Радиоволны, и их распространение, являются неоспоримой загадкой для начинающих любителей эфира. Здесь можно познакомиться с азами теории распространения радиоволн. Данная статья предназначена для ознакомления начинающих любителей эфира, а также и для тех, кто имеет некоторое представление о нём.

Самая главная вводная, про которую часто забывают сказать, прежде чем познакомить с теорией распространения радиоволн, так это то, что радиоволны распространяются вокруг нашей планеты за счет отражения от ионосферы и от земли как от полупрозрачных зеркал отражается луч света.

Особенности распространения средних волн и перекрёстная модуляция

К средним волнам относятся радиоволны длиной от 1000 до 100 м (частоты 0,3 — 3,0МГц). Средние волны используются главным образом для вещания. А так же они являются колыбелью отечественного радиопиратства. Они могут распространяться земным и ионосферным путём. Средние волны испытывают значительное поглощение в полупроводящей поверхности Земли, дальность распространения земной волны 1, (см. рис. 1), ограничена расстоянием 500-700 км. На большие расстояния радиоволны 2 и 3 распространяются ионосферной (пространственной) волной.

В ночное время средние волны распространяются путем отражения от слоя Е ионосферы (см. рис. 2), электронная плотность которого оказывается достаточной для этого. В дневные часы на пути распространения волны расположен слой D, чрезвычайно сильно поглощающий средние волны. Поэтому при обычных мощностях передатчиков, напряженность электрического поля недостаточна для приема, и в дневные часы распространение средних волн происходит практически только земной волной на сравнительно небольшие расстояния, порядка 1000 км. В диапазоне средних волн, более длинные волны испытывают меньшее поглощение, и напряженность электрического поля ионосферной волны больше на более длинных волнах. Поглощение увеличивается в летние месяцы и уменьшается в зимние. Ионосферные возмущения не влияют на распространение средних волн, так как слой Е мало нарушается во время ионосферно-магнитных бурь.

В ночные часы см. рис. 1, на некотором расстоянии от передатчика (точка В), возможен приход одновременно пространственной 3 и поверхностной волн 1, причем длина пути пространственной волны меняется с изменением электронной плотности ионосферы. Изменение разности фаз этих волн приводит к колебанию напряженности электрического поля, называемому ближним замиранием поля.

На значительное расстояние от передатчика (точка С) могут прийти волны 2 и 3 путем одного и двух отражений от ионосферы. Изменение разности фаз этих двух волн также приводит к колебанию напряженности электрического поля, называемому дальним замиранием поля.

Для борьбы с замираниями на передающем конце линии связи применяются антенны, у которых максимум диаграммы направленности «прижат» к земной поверхности, к ним можно отнести простейшую антенну «Inverted-V», достаточно часто применяемую радиолюбителями. При такой диаграмме направленности зона ближних замираний удаляется от передатчика, а на больших расстояниях поле волны, пришедшей путем двух отражений, оказывается ослабленным.

К сожалению не все начинающие радиовещатели, работающие в диапазоне частот 1600-3000кГц знают, что слабый сигнал от маломощного передатчика подвержен ионосферным искажениям. Сигнал от более мощных радиопередатчиков ионосферным искажениям подвержен меньше. Ввиду нелинейной ионизации ионосферы, происходит модуляция слабого сигнала модулирующим напряжением сигналов мощных станций. Это явление называется перекрестной модуляцией. Глубина коэффициента модуляции достигает 5-8%. Со стороны приема создаётся впечатление не качественно выполненного передатчика, со всевозможными гулами и хрипами, особенно это заметно в режиме АМ модуляции.

За счет перекрестной модуляции в приемник часто проникают интенсивные грозовые помехи, которые невозможно отфильтровать — грозовой разряд модулирует принимаемый сигнал. Именно по этой причине радиовещатели для проведения двусторонней радиосвязи стали применять однополосные передатчики и стали чаще работать на более высоких частотах. Зарубежные радиовешатели СВ станций, умощняют их, и подвергают компрессии модулирующие сигналы, а для неискаженной работы в эфире, применяют инверсные частоты.

Явления демодуляции и перекрестной модуляции в ионосфере наблюдаются только в диапазоне средних волн (СВ). В диапазоне коротких волн (КВ) скорость электрона под действием электрического поля ничтожно мала по сравнению с его тепловой скоростью и присутствие поля не меняет числа столкновений электрона с тяжелыми частицами.

Наиболее благоприятны, в диапазоне частот от 1500 до 3000кГц для дальних связей, являются зимние ночи и периоды минимума солнечной активности. Особо дальние связи, более 10000 км, обычно возможны в часы захода и восхода солнца. В дневные часы связь возможна на расстояние до 300 км. Свободные радиовещатели FM диапазона могут только позавидовать таким большим радиотрассам.

В летнее время на этом диапазоне часто мешают помехи от статических разрядов в атмосфере.

Особенности распространения коротких волн и их характеристики

К коротким волнам относятся радиоволны длиной от 100 до 10 м (частоты 3-30 МГц). Преимуществом работы на коротких волнах по сравнению с работой на более длинных волнах является то, что в этом диапазоне можно легко создать направленные антенны. Короткие волны могут распространяться как земные, в низкочастотной части диапазона, и как ионосферные.

С повышением частоты сильно возрастает поглощение волн в полупроводящей поверхности Земли. Поэтому при обычных мощностях передатчика земные волны коротковолнового диапазона распространяются на расстояния, не превышающие нескольких десятков километров. На морской глади, это расстояние значительно увеличивается.

Ионосферной волной короткие волны могут распространяться на многие тысячи километров, причем для этого не требуется передатчиков большой мощности. Поэтому в настоящее время короткие волны используются главным образом для связи и вещания на большие расстояния.

Короткие волны распространяются на дальние расстояния путем отражения от ионосферы и поверхности Земли. Такой способ распространения называют скачковым см. рис. 2 и характеризуется расстоянием скачка, числом скачков, углами выхода и прихода, максимальной применимой частотой (МПЧ) и наименьшей применимой частотой (НПЧ).

Если ионосфера однородна в горизонтальном направлении, то и траектория волны симметрична. Обычно излучение происходит в некотором спектре углов, так как ширина диаграммы направленности коротковолновых антенн в вертикальной плоскости составляет 10-15°. Минимальное расстояние скачка, для которого выполняется условие отражения, называют расстоянием зоны молчания (ЗМ). Для отражения волны необходимо, чтобы рабочая частота была не выше значения, максимально применимой частоты (МПЧ), являющаяся верхней границей рабочего диапазона для данного расстояния. Волна 4.

Применение антенн зенитного излучения, как один из приёмов уменьшения зоны молчания, ограничивается понятием максимально применимой частоты (МПЧ) с учётом снижения её на 15-20% от МПЧ. Антенны зенитного излучения применяют для вещания в ближней зоне методом односкачкового отражения от ионосферы.

Второе условие ограничивает рабочий диапазон снизу: чем ниже рабочая частота (в пределах коротковолнового диапазона), тем сильнее поглощение волны в ионосфере. Наименьшую — применимую частоту (НПЧ) определяют из условия, что при мощности передатчика в 1кВт, напряженность электрического поля сигнала должна превышать уровень шумов, а следовательно, поглощение сигнала в слоях ионосферы должно быть не больше допустимого. Электронная плотность ионосферы меняется в течение суток, в течение года, и периода солнечной активности. Значит, изменяются и границы рабочего диапазона, что приводит к необходимости изменения рабочей длины волны в течение суток.

Диапазон частот 1,5–3 МГц, является ночным. Понятно, что для успешного проведения сеанса радиосвязи нужно каждый раз правильно выбирать частоту (длину волны), к тому же это усложняет конструкцию станции, но для настоящего ценителя дальних связей это не является трудностью, это часть хобби. Проведём оценку КВ диапазона по участкам.

Диапазон частот 5-8 мГц, во многом схож с диапазоном 3 мГц, и в отличае от него, здесь в дневное время можно связаться до 2000 км, зона молчания (ЗМ) отсутствует и составляет несколько десятков километров. В ночные часы возможна связь на любое расстояние за исключением ЗМ, которая увеличивается до нескольких сот километров. В часы смены времени суток (заход/восход), наиболее удобны для дальних связей. Атмосферные помехи менее выражены, чем в диапазоне 1,5-3 мГц.

В диапазоне частот 10-15 мГц в периоды солнечной активности возможны связи в дневное время суток практически с любой точкой земного шара. Летом продолжительность радиосвязи в этом диапазоне частот бывает круглосуточной, за исключением отдельных дней. Зона молчания ночью имеет расстояния в 1500-2000 км и по этому возможны только дальние связи. В дневное время они уменьшаются до 400-1000 км.

