрения электронной теории валентность напрямую связана с числом внешних электронов атома элемента. Это значит, что под «валентностью» подразумевают число электронных пар, которыми атом связан с другими атомами.

Зная это, ученые смогли описать природу химической связи. Она заключается в том, что пара атомов вещества делит между собой пару валентных электронов.

Вы спросите, как же химики 19 века смогли описать валентность еще тогда, когда считали, что мельче атома частиц не бывает? Нельзя сказать, что это было так уж просто – они опирались на химический анализ.

Путем химического анализа ученые прошлого определяли состав химического соединения: сколько атомов различных элементов содержится в молекуле рассматриваемого вещества. Для этого нужно было определить, какова точная масса каждого элемента в образце чистого (без примесей) вещества.

Правда, метод этот не без изъянов. Потому что определить подобным образом валентность элемента можно только в его простом соединении со всегда одновалентным водородом (гидрид) или всегда двухвалентным кислородом (оксид). К примеру, валентность азота в NH 3 – III, поскольку один атом водорода связан с тремя атомами азота. А валентность углерода в метане (СН 4), по тому же принципу, – IV.

Этот метод для определения валентности годится только для простых веществ. А вот в кислотах таким образом мы можем только определить валентность соединений вроде кислотных остатков, но не всех элементов (кроме известной нам валентности водорода) по отдельности.

Как вы уже обратили внимание, обозначается валентность римскими цифрами.

Валентность и кислоты

Поскольку валентность водорода остается неизменной и хорошо вам известна, вы легко сможете определить и валентность кислотного остатка. Так, к примеру, в H 2 SO 3 валентность SO 3 – I, в HСlO 3 валентность СlO 3 – I.

Аналогчиным образом, если известна валентность кислотного остатка, несложно записать правильную формулу кислоты: NO 2 (I) – HNO 2 , S 4 O 6 (II) – H 2 S 4 O 6 .

Валентность и формулы

Понятие валентности имеет смысл только для веществ молекулярной природы и не слишком подходит для описания химических связей в соединениях кластерной, ионной, кристаллической природы и т.п.

Индексы в молекулярных формулах веществ отражают количество атомов элементов, которые входят в их состав. Правильно расставить индексы помогает знание валентности элементов. Таким же образом, глядя на молекулярную формулу и индексы, вы можете назвать валентности входящих в состав элементов.

Вы выполняете такие задания на уроках химии в школе. Например, имея химическую формулу вещества, в котором известна валентность одного из элементов, можно легко определить валентность другого элемента.

Для этого нужно только запомнить, что в веществе молекулярной природы число валентностей обоих элементов равны. Поэтому используйте наименьшее общее кратное (соответсвует числу свободных валентностей, необходимых для соединения), чтобы определить неизвестную вам валентность элемента.

Чтобы было понятно, возьмем формулу оксида железа Fe 2 O 3 . Здесь в образовании химической связи участвуют два атома железа с валентностью III и 3 атома кислорода с валентностью II. Наименьшим общим кратным для них является 6.

  • Пример: у вас есть формулы Mn 2 O 7 . Вам известна валентность кислорода, легко вычислить, что наименьше общее кратное – 14, откуда валентность Mn – VII.

Аналогичным образом можно поступить и наоборот: записать правильную химическую формулу вещества, зная валентности входящих в него элементов.

  • Пример: чтобы правильно записать формулу оксида фосфора, учтем валентность кислорода (II) и фосфора (V). Значит, наименьшее общее кратное для Р и О – 10. Следовательно, формула имеет следующий вид: Р 2 О 5 .

Хорошо зная свойства элементов, которые они проявляют в различных соединениях, можно определить их валентность даже по внешнему виду таких соединений.

Например: оксиды меди имеют красную (Cu 2 O) и черную (CuО) окраску. Гидроксиды меди окрашены в желтый (CuОН) и синий (Cu(ОН) 2) цвета.

А чтобы ковалентные связи в веществах стали для вас более наглядными и понятными, напишите их структурные формулы. Черточки между элементами изображают возникающие между их атомами связи (валентности):

Характеристики валентности

Сегодня определение валентности элементов базируется на знаниях о строении внешних электронных оболочек их атомов.

Валентность может быть:

  • постоянной (металлы главных подгрупп);
  • переменной (неметаллы и металлы побочных групп):
    • высшая валентность;
    • низшая валентность.

Постоянной в различных химических соединениях остается:

  • валентность водорода, натрия, калия, фтора (I);
  • валентность кислорода, магния, кальция, цинка (II);
  • валентность алюминия (III).

А вот валентность железа и меди, брома и хлора, а также многих других элементов изменяется, когда они образуют различные химические соедения.

Валентность и электронная теория

В рамках электронной теории валентность атома определеяется на основании числа непарных электронов, которые участвуют в образовании электронных пар с электронами других атомов.

В образовании химических связей участвуют только электроны, находящиеся на внешней оболочке атома. Поэтому максимальная валентность химического элемента – это число электронов во внешней электронной оболочке его атома.