Диапазон частот 27-30 мГц пригоден для связи только в светлое время суток. Это самый капризный диапазон. Он обычно открывается на несколько часов, дней или недель особенно при смене сезонов, т.е. осенью и весной. Зона молчания (ЗМ) достигает 2000-2500 км. Это явление относится к теме МПЧ, здесь угол отраженной волны должен быть малым по отношению к ионосфере, иначе он имеет большое затухание в ионосфере, или простой уход в космические просторы. Малые углы излучения соответствуют большим скачкам и соответственно большим зонам молчания. В периоды максимума солнечной активности возможна связь и ночью.

Помимо перечисленных моделей, возможны случаи аномального распространения радиоволн. Аномальное распространение может возникнуть при появлении на пути волны спорадического слоя, от которого могут отражаться более короткие волны, вплоть до метровых. Это явление можно наблюдать на практике прохождением дальних телестанций и FM радиостанций. МПЧ радиосигнала в эти часы доходит до 60-100 мГц в годы солнечной активности.

В диапазоне УКВ FM, за исключением редких случаев аномального распространения радиоволн, распространение обусловлено строго так называемой «прямой видимостью». Распространение радиоволн в пределах прямой видимости говорит само за себя, и обусловлено высотой расположения передающей и приёмной антенн. Понятно, что в условиях городской застройки ни о какой визуальной и прямой видимости говорить нельзя, но радиоволны проходят сквозь городские застройки с некоторым ослаблением. Чем выше частота, тем выше затухание в городских застройках. Диапазон частот 88-108 МГц так же подвержен некоторым затуханиям в условиях города.

Замирание радиосигналов диапазона КВ

Приём коротких радиоволн всегда сопровождается измерением уровня принимаемого сигнала, причем это изменение носит случайный и временной характер. Такое явление называют замираниями (федингом) радиосигнала. В эфире наблюдаются быстрые и медленные фединги сигнала. Глубина фединга может достигать до нескольких десятков децибел.

Основной причиной быстрых замираний сигнала является многолучевое распространение радиоволн. В этом случае причиной федингов служит приход в точку приема двух лучей, распространяющихся путем одного и двух отражений от ионосферы, волна 1 и волна 3, см. рис 2.

Поскольку лучи проходят различные пути по расстоянию, фазы прихода их неодинаковы. Изменения электронной плотности, непрерывно происходящие в ионосфере, приводят к изменению длины пути каждого из лучей, а следовательно, и к изменению разности фаз между лучами. Для изменения фазы волны на 180° достаточно, чтобы длина пути изменилась всего на ½. Следует напомнить, что при приходе лучей одного сигнала в точку приёма с одинаковой силой и с разностью фаз на 180°, они полностью вычитаются по закону векторов, а сила приходящего сигнала в этом случае может быть равна нулю. Такие незначительные изменения длины пути могут происходить непрерывно, поэтому, колебания напряженности электрического поля в диапазоне коротких волн являются частыми и глубокими. Интервал их наблюдения в 3-7 минут может составлять на низких частотах КВ диапазона, и до 0,5 секунд на частотах ближе к 30 МГц.

Помимо этого, фединг сигнала вызываются рассеянием радиоволн на не однородностях ионосферы и интерференцией рассеянных волн.

Кроме интерференционных федингов, на коротких волнах, имеют место поляризационные фединги. Причиной поляризационных федингов является поворот плоскости поляризации волны относительно принимаемой антенны. Это происходит при распространении волны в направлении силовых линий магнитного поля Земли, и с изменением электронной плотности ионосферы. Если передающая и приемная антенны представляют собой горизонтальные вибраторы, то излученная горизонтально — поляризованная волна, после прохождения в ионосфере претерпит поворот плоскости поляризации. Это приводит к колебаниям э. д. с., наводимой в антенне, которое имеет дополнительное затухание до 10 дБ.

На практике все указанные причины замираний сигнала действуют, как правило, комплексно и подчиняются описанным законом распределения Релея.

Помимо быстрых замираний, наблюдаются медленные замирания, которые наблюдаются с периодом в 40-60 мин в низкочастотной части КВ диапазона. Причиной этих федингов является изменение поглощения радиоволн в ионосфере. Распределение огибающей амплитуды сигнала при медленных замираниях подчиняется нормально логарифмическому закону с уменьшением сигнала до 8-12 дБ.

Для борьбы с замираниями, на коротких волнах применяют метод приема на разнесенные антенны. Дело в том, что увеличение и уменьшение напряженности электрического поля происходят не одновременно даже на сравнительно небольшой площади земной поверхности. В практике коротковолновой связи используют обычно две антенны, разнесенные на расстояние нескольких длин волн, а сигналы складывают после детектирования. Эффективным является разнесение антенн по поляризации, т. е. одновременный прием на вертикальную и горизонтальную антенны с последующим сложением сигналов после детектирования.

Хочется отметить, что указанные меры борьбы действенны только для устранения быстрых замираний, медленные изменения сигнала не устраняются, так как это связано с изменением поглощения радиоволн в ионосфере.

В радиолюбительской практике метод разнесённых антенн используется довольно редко, ввиду конструктивной дороговизны и отсутствием необходимости приёма достаточно достоверной информации. Это связано с тем, что любители часто используют резонансные и диапазонные антенны, количество которых в его хозяйстве составляет около 2-3 штук. Использование разнесённого приёма требует увеличение парка антенн минимум вдвое.

Другое дело, когда любитель живёт в сельской местности, имея при этом достаточную площадь для размещения антифединговой конструкции, он может применить для этого просто два широкополосных вибратора, перекрывающие все, или почти все необходимые диапазоны. Один вибратор должен быть вертикальным, другой горизонтальным. Для этого совсем не обязательно иметь несколько мачт. Достаточно разместить их так, на одной мачте, чтобы они были сориентированы относительно друг друга под углом в 90°. Две антенны, в этом случае будут напоминать широко известную антенну «Inverted-V».

Расчет радиуса покрытия радиосигналом в УКВ/FM диапазонах

Частоты метрового диапазона распространяются в пределах прямой видимости. Радиус действия распространения радиоволны в пределах прямой видимости без учета мощности излучения передатчика и прочих природных явлений, уменьшающих эффективность связи, выглядит так:

r = 3,57 (√h1 + √h2), км,

Рассчитаем радиусы прямой видимости при установке приемной антенны на разных высотах, где h1 — параметр, h2 = 1,5 м. Сведем их в таблицу 1.

Таблица 1

h1 (м) 10 20 25 30 35 40 50 60
r (км) 15,6 20,3 22.2 24 25.5 27,0 29,6 32

Данная формула не учитывает затухание сигнала и мощности передатчика, она говорит лишь о возможности прямой видимости с учетом идеально круглой земли.

Произведем расчет необходимого уровня радиосигнала вместе приема для длины волны 3 м.

Поскольку на трассах между передающей станцией и подвижным объектом всегда присутствуют такие явления как, отражения, рассеяния, поглощения радиосигналов различными объектами и пр, следует вводить поправки в уровень затухания сигнала, что предложил японский ученый Okumura. Среднеквадратическое отклонение для этого диапазона с городскими застройками составит 3 дБ, а при вероятности связи в 99% введем множитель 2, что составит общую поправку П в уровне радиосигнала в
П = 3 × 2 = 6 дБ.

Чувствительность приемников определяется соотношением полезного сигнала над шумами в 12 дБ, т.е. в 4 раза. Такое соотношение при качественном радиовещании не приемлемо, поэтому введем дополнительную поправку еще в 12–20 дБ, примем 14 дБ.

Итого общая поправка в уровне принимаемого сигнала с учетом затухания его по трассе и специфике приемного устройства, составит: 6+16 20дБ (в 10 раз). Тогда при чувствительности приемника в 1,5 мкВ. в месте приема должно создаваться поле с напряженностью в 15 мкВ/м.

Рассчитаем по формуле Введенского радиус действия при заданной напряженности поля в 15 мкВ/м с учетом мощности передатчика, чувствительности приемника и городских застроек:

где r — км; Р — кВт; G — дБ (=1); h — м; λ — м; Е — мВ.

В данном расчете не учитывается коэффициент усиления приемной антенны, а также затухание в фидере и полосовом фильтре.

Ответ: При мощности в 10 Вт, высоте излучения h1=27 метров и h2=1,5м, реально качественный радиоприем с радиусом в городских застройках составит 2,5-2,6 км. Если учитывать, что прием радиосигналов вашего радиопередатчика будет осуществляться на средних и высоких этажах жилых зданий, то этот радиус действия увеличится примерно в 2-3 раза. Если принимать радиосигналы на вынесенную антенну, то радиус действия будет исчисляться десятками километров.

73! UA9LBG & Радио-Вектор-Тюмень

Связь с подводными лодками, когда они находятся в погружённом состоянии — достаточно серьёзная техническая задача. Основная проблема состоит в том, что электромагнитные волны с частотами, использующимися в традиционной радиосвязи, сильно ослабляются при прохождении через толстый слой проводящего материала, которым является солёная вода.

В большинстве случаев хватает простейшего решения: всплыть к самой поверхности воды и поднять антенну над водой. Но этого решения недостаточно для атомной подводной лодки. Эти корабли были разработаны во время холодной войны и могли находиться в подводном положении в течение нескольких недель и даже месяцев. Но, тем не менее, они должны были оперативно запустить баллистические ракеты в случае ядерной войны.

Находясь на перископной глубине, лодка может поднять тот самый перископ и использовать для радиосвязи установленные на нём антенны. Проблема в том, что подобный перископ, увешанный антеннами, будет отлично выдавать лодку, так как может быть обнаружен самыми разными радарами противника. Интересно, что перископы современных лодок в надводной их части стараются делать малозаметными (по технологии, так сказать, “Стелс”). Более того, стараются максимально сократить время присутствия перископа над водой: например, перископ может подниматься, выполнять очень быстрое сканирование горизонта, передавать, используя специальный тип сигналов, короткие сообщения через спутник и тут же прятаться обратно, под воду.

Связь с подводными лодками, находящимися в подводном положении, осуществляется следующими способами:

Акустическая передача

Звук может распространяться в воде достаточно далеко, и подводные громкоговорители и гидрофоны могут использоваться для связи. Во всяком случае, военно-морские силы и СССР, и США устанавливали акустическое оборудование на морском дне областей, которые часто посещались подводными лодками, и соединяли их подводными кабелями с наземными станциями связи.

Односторонняя связь в погруженном положении возможна путем использования взрывов. Серии взрывов, следующих через определенные промежутки времени распространяются по подводному звуковому каналу и принимаются гидроакустиком.

Радиосвязь в диапазоне очень низких частот

Радиоволны очень низкого диапазона (ОНЧ, VLF, 3—30 кГц) могут проникать в морскую воду на глубины до 20 метров. Значит, подводная лодка, находящаяся на небольшой глубине, может использовать этот диапазон для связи. Даже подводная лодка, находящаяся гораздо глубже, может использовать буй с антенной на длинном кабеле. Буй может находиться на глубине нескольких метров и из-за малых размеров не обнаруживается сонарами противника. Один из первых ОНЧ-передатчиков, «Голиаф», был построен в Германии в 1943 году, после войны перевезён в СССР, в 1949—1952 годах восстановлен в Нижегородской области и эксплуатируется до сих пор.

Радиоволны крайне низкой частоты (КНЧ, ELF, до 3 кГц) легко проходят сквозь Землю и морскую воду. Строительство КНЧ-передатчика — чрезвычайно сложная задача из-за огромной длины волны. Советская система «ЗЕВС» работает на частоте 82 Гц (длина волны — 3658,5 км), американская «Seafarer» (англ. мореплаватель) — 76 Гц (длина волны — 3947,4 км). Длина волны в этих передатчиках сравнима с радиусом Земли. Очевидно, что постройка дипольной антенны в половину длины волны (протяжённостью ≈ 2000 км) — нереальная на данный момент задача.

Вместо этого следует найти область Земли с достаточно низкой удельной проводимостью и вогнать в неё 2 огромных электрода на расстоянии порядка 60 км друг от друга. Поскольку удельная проводимость Земли в области электродов достаточно низкая, электрический ток между электродами будет проникать глубоко в недра Земли, используя их как часть огромной антенны. По причине крайне высокой технической сложности такой антенны, только СССР и США имели КНЧ-передатчики.

Спутники

Если субмарина находится в надводном положении, то она может использовать обычный диапазон радиосвязи, как и прочие морские суда. Это не означает использование обычного коротковолнового диапазона: чаще всего это связь с военным cпутником связи. В США подобная система связи называется «спутниковая подсистема обмена информацией с подводными лодками» (англ. Submarine Satellite Information Exchange Sub-System, SSIXS), часть морской системы спутниковой связи на ультравысоких частотах (англ. Navy Ultra High Frequency Satellite Communications System, UHF SATCOM).

Вспомогательные подводные лодки

В 1970-х годах в СССР был разработан проект модификации подводных лодок проекта 629 для использования их в качестве ретрансляторов сигнала и обеспечения связи кораблей из любой точки мира с командованием ВМФ. По проекту было модифицировано три субмарины.

Самолёты

Находясь на небольшой глубине, лодка может принимать радиоволны не высокой частоты (например ”короткие волны”) - они проникают на некоторую глубину под поверхность воды. При этом, в общем случае, радиоволны с более низкими частотами проникают несколько глубже под поверхность воды. Именно таким образом возможен приём сообщений с самолётов

Скрытность

Сеансы связи, особенно со всплытием лодки, нарушают ее скрытность, подвергая риску обнаружения и атаки. Поэтому принимаются различные меры, повышающие скрытность лодки, как технического, так и организационного порядка. Так, лодки используют передатчики для передачи коротких импульсов, в которых сжата вся необходимая информация. Также передача может быть осуществлена всплывающим и подвсплывающим буём. Буй может быть оставлен лодкой в определенном месте для передачи данных, которая стартует, когда сама лодка уже покинула район.

Факторы, влияющие на распространение радиоволн

Средой распространения радиоволн может быть как естественная трасса, так и искусственная. Естественной трассой является земная поверхность, атмосфера или космическое пространство. Такая среда не поддается управлению, что весьма важно для организации радиосвязи. Пути распространения радиоволн по естественным трассам имеют вид:

(РИСУНОК 12).

Радиоволны (1) распространяются в непосредственной близости Земли называют земными. Наиболее заметное влияние на распространение радиоволн в атмосфере оказывают тропосфера и ионосфера. Распространение тропосферных волн (2) в тропосфере происходит вследствие рассеяния и отражения от неоднородностей тропосферы радиоволны (3) распространяются путем отражения от ионосферы, или рассеяния в ней называют ионосферными. Радиоволны 4,5 используются для радиолиний Земля-космос, космос-космос и не имеют специального названия. В свободном пространстве радиоволна обладает поперечной структурой, т.е. входящие в ее состав взаимосвязанные электрическое и магнитные поля перпендикулярны друг другу и направлению распространения. На рис.13 вектор E характеризует в некоторый момент времени направление электрического поля волны, вектор H-магнитного поля, вектор П-направление распространения э.м волны. Расположение вектора Е в пространстве характеризует поляризацию радиоволны. В зависимости от изменения направления вектора поляризация может быть линейной, круговой, эллиптической. При линейной поляризации вектор Е в процессе распространения остается параллельным самому себе, периодически меняясь по величине и направлению. Математический закон изменения вектора при условии, что в прямоугольной системе координат он изменяется в плоскости проходящей через ось Z, можно записать: Ez=Emcos(?t-kz) (1) или в комплексной форме: Ez=Em*(e**j)*cos(?t-kz) (2), где?=2πƒ-κруговая частота, k=2π/λ – пространственная частота или волновой коэффициент. В общем случае величина k имеет смысл вектора и характеризует направление распространения волны. Закон изменения вектора H записывается аналогично в силу того, что только при этом условии возможно распространение радиоволн. В случае распространения линейно поляризованной волны вблизи раздела 2х сред различают вертикальную поляризацию если вектор E лежит в плоскости падения волны и горизонтальную, если вектор E параллелен границе раздела. Понятие поляризации относительное, в общем случае рассматривают волну поляризованную произвольно относительно границ раздела. В этом случае вектор Е раскладывают на две составляющие, одна из которых будет соответствовать вертикальной поляризации, а вторая – горизонтальной. При круговой поляризации вектор Е оставаясь постоянным по величине, вращается таким образом, что его конец описывает окружность. При эллиптической поляризации вектор Е меняется во времени по направлению и величине что его конец описывает эллипс.

Поляризация радиоволн определяется типом передающей антенны и физическими свойствами среды, в которой происходит распространение радиоволн. Только в космическом пространстве радиоволны распространяются как в свободном пространстве. В ином случае условие распространения определяется электрическими свойствами Земли и атмосферы, а также рельефом местности. Земная поверхность оказывает существенное влияние на распространение земных радиоволн. Ее элементарные свойства характеризуются в основном двумя параметрами: диэлектрической проницаемостью? и проводимостью?. Для земной поверхности однородной по глубине характерно постоянство параметров? и? во всем диапазоне радиоволн длиннее метровых. На дм и более коротких волнах? уменьшается, а? увеличивается с увеличением частоты. Наибольшее значение? и? имеют жидкие среды, а сухая почва, лед, снег, растительность имеют относительно малые значения? и?. Поэтому в зависимости от частоты радиоволн свойства земной поверхности меняются. Например для см диапазона морская вода считается диэлектриком, а влажная почва может рассматриваться как диэлектрик для метровых и более коротких волн. Параметры ε и γ определяют степень поглощения энергии радиоволны при распространении над земной поверхностью количественно потери энергии описываются коэффициентом поглощения α≈6πγ/√(ε). (3)