Понятие валентности тесно связано с Периодическим законом, открытым Д. И. Менделеевым. Если вы внимательно посмотрите на таблицу Менделеева, легко сможете заметить: положение элемента в перодической системе и его валентность неравзрывно связаны. Высшая валентность элементов, которые относятся к одной и тоже группе, соответсвует порядковому номеру группы в периодичнеской системе.

Низшую валентность вы узнаете, когда от числа групп в таблице Менделеева (их восемь) отнимете номер группы элемента, который вас интересует.

Например, валентность многих металлов совпадает с номерами групп в таблице периодических элементов, к которым они относятся.

Таблица валентности химических элементов

Порядковый номер

хим. элемента (атомный номер)

Наименование

Химический символ

Валентность

1 Водород / Hydrogen

Гелий / Helium

Литий / Lithium

Бериллий / Beryllium

Углерод / Carbon

Азот / Nitrogen

Кислород / Oxygen

Фтор / Fluorine

Неон / Neon

Натрий / Sodium

Магний / Magnesium

Алюминий / Aluminum

Кремний / Silicon

Фосфор / Phosphorus

Сера / Sulfur

Хлор / Chlorine

Аргон / Argon

Калий / Potassium

Кальций / Calcium

Скандий / Scandium

Титан / Titanium

Ванадий / Vanadium

Хром / Chromium

Марганец / Manganese

Железо / Iron

Кобальт / Cobalt

Никель / Nickel

Медь / Copper

Цинк / Zinc

Галлий / Gallium

Германий /Germanium

Мышьяк / Arsenic

Селен / Selenium

Бром / Bromine

Криптон / Krypton

Рубидий / Rubidium

Стронций / Strontium

Иттрий / Yttrium

Цирконий / Zirconium

Ниобий / Niobium

Молибден / Molybdenum

Технеций / Technetium

Рутений / Ruthenium

Родий / Rhodium

Палладий / Palladium

Серебро / Silver

Кадмий / Cadmium

Индий / Indium

Олово / Tin

Сурьма / Antimony

Теллур / Tellurium

Иод / Iodine

Ксенон / Xenon

Цезий / Cesium

Барий / Barium

Лантан / Lanthanum

Церий / Cerium

Празеодим / Praseodymium

Неодим / Neodymium

Прометий / Promethium

Самарий / Samarium

Европий / Europium

Гадолиний / Gadolinium

Тербий / Terbium

Диспрозий / Dysprosium

Гольмий / Holmium

Эрбий / Erbium

Тулий / Thulium

Иттербий / Ytterbium

Лютеций / Lutetium

Гафний / Hafnium

Тантал / Tantalum

Вольфрам / Tungsten

Рений / Rhenium

Осмий / Osmium

Иридий / Iridium

Платина / Platinum

Золото / Gold

Ртуть / Mercury

Талий / Thallium

Свинец / Lead

Висмут / Bismuth

Полоний / Polonium

Астат / Astatine

Радон / Radon

Франций / Francium

Радий / Radium

Актиний / Actinium

Торий / Thorium

Проактиний / Protactinium

Уран / Uranium

H I

(I), II, III, IV, V

I, (II), III, (IV), V, VII

II, (III), IV, VI, VII

II, III, (IV), VI

(I), II, (III), (IV)

I, (III), (IV), V

(II), (III), IV

(II), III, (IV), V

(II), III, (IV), (V), VI

(II), III, IV, (VI), (VII), VIII

(II), (III), IV, (VI)

I, (III), (IV), V, VII

(II), (III), (IV), (V), VI

(I), II, (III), IV, (V), VI, VII

(II), III, IV, VI, VIII

(I), (II), III, IV, VI

(I), II, (III), IV, VI

(II), III, (IV), (V)

Нет данных

Нет данных

(II), III, IV, (V), VI

В скобках даны те валентности, которые обладающие ими элементы проявляют редко.

Валентность и степень окисления

Так, говоря о степени окисления, подразумевают, что атом в веществе ионной (что важно) природы имеет некий условный заряд. И если валентность – это нейтральная характеристика, то степень окисления может быть отрицательной, положительной или равной нулю.

Интересно, что для атома одного и того же элемента, в зависимости от элементов, с которыми он образует химическое соединение, валентность и степень окисления могут совпадать (Н 2 О, СН 4 и др.) и различаться (Н 2 О 2 , HNO 3).

Заключение

Углубляя свои знания о строении атомов, вы глубже и подробнее узнаете и валентность. Эта характеристика химических элементов не является исчерпывающей. Но у нее большое прикладное значение. В чем вы сами не раз убедились, решая задачи и проводя химические опыты на уроках.

Эта статья создана, чтобы помочь вам систематизировать свои знания о валентности. А также напомнить, как можно ее определить и где валентность находит применение.

Надеемся, этот материал окажется для вас полезным при подготовке домашних заданий и самоподготовке к контрольным и экзаменам.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.