Физические потери обусловлены переходом энергии радиоволны в тепловую энергию движения молекул среды распространения. При распространении радиоволны в морской воде и влажной почве на низких частотах с повышением частоты коэффициент поглощения возрастает, на высоких частотах он перестает изменяться, как это имеет место в диэлектрике. Если э.м. волна падает на гладкую поверхность Земли, то она частично отражается от границы раздела сред и частично переходит в глубь второй среды. Поэтому в атмосфере имеются падающие и отраженные волны, а во второй среде – преломленная волна. При отражении волн может меняться ее поляризация, а преломленная часть волны поглощается средой. Отражение радиоволн от ровной плоской поверхности подчиняется закону геометрической оптики. Если поверхность земли не ровная, то радиоволны отражаются в различных направлениях, в том числе и в обратном. Рассеянный сигнал может иметь помимо составляющей той же поляризации, что и падающая волна составляющую ортогональную поляризацию. Поверхность считается ровной, если максимальная высота неровности hн удовлетворяет условию: hнλ/(8cosφ) (4). , γде?-угол падения радиоволны. Для УКВ линии, при которой связь осуществляется только на расстоянии прямой видимости поднятие антенн над поверхностью земли позволяет увеличить протяженность связи. Для СВ и ДВ увеличение протяженности радиолиний обеспечивается дифракцией радиоволн, т.е. огибанием препятствий, встречающихся на их пути. Влияние тропосферы на распространение радиоволн также, как и в случае распространения земных радиоволн в основном определяется характером изменения диэлектрической проницаемости и проводимости среды, которые в свою очередь зависят от физико-химических свойств газов, входящих в тропосферу. Относительный газовый состав тропосферы остается постоянным по всей высоте, изменяется лишь содержание водяных паров, которые зависят от метеорологических условий и убывают с высотой. При распространении в тропосфере радиоволны см-го и более коротковолнового диапазона она теряет энергию вследствие поглощения каплями воды и рассеяния в них. При прохождении радиоволн в каждой капельке воды наводятся токи поляризации, которые обуславливают потери энергии. При этом каждая капля переизлучает э.м. волны, причем равномерно во все стороны, что и приводит к рассеянию мощности радиоволны. Мм- волны испытывают добавочное поглощение в молекулах водяного пара и кислорода. При распределении радиоволн в тропосфере наблюдаются искривления траектории волны, причем степень искривления и направления волны зависят от состояния тропосферы. Это явление искривления траектории называемое рефракцией объясняется изменением диэлектрической проницаемости? и показателя преломления тропосферы с высотой. Представим тропосферу в виде тонких сферических слоев с неизменными в слое и отличающимися в разных слоях коэффициентами преломления. При прохождении радиоволны через границы слоев она будет преломляться. Если коэффициент преломления убывает с высотой, то угол преломления увеличивается, т.е. dn/dh 0, то имеет место отрицательная тропосферная рефракция и траектории радиоволн искривляются вверх от земли. При положительной тропосферной рефракции имеет место 3 частных случая: 1) нормальная рефракция 2) критическая рефракция 3) сверхрефракция Нормальная тропосферная рефракция происходит в нормальной тропосфере, параметры которой (P, t, влажность высота) соответствует некоторому среднему значению. Траектория распределения радиоволн при этом искривляется в сторону земной поверхности, что приводит к увеличению дальности радиолинии. Степень отклонения радиоволн зависит от длины волны и от состояния тропосферы. При некоторых условиях искривление такое, что радиоволна распространяется параллельно земле на постоянной высоте. Такой вид рефракции называется критической. При резком убывании коэффициента преломления с высотой происходит полное внутреннее отражение радиоволны от тропосферы, и она возвращается на землю. Это явление называется сверхрефракцией и наблюдается в диапазоне УКВ.

Рисунок 16

Когда область сверхрефракции занимает значительное расстояние над земной поверхностью УКВ может распространяться на весьма большие расстояния. Радиоволна в этом случае распространяется путем последовательного чередования 2х явлений: рефракции в тропосфере и отражения от земли. Это явление получило название распространение радиоволн в условиях тропосферного волновода. Такое волноводное распространение возможно для см и дм волн. Высота тропосферных волноводов может достигать несколько десятков метров. В тропосфере создаются и другие условия обеспечивающие дальнее распространение радиоволн. На высотах 1-3 км наблюдаются инверсионные слои, т.е. слои с резким изменением коэффициента преломления, которые могут отражать радиоволны. Толщина инверсионного слоя может колебаться от нескольких метров до ста метров. При этом коэффициент отражения имеет достаточную величину только для самых пологих лучей при малой толщине слоя по сравнению с длиной волны из этого следует что достаточная интенсивность отражений наблюдается на метровых волнах. Длинные волны отражаются слабее. Отражаясь от высоких инверсионных слоев радиоволны могут распространяться на расстояние до 200-400 км. Однако это явление, как и тропосферный волновод для создания регулярно действующей радиолинии ограничено нерегулярностью проявления. Более реальным является использование дальнего тропосферного распространения за рассеяния УКВ на неоднородностях тропосферы. Неоднородности тропосферы представляют собой области, в которых диэлектрическая проницаемость отличается от среднего значения для окружающей тропосферы. Неоднородности создают вторичное излучение, носящее многолучевой характер. Максимум переизлучения ориентирован в сторону первоначального распространения волны и лишь некоторая часть в сторону. Протяженность радиолинии в случае тропосферного рассеяния достигает 300-500 км. Такие радиолинии широко используются в настоящее время там, где нельзя установить промежуточные ретрансляционные станции (над проливами, в северных и мало населенных районах). Эти радиолинии обеспечивают хорошую надежность передачи телефонных и телеграфных сообщений. Влияние ионосферы на распространение радиоволн обуславливается двумя основными факторами - наличием неоднородностей и относительно высокой концентрацией электронов. Неоднородности ионосферы представляют собой некоторые области, электронная плотность в которых отличается от среднего значения на данной высоте. Размеры неоднородностей могут быть от нескольких метров до нескольких километров. В области D преобладают мелкие неоднородности размером до десятков метров, в слое Е до 200-300 м, а в слое F до нескольких километров. Хотя неоднородности ионосферы постоянно меняются, тем не менее они используются радиосвязи на метровых волнах на дальности 1-2 тыс. км. Наличие в ионосфере электронов и ионов определяет величину диэлектрической проницаемости, от которой зависит затухания ионосферных волн. Диэлектрическая проницаемость ионизированного газа всегда 2 (5), где f- рабочая частота, Nэ – электронная плотность. Из формулы (5) видно, что при некотором значении электронной плотности диэлектрическая проницаемость может стать равной 0. Частота f 0 при которой ε=0 называется собственной частотой ионизированного газа. В этом случае формула (5) имеет вид:
(6). При f (7). Из формулы (7) видно что, каждой частоте соответствует своя фазовая скорость. Эта скорость > скорости света в свободном пространстве. Таким образом дисперсия волн проявляется при одновременном распространении нескольких монохроматических волн различных частот, что практически всегда имеет место. Спектральная составляющая радиосигнала в диспергирующей среде распространяется с разными фазовыми скоростями, что приводит к искажению сигнала. Групповая скорость – это скорость распространения максимума огибающей сигнала. Для ионизированного газа групповая скорость Uгр распространения волны в диспергирующей среде определяется выражением:
(8). Γрупповая и фазовая скорости связаны соотношением: Uгр*Uф=с 2 (9) Т.о. в ионизированном газе радиосигналы распространяются со скоростью меньшей скорости света. Очевидно, что при распространении в ионосфере наибольшее искажение будут испытывать широкополосные сигналы, к которым относятся короткие импульсы.

Импульс 1 после прохождения через ионосферу приобретает форму 2. При распространении через ионосферу искажение вследствие дисперсии претерпевают импульсы длительностью в несколько секунд. А длительные телеграфные импульсы из-за дисперсии практически не искажаются. При распространении радиоволны через ионосферу ее траектория искривляется, при определенной диэлектрической проницаемости, электронной плотности, угле падения волны, ее рабочей частоте радиосигнал может отразиться от ионосферы. При этом угол падения Θ должен быть равен или превышать некоторый критический угол Θкр. Отражение радиоволн возможно и при нормальном падении на ионосферу и происходит оно на той высоте, где рабочая частота равна собственной частоте ионизированного газа. Чем больше электронная плотность, тем для более высоких частот выполняется условие отражения. Максимальная частота, при которой радиоволна отражается в случае вертикального падения на ионосферу, называется критической частотой f КР. Если рабочая частота больше критической, то при нормальном падении на ионосферу отражения не происходит и волна уходит в космическое пространство. Во время солнечных вспышек возникают ионосферные магнитные бури ухудшающие УКВ и КВ связь. Т.о. параметры тропосферы и ионосферы флуктуируют во времени. Это приводит к случайным изменениям амплитуды и фазы радиосигнала и вызывает их искажение. Флуктуация амплитуды сигнала называется замиранием.

Распространение средних волн (СВ)

СВ имеют =100-1000 м и могут распространяться как земными, так и ионосферными волнами. Земные радиоволны (РВ) СВ-диап-на испытывают значительные поглощения в полупроводящей поверхности Земли, что ограничивает их распространение расстоянием 500-700 км. Ионосферные РВ СВ-диап-на могут распространятся на гораздо большие расстояния, однако это имеет место в ночное время суток. Днём распространение СВ происходит практически только земной волной, т.к. ионосферная волна поглощается в слое D и быстро затухает. В ночное время слой D исчезает и СВ распространяются путём отражения от слоя Е ионосферы. Т.о. в диап-не СВ на некотором расстоянии от передатчика возможен одновременный приход земной и ионосферной волн (ИВ).

Вследствие того, что длина пути ИВ меняется по случайному закону при изменении электронной плотности ионосферы изменяется разность фаз волн, приходящих в некоторую точку приёма В. Если разность фаз земной и ИВ =0, то сигнал максимален, а если =180 о, то минимален. Такое изменение напряжённости поля, т.е. сигнала, называется ближним замиранием поля.

Возможен и другой вид замирания, так называемое дальнее замирание поля. Оно возникает в случае прихода в некоторую точку С (рис.18) ИВ путём одного (кривая 3) и двух (кривая 2) отражений от ионосферы. Изменение разности фаз этих двух волн так же приводит к колебаниям напряжённости эл. поля. Замирания тем глубже и чаще, чем короче  . Средняя длительность замираний в диапазоне СВ изменяется в пределах от 1с до 10-ков секунд.

Глубокие замирания в диап-не СВ сильно затрудняют приём передаваемой по радиолинии информации. Для борьбы с замираниями на передающей стороне радиолинии применяют специальные антенны, у которых максимум излучения прижат к земной поверхности. В этом случае зона ближних замираний удаляется от передатчика, а дальнее замирание вообще не возникнет, т.к. волна, пришедшая путём двух отражений будет сильно ослаблена. В радиоприёмных устройствах для борьбы с замираниями применяется автоматическая регулировка усиления (АРУ), которая обеспечивает поддержание постоянного уровня сигнала на выходе несмотря на значит. колебания напряжения на входе. Уменьшение уровня ионизации в зимние месяцы позволяет увеличить протяжённость радиолиний в СВ-диап-не зимой.

СВ находят многообразное применение для построения радиосвязи на относительно небольшие расстояния(до 1000 км). На СВ работают радиовещательные станции. В бортовых устройствах СВ используются для радиосвязи и радионавигации.

Распространение коротких волн (КВ)

К КВ относятся РВ с  =(10-100)м. Они могут распространяться как в виде земных (ЗВ), так и ионосферных волн (ИВ). Вследствие сильного поглощения в земн. поверхности и плохих условий дифракции земные РВ КВ диап-на распространяются на расстояния до 100 км. Над морем ЗВ испытывает меньшее поглощение, поэтому дальность КВ радиосвязи ув-ся до нескольких сот км. Если передающие и приёмные антенны поднять над земной поверхностью, поглощение ЗВ уменьшается, а дальность действия радиолинии будет доходить до 1000 км. Это имеет место, например, при радиосвязи между самолётами или между самолётом и землёй. Распространение КВ ионосферной волной происходит путём многократного последовательного отражения от слоя F ионосферы и земной поверхности. КВ не испытывают заметного поглощения при пересечении слоёв E и D, что обеспечивает возможность их распространения на сколь угодно большие расстояния. Для этого требуются радиопередатчики сравнительно небольшой мощности, что является ценной особ-тью КВ-диап-на. Еще одной особенностью этого диап-на является возможность создания направленного излучения РВ, что позволяет уменьшить излучение вдоль земной поверхности и, следовательно, уменьшить потери энергии.

Для связи ионосферной волной в КВ-диапазоне необходимо вып-е двух условий: 1.) волны должны отражаться от ионосферы (И); 2) они не должны сильно поглощаться в слоях И.

Эти условия влияют, прежде всего, на выбор рабочих частот.

Для отражения волны необходимо, чтобы электронная плотность И. была достаточной. Рабочая частота f  , при которой волны отразятся от ионосферы при заданной электронной плотности N Э и угле падения  0 равна:

(10)

Из этого условия выбирается максимальная применимая частота (МПЧ), являющаяся верхней границей рабочего диапазона. Нижняя граница рабочего диапазона определяется степенью поглощения КВ в И.. В диап-не КВ уменьшение поглощения происходит с повышением частоты. Наименьшая применимая частота (НПЧ) определяется из условия получения в некоторой точке пространства достаточной для приёма напряжённости ЭМ поля при данной мощности передатчика. Электронная плотность И. меняется в течение суток, поэтому днём рабочий диапазон волн 10-25м, ночью 35-100м. Необходимость правильного выбора длины волны усложняет организацию радиосвязи.

Для КВ радиолиний характерна ещё одна особенность – наличие так называемой зоны молчания. Зоной молчания (ЗМ) называют кольцевую область вокруг передатчика, в пределах которой невозможен приём РВ. Наличие ЗМ объясняется тем, что земные радиоволны 1 быстро затухают, а ИВ 2 приходят в некоторую точку земной поверхности на значительном удалении от радиопередатчика, т.к. для ИВ, падающих под малыми углами на И. не выполняется условие отражения (10) и они (рис. 19) уходят в космическое пространство. Пределы зоны молчания зависят от рабочей длины волны и уровня электронной плотности. Днём при связи на волнах в 10-25м ЗМ достигает 1000км, а ночью при связи на волнах 35-100м ширина ЗМ уменьшается до нескольких сот км. С увеличением мощности передатчика ЗМ так же уменьшается.

При распространении КВ, так же, как и в средневолновом диапазоне наблюдается явление случайного изменения во времени уровня сигнала, т.е. замирание. Сущ-ют замирания быстрые и медленные.

РИСУНОК 20

Быстрые замирания являются следствием многолучевого распространения РВ (рис 20а). Прежде всего причиной замираний служит приход в точку приёма РВ претерпевших одно и двукратное отражение от И.. Радиоволны 2 и 3 проходят разные пути, поэтому их фазы неодинаковы. Кроме того, изменение электронной плотности И. приводит к изменению длины пути каждой волны. Такие изменения происходят непрерывно, поэтому колебание напряж-ти эл. поля в диап-не КВ являются частыми и глубокими. Замирания радиосигналов вызываются также рассеянием РВ на неоднородностях И.(рис 20б) и интерференции рассеянных волн. ИВ-на КВ-диап-на под действием м. поля земли распадается на две составляющие – обыкновенную и необыкновенную, распространяющиеся с разными фазовыми скоростями (рис 20в). Интерференция составляющих магниторасщеплённой волны также приводит к замираниям. При отражениях от И. наблюдается также поворот плоскости поляризации волны. Если приёмная антенна принимает волны одной поляризации, то случайные изменения поляризации РВ-ны приведет к колебаниям уровня входящего сигнала. Все указанные причины замирания сигнала как правило действуют одновременно. Изменение поглощения РВ в И. также вызывает замирание, по времени проявления они медленнее.

Для борьбы с замираниями применяют направленные антенны, организуют приём радиоволн на разнесённые антенны, т.к. величина разноса порядка 10 обеспечивает надёжный приём. Эффективным является разнесение антенн по поляризации, т.е. приём РВ на две антенны, имеющие взаимно перпендикулярную поляризацию. При благоприятных условиях распространения КВ могут огибать земной шар один или несколько раз.

Тогда в точке приёма помимо основного сигнала с некоторым опозданием (0.1с) возможно появление такого же сигнала. Это явление, называемое радиоэхо ухудшает качество приёма радиосигналов. КВ нашли широкое и весьма многообразное применение прежде всего в организации дальней связи для радионавигации и радиовещания, в целях радиолокации для загоризонтного обнаружения объектов.

Распространение УКВ

К УКВ относят сравнительно большой диапазон волн =10-0.001м. Диапазон УКВ делят на поддиапазоны метровых (МВ), дециметровых (СМ), сантиметровых (СМ) и миллиметровых (ММ) волн. Каждый из поддиапазонов имеет свои особенности распространения, однако существуют общеосновные положения, свойственные всему диап-ну УКВ. Условия распространения УКВ определяются прежде всего свойствами трассы. УКВ слабо дифрагируют вокруг выпуклой поверхности Земли и крупных неровностей на ней и по этой причине распространяются на расстояния лишь незначительно превышающие дальность прямой видимости. Для того чтобы увеличить дальность УКВ-связи и уменьшить влияние окружающих антенну неровностей радиолинии стремятся поднять над земной поверхностью по возможности выше. Дальность действия радиолинии при этом с учётом атмосферной рефракции, определяется формулой

, (11)

где h 1 , h 2 - высота поднятия антенн в метрах, D – дальность радиолинии в км. Если протяжённость УКВ радиолинии много меньше предельно возможной дальности прямой видимости, то сферичность Земли, рефракция в тропосфере не влияют на распространение РВ. Для подобных радиолиний характерны большая устойчивость и неизменность уровня радиосигнала во времени, если передатчик и приёмник стационарные. Если хотя бы один из абонентов УКВ радиолинии является подвижным объектом, то уровень радиосигнала меняется во времени вследствие изменении угла наблюдения при движении объекта и изрезанности (?) зоны излучения стационарной передающей антенны.

Если протяжённость УКВ радиолинии превышает пределы прямой видимости, то на качество её работы влияет сферичность Земли, явление рефракции, а также метеорологические условия. Сферичность Земли оказывает заметное ослабляющее действие, а тропосферная рефракция большей частью улучшает условия приёма. При нормальной тропосферной рефракции протяж-ть УКВ радиолинии может превышать пределы прямой видимости на 15. ДЛЯ наземных радиолиний с низко расположенными антеннами максимальная дальность распространения УКВ не превышает нескольких км. С антеннами, поднятыми на высоту порядка 20-25м максимальная дальность составляет 40-60 км. Для самолётов, летящих на средних высотах она равна 300-400 км. При распространении УКВ над пересечённой местностью препятствия ослабляют сигналы в том случае, если они перекрывают линию прямой видимости между антеннами приёмо-передающих устройств.

Вместе с тем, на трассах УКВ в горных условиях наблюдается явление улучшения распространения РВ. Например, на трассах протяжённостью 100-150 км проходящих через горы высотой 1-2 км наблюдается явление усиления препятствием. Это явление заключается в том, что интенсивность ЭМ поля радиоволны при некотором удалении за препятствие оказывается больше, чем в случае распространения без препятствия. Объясняется это тем, что вершина горы служит естественным пассивным ретранслятором.

Поле, возбуждающее вершину горы складывается из прямой волны 1 и отражённой волны 2. Волны дифрагируют на острой вершине и распространяются в область за гору. К месту расположения приёмной антенны А2 приходят волны 3 и 4, сумма которых значительно превышает уровень сигнала в этой точке пространства при распространении РВ без препятствия. Явление усиления препятствием экономически выгодно и позволяет организовать радиолинию в горах без ретрансляционной станции.

Распространение УКВ на большие расстояния (до 200-1000 км) возможно путём рассеяния на неоднородностях тропосферы, которые действуют как вторичные излучатели. Поле, создаваемое вблизи земной поверхности есть результат интерференции полей, переизлучённых большим числом неоднородностей. На неоднородностях тропосферы хорошо рассеиваются волны см. и дм. диап-нов. Волны метрового диап-на переизлучаются неоднородностями ионосферы.

Максимальная протяжённость радиолинии, использующей ионосферные волны метрового диап-на достигает 2000-2300 км. Такая радиосвязь имеет большое преим-во перед коротковолновыми линиями связи в возможности круглосуточной работы на одной частоте без заметных нарушений связи.

Сверхдальняя связь на УКВ может быть основана на использовании явления сверхрефракции в тропосфере. Если область сверхрефракции занимает значительный объём над земной поверхностью, то при этом обеспечивается распространение УКВ на большие расстояния в условиях, так называемого, тропосферного волновода. Такая связь имеет недостатки: 1) приём радиоволн возможен, если приёмник и передатчик находятся в пределах волновода; 2) нерегулярное появление волноводов не может обеспечить устойчивую связь на больших расстояниях.

Явление сверхрефракции имеет и негативную сторону. Оно может служить причиной взаимных помех, создаваемых станциями, работающими в см-ровом диап-не, а также помех радиолокационным станциям обнаружения воздушных объектов.

УКВ широко применяются на космических радиолиниях, подразделяющихся на виды Земля-космос и космос-космос. Межпланетная плазма оказывает слабое поглощающее или рассеивающее воздействие на радиоволны. На р/линии Земля-космос решающее значение имеет ослабление сигналов из-за большой протяжённости трассы и поглощения в атмосфере Земли. Для космических систем связи оптимальными являются волны длиной от 3 до 10 см.

В современных линиях радиосвязи УКВ занимают особое место, т.к. обладают рядом преимуществ по сравнению с РВ-нами других диап-нов:

1.Диапазон УКВ занимает очень широкий спектр частот, что позволяет разместить в нём большое количество одновременно работающих без взаимных помех радиосредств, а также маневрировать их рабочей длиной волны.

2.В диап-не УКВ возможно создание широкополосных радиолиний, таких как телевизионные линии или широкополосные радиолинии с ЧМ.

3.Применение УКВ позволяет сравнительно легко осуществлять остронаправленное излучение и приём радиоволн с помощью антенн относит-но небольших размеров.

4.Радиоприём на УКВ в меньшей степени подвержен воздействию атмосферных и промышленных помех.

5.Ограничение дальности распространения УКВ обеспечивает относительную скрытность передачи информации.

МВ и ДМВ используют для передачи ТВ изображений, для радиосвязи самолётов между собой и с наземными пунктами. См-ровые волны прим-ся для линий связи широкого назнач-я, для такой же связи применяются и мм-ровые волны.

При определении дальности действия радиосистем приходится учитывать поглощение и преломление радиоволн при их распространении в атмосфере, их отражение от ионосферы, влияние подстилающей поверхности вдоль трассы, по которой распространяется радиосигнал.

Степень влияния этих факторов зависит от частотного диапазона и условий эксплуатации радиосистемы (время суток,географический район, высота антенны передатчика и приемника).

Влияние поглощения и преломления радиоволн наиболее существенно в нижнем основном слое атмосферы, называемом тропосферой. Тропосфера простирается по высоте до 8-10 км в полярных районах и до 16-18 км в тропических широтах Земного шара. В тропосфере сосредоточена основная часть водяного пара, образуются облака и турбулентные потоки, что влияет на распространение радиоволн, особенно миллиметрового, сантиметрового и дециметрового диапазонов, используемых в радиолокации и ближней радионавигаций.

Отражение радиоволн от ионосферы наиболее сильно сказывается на декаметровых и более длинных волнах, применяемых в системах навигации и связи.

Рассмотрим кратко влияние перечисленных факторов.

Влияние затухания радиоволн в тропосфере связано с их поглощением молекулами кислорода и водяного пара, гидрометеорами (дождь, туман, снег) и твердыми частицами. Поглощение и рассеяние ведет к снижению плотности потока мощности радиоволны с расстоянием по экспоненциальному закону, т. е. мощность сигнала на входе ослабляется в раз. Значение множителя ослабления зависит от коэффициента затухания , и расстояния, проходимого радиоволнами D. Если коэффициент , вдоль всей трассы постоянен и рассматривается случай активной РЛС с пассивным ответом, то и мощность сигнала на входе приемника уменьшается за счет затухания от до

Если выразить , в , то . При наличии в атмосфере гидрометеоров и других частиц коэффициент затухания , является суммой частных коэффициентов затухания, вызванных поглощением молекулами кислорода и водяного пара, а также влиянием жидких и твердых частиц. Молекулярное поглощение в атмосфере происходит в основном на частотах, близких к резонансным. Резонансные линии всех газов атмосферы, за исключением кислорода и водяного пара, расположены вне диапазона радиоволн, поэтому существенно влияет на дальность действия РТС только поглощение молекулами кислорода и водяного пара. Поглощение молекулами водяного пара максимально на волне , а молекулами кислорода - на волнах .

Таким образом, молекулярное поглощение значительно в сантиметровом и особенно в миллиметровом диапазонах, где оно ограничивает дальность действия радиосистем, особенно радиолокационных, работающих по отраженным сигналам.

Другой причиной, вызывающей потери энергии сигнала при распространении, является рассеяние радиоволн, прежде всего дождевыми каплями и туманом. Чем больше отношение радиуса капли , к длине волны , к длине волны , тем больше потери энергии за счет ее рассеяния во всех направлениях. Это рассеяние возрастает пропорционально четвертой степени частоты, поскольку ЭПР капли при

где - диэлектрическая проницаемость воды.

Если известны диаметр капель и их число на единицу объема, то можно определить коэффициент затухания . В справочниках коэффициент , для дождя обычно указывается в зависимости от его интенсивности и длины волны . В сантиметровом диапазоне коэффициент затухания изменяется приблизительно пропорционально квадрату частоты сигнала . Если на частоте при мм/ч, , то на частоте при той же интенсивности дождя .

Ослабление радиоволн в тумане прямо пропорционально концентрации воды в нем. Ослабление радиоволн в результате града и снега значительно меньше, чем в результате дождя или тумана, и их влиянием обычно пренебрегают.

Максимальная дальность действия РЛС с учетом затухания может быть найдена по формуле

если известна дальность действия в свободном пространстве . Это уравнение можно решать графически, представив в логарифмической форме . После простых преобразований найдем

Обозначим относительное уменьшение дальности и запишем уравнение в виде, удобном для графического решения:

На рис 9.4 привидена зависимость позволяющая при заданных и найти , а следовательно, .

Влияние рефракции радиоволн в атмосфере. Рефракцией (преломлением, искривлением) радиоволн называют отклонение распространения радиоволн от прямолинейного при прохождении ими среды с изменяющимися электрическими параметрами. Преломляющие свойства среды характеризуются коэффициентом преломления , определяемым ее диэлектрической проницаемостью . Вместе с коэффициент преломления в атмосфере меняется с высотой . Скорость изменения с высотой характеризуется градиентом , значение и знак которого характеризуют рефракцию.

При рефракция отсутствует. Если , то рефракцию считают отрицательной и траектория радиоволны искривляется в сторону от поверхности Земли. рефракция положительна и траектория радиоволны искривлена в сторону Земли, что приводит к ее огибанию радиоволной и увеличению дальности действия радиосистем и, в частности, дальности радиолокационного обнаружения кораблей и низколетящнх .

Для нормального состояния атмосферы , т. е. рефракция положительна, что ведет к увеличению дальности радиогоризонта. Влияние нормальной рефракции учитывается кажущимся увеличением радиуса Земли в раза, что равносильно увеличению дальности радиогоризонта до . Радиус кривизны траектории радиоволны обратно пропорционален градиенту , т. е. . При радиус кривизны траектории радиоволны равен радиусу Земли , и радиоволна, направленная горизонтально, распространяется параллельно поверхности Земли, огибая ее. Это случай критической рефракции, при котором возможно значительное увеличение дальности действия РЛС.

При аномальных условиях в тропосфере (резкое увеличение давления, влажности, температуры) возможна и сверхрефракция, при которой радиус кривизны траектории радиоволны становится меньше радиуса Земли. При этом в тропосфере возможно волноводное распространение радиоволн на очень большие расстояния, если антенна РЛС и объект находятся на высотах в пределах слоя тропосферы, образующего волноводный канал.

Влияние подстилающей поверхности. Кроме атмосферной рефракции огибание земной поверхности происходит вследствие дифракции радиоволн. Однако в зоне тени (за горизонтом) напряженность радиоволн быстро падает из-за потерь в подстилающей поверхности, которые быстро растут с увеличением частоты радиосигнала. Поэтому только на волнах более 1000 м поверхностная волна, т. е. волна, огибающая поверхность Земли, может обеспечить большую дальность действия системы (несколько сотен и даже тысяч километров). Поэтому в РНС дальнего действия используют волны длинноволнового и сверхдлинноволнового диапазонов.

Затухание поверхностной волны зависит от диэлектрической проницаемости и электропроводности подстилающей поверхности, причем для морской поверхности и для песчаных или горных пустынь; при этом изменяется в пределах 0,0001 - 5 См/м. С уменьшением проводимости почвы затухание резко увеличивается, поэтому наибольшая дальность действия обеспечивается при распространении радиоволн над морем, что существенно для морской радионавигации.

Влияние подстилающей поверхности сказывается не только на дальности действия РНС, но и на их точности, поскольку фазовая скорость распространения радиоволн также зависит от параметров подстилающей поверхности. Создаются специальные карты поправок фазовой скорости в зависимости от параметров подстилающей поверхности, однако, поскольку эти параметры меняются в зависимости от времени года и суток и даже погоды, полностью исключить погрешности местоопределения, вызванные изменением фазовой скорости распространения радиоволн, практически невозможно.

Радиоволны с длиной более 10 м могут распространяться за горизонт также в результате однократного или многократного отражения от ионосферы.

Влияние отражения радиоволн ионосферой. Радиоволны, достигающие приемной антенны после отражения ионосферой, называют пространственными.

Такие волны обеспечивают очень большую дальность действия, что я используется в связных системах коротковолнового (декаметрового) диапазона. На пространственных волнах осуществляется также сверхдальнее радиолокационное обнаружение некоторых целей (ядерных взрывов и запуска ракет) с помощью отраженных целью сигналов, которые на трассе распространения испытывают одно или несколько отражений от ионосферы и поверхности Земли. Явление приема таких сигналов (эффект Кабанова) было открыто советским ученым Н. И. Кабановым в 1947 г. РЛС, основанные на этом эффекте, называют ионосферными или загоризонтными. В таких станциях, работающих на волнах длиной 10-15 м, как и в обычных РЛС, дальность цели определяется по времени запаздывания сигнала, а направление фиксируется с помощью направленной антенны. Вследствие неустойчивости ионосферы точность таких станций невелика, а расчет дальности действия представляет сложную задачу из-за трудности учета потерь на рассеяние и поглощение радиоволн на пути распространения, а также при их отражении от Земли и ионосферы. При этом нужно учитывать также потери из-за изменения плоскости поляризации радиоволн.

Зависимость высоты ионосферы от многих причин приводит к непредсказуемым изменениям задержки сигнала, что затрудняет использование пространственных волн для радионавигации. Более того, интерференция пространственных и поверхностных волн ведет к искажению поверхностного сигнала и снижает точность местоопре-деления.

В заключение рассмотрим особенности распространения радиоволн мириаметрового (сверхдлинноволнового) диапазона длиной 10-30 км, применяемых в системах глобальной навигации наземного базирования. Эти волны плохо поглощаются подстилающей поверхностью и хорошо отражаются от нее, а также от ионосферы как ночью, так и днем. В результате сверхдлинные волны распространяются вокруг Земли, как в волноводе, ограниченном поверхностью Земли и ионосферой, на очень большие расстояния. При этом изменение скорости распространения и фазовые сдвиги можно прогнозировать, что обеспечивает точность местоопределения, достаточную для судовождения в открытом море.

В настоящее время для глобальной навигации применяют спутниковые РНС, в которых благодаря большой высоте орбит ИСЗ обеспечивается прямая «видимость» на больших расстояниях при использовании дециметровых волн, которые свободно проходят через ионосферу Дециметровые волны позволяют получать с помощью спутниковых РНС очень высокую точность местоопределения в рабочей области системы, которая для глобальных СРНС охватывает все околоземное пространство.

Напишите уравнение дальности РЛС в свободном пространстве.

Каким образом дальность действия РЛС зависит от ее длины волны?

Как влияет отражение радиоволн от поверхности Земли на дальность действия РЛС?

В чем особенность обнаружения низкорасположенных объектов?

Каковы основные причины ослабления радиолокационного сигнала при распространении?

Определите дальность действия РЛС трехсантиметрового диапазона, работающей в условиях дождя интенсивностью мм/ч(). Дальность действия РЛС в свободном пространстве .

При каких условиях рефракция радиоволн приводит к аномальному увеличению дальности действия РЛС?

В чем выражается влияние подстилающей поверхности на работу РНС?

Что такое «эффект Кабанова» и как его применяют на практике?

Почему в глобальных РНС наземного базирования используются радиоволны СДВ-диапазона?

РАСПРОСТРАНЕНИЕ РАДИОВОЛН - процесс передачи в пространстве эл--магн. колебаний радиодиапазона (см. Радиоволны ).В естеств. условиях Р. р. происходит в разл. средах, напр. в атмосфере, космич. плазме, в поверхностном слое Земли.

Общие закономерности распространения радиоволн. Скорость Р. р. в свободном пространстве в вакууме равна скорости света с. Полная энергия, переносимая радиоволной, остаётся постоянной, а плотность потока энергии убывает с увеличением расстояния r от источника обратно пропорционально r 2 . Р. р. в др. средах происходит с фазовой скоростью, отличающейся от с , и в равновесной среде сопровождается поглощением эл--магн. энергии. Оба эффекта объясняются возбуждением колебаний электронов и ионов среды под действием электрич. поля волны. Если напряжённость поля E гармонич. волны мала по сравнению с напряжённостью поля, действующего на заряды в самой среде (напр., на электрон в атоме), то колебания происходят также по гармонич. закону с частотой w пришедшей волны. Колеблющиеся электроны излучают вторичные радиоволны той же частоты, но с др. амплитудами и фазами. В результате сложения вторичных волн с приходящей формируется результирующая волна с новой амплитудой и фазой. Сдвиг фаз между первичной и переизлучёнными волнами приводит к изменению фазовой скорости. Потери энергии при взаимодействии волны с атомами являются причиной поглощения радиоволн .

Амплитуда волны убывает с расстоянием по закону а фаза волны изменяется по закону y = wt - (w/с)nr , где x - показатель поглощения, n - преломления показатель ; n и x зависят от диэлектрической проницаемости e среды, её проводимости s и частоты волн w:


гденаз. тангенсом угла потерь. Фазовая скорость u = с/n , коэф. поглощения Среда ведёт себя как диэлектрик , если и как проводник, еслиВ первом случае во втором -и волна затухает на расстояниях - толщина скин-слоя (см. Скин-эффект) . В среде e ц s являются ф-циями частоты (см. Дисперсия волн) . Вид частотной зависимости е и s определяется структурой среды. Дисперсия радиоволн особенно существенна в тех случаях, когда частота волны близка к характерным собств. частотам среды (напр., при Р. р. в ионосферной и космич. плазме, см. ниже).

При Р. р. в средах, не содержащих свободных электронов (тропосфера, толща Земли), происходит смещение связанных электронов в атомах и молекулах среды в сторону, противоположную полю волны Е , при этом n > 1, u Ф < с . В плазме поле волны вызывает смещение свободных электронов в направлении E , при этом n < 1 и u Ф > с, т. е. фазовая скорость монохро-матич. волны может быть как меньше, так и больше с . Однако для того чтобы передать при помощи радиоволн к--л. информацию (энергию), необходимо иметь ограниченный во времени радиосигнал, представляющий собой нек-рый набор гармонич. волн. Спектральный состав сигнала зависит от его длительности и формы. Радиосигнал распространяется с групповой скоростью u гр. В любой среде u гр < с .

В однородных средах радиоволны распространяются прямолинейно, подобно световым лучам. Процесс Р. р. в этом случае подчиняется законам геометрической оптики . Однако реальные среды неоднородны. В них п , а следовательно, и u Ф различны в разных участках среды, что приводит к рефракции радиоволн . В случае плавных (в масштабе l) неоднородности справедливо приближение геом. оптики. Если показатель преломления зависит только от высоты h , отсчитываемой от сферической поверхности Земли, то вдоль траектории луча выполняется условие

Соотношение (2) представляет собой Снелля закон преломления для сферическислоистой среды. Здесь R 0 - радиус Земли, f - угол наклона луча к вертикали в произвольной точке траектории. Если вместо действит. показателя преломления га ввести приведённый показатель преломления

то закон преломления (2) получит вид

Соотношение (4) наз. законом преломления Снелля для плоскослоистой среды.

Если n убывает при увеличении h , то в результате рефракции луч, по мере распространения, отклоняется от вертикали и на нек-рой высоте h m становится параллельным горизонтальной плоскости, а затем распространяется вниз (рис. 1, а). Макс. высота h m , на к-рую луч может углубиться в неоднородную плоскослоистую среду, зависит от угла падения f 0 и определяется из условия


Рис. 1. а - рефракция радиоволн в плоскослоистой среде с grad n < 0; б - зависимость квадрата амплитуды напряжённости электрического поля радиоволны от высоты h .

В область h > h m лучи не проникают, и, согласно приближению геом. оптики, волновое поле в этой области должно быть равно 0. В действительности вблизи плоскости h = h m волновое поле возрастает, а при h > h m убывает экспоненциально (рис. 1, б) . Нарушение законов геом. оптики при Р. р. связано также с дифракцией волн , вследствие к-рой радиоволны могут проникать в область геом. тени. На границе области геом. тени образуется сложное распределение волновых полей. Дифракция радиоволн возникает при наличии на их пути препятствий (непрозрачных или полупрозрачных тел) и особенно существенна в тех случаях, когда размеры препятствий сравнимы с l.

Если Р. р. происходит вблизи резкой границы (в масштабе l) между двумя средами с разл. электрич. свойствами (напр., атмосфера - поверхность Земли или тропосфера - ниж. граница ионосферы для достаточно длинных волн), то при падении радиоволн на резкую границу образуются отражённая и преломлённая (прошедшая) радиоволны. Если отражение происходит от границы проводящей среды (напр., от поверхностного слоя Земли), то глубина проникновения в него определяется толщиной скин-слоя.

В неоднородных средах возможно волноводное распространение радиоволн , при к-ром происходит локализация потока энергии между определ. поверхностями, за счёт чего волновые поля между ними убывают с расстоянием медленнее, чем в однородной среде (атм. волновод). В средах с плавными неоднородностями локализация связана с рефракцией, а в случае резких границ - с отражением.

В среде, содержащей случайные локальные неоднородности, вторичные волны излучаются беспорядочно в разл. направлениях. Рассеянные волны частично уносят энергию исходной волны, что приводит к её ослаблению. При рассеянии на неоднородностях размером l l (т. н. рассеяние Рэлея; см. Рассеяние света )рассеянные волны распространяются почти изотропно. В случае рассеяния на крупномасштабных прозрачных неоднородностях рассеянные волны распространяются в направлениях, близких к исходной волне. При l ! l возникает сильное резонансное рассеяние.

Влияние поверхности Земли на распространение радиоволн определяется как электрич. параметрами e и s грунтов и водных пространств, образующих земную кору, так и структурой поверхности Земли, т. е. её кривизной и неоднородностью. Р. р.- процесс, захватывающий большую область пространства, но наиб. существ. роль в Р. р. играет область, ограниченная поверхностью, имеющей форму эллипсоида вращения, в фокусах к-рого A и B на расстоянии r расположены передатчик и приёмник (радиотрасса, рис. 2). Большая ось эллипсоида равнамалая ось определяется размерами первой Френеля зоны и Ширина трассы уменьшается с убыванием l. Если высоты z 1 и z 2 , на к-рых расположены антенны передатчика и приёмника над поверхностью Земли, велики по сравнению с l, то эллипсоид не касается поверхности Земли и она не влияет на Р. р. (рис. 2, а) . При понижении обеих или одной из конечных точек радиотрассы (или увеличении длины волны) поверхность Земли пересекает эллипсоид. В этом случае на Р. р. оказывают влияние электрич. параметры области поверхности Земли, ограниченной эллипсом сечения, вытянутым вдоль трассы. При сохранении условий и в точке приёма возникает интерференция между прямой и отражённой волнами (см. Интерференция волн ).Амплитуда и фаза отражённой волны определяются с учётом Френеля формул для коэф. отражения. Интерференционные максимумы и минимумы обусловливают лепестковую структуру поля, к-рая характерна для декаметровых и более коротких радиоволн. Если z 1 /l < 1 и z 2 /l < 1, то радиотрасса выделяет участок поверхности Земли, ограниченный эллипсом с осями r + l(p/4) и


Рис. 2. Эллипсоидальная область пространства, существенная при распространении радиоволн (радиотрасса); А - излучатель; В - приёмник.

Уменьшение напряжённости поля, а следовательно, и потока энергии, переносимого радиоволной вдоль поверхности Земли (земной волной) , обусловлено проводимостью поверхности в этой области. При P.p. вдоль проводящей поверхности возникает поток энергии, направленный в проводящую среду и быстро затухающий по мере распространения в ней. Глубина проникновения радиоволны в земную кору определяется толщиной скин-слоя и, следовательно, увеличивается с увеличением длины волны. Поэтому для подземной и подводной радиосвязи используются длинные и сверхдлинные радиоволны.

Рис. 3. Дальность "прямой видимости" r ограничена выпуклостью земной поверхности; R 0 - радиус Земли, z 1 , и z 2 , - высоты передающей А и приёмной В антенн соответственно.


Выпуклость земной поверхности ограничивает расстояние, на к-ром из точки приёма В "виден" передатчик А (область "прямой видимости", рис. 3). Однако радиоволны, огибая Землю в результате дифракции, могут проникать в область тени на большее расстояние(R 0 - радиус Земли). Практически в эту область за счёт дифракции могут проникать только километровые и более длинные волны (рис. 4).

Рис. 4 . График, иллюстрирующий связь дальности r распространения от величины W = 20lg|E/E * | , где E - напряжённость поля радиоволны в реальных условиях распространения с учётом огибания выпуклости земной поверхности (излучатель расположен на поверхности Земли); Е * - напряжённость поля для разных частот без учёта дифракции.


Фазовая скорость земных волн вблизи излучателя зависит от электрич. свойств. Однако на расстоянии в неск. l от излучателя u ф! с . Если радиоволны распространяются над электрич. неоднородной поверхностью, напр. сначала над сушей, а затем над морем, то при нересечении береговой линии резко изменяются амплитуда и направление Р. р. (береговая рефракция, рис. 5).

Рис. 5. Изменение напряжённости электрического поля волны при пересечении береговой линии.


Влияние рельефа земной поверхности на Р. р. зависит от высоты неровностей h , их горизонтальной протяжённости l , l и угла q падения волны на поверхность. Если неровности достаточно малы и пологи, так что kh cosq < < 1 (k - волновое число), и выполняется т. н. критерий Рэлея k 2 l 2 cosq < 1, то они слабо влияют на Р. р. Влияние неровностей зависит также от поляризации волн. Напр., для горизонтально поляризованных волн оно меньше, чем для волн, поляризованных вертикально. Когда неровности не малы и не пологи, энергия радиоволны может рассеиваться (радиоволна отражается от них). Высокие горы и холмы с h > l "возмущают" волновое поле, образуя затенённые области. Дифракция радиоволн на горных хребтах иногда приводит к усилению волны из-за интерференции прямых и отражённых волн. Вершина горы служит естеств. ретранслятором. Это существенно при распространении метровых радиоволн в гористой местности (рис. 6).


Распространение радиоволн в тропосфере. Тропосфера - область атмосферы, расположенная между поверхностью Земли и тропопаузой, в к-рой темп-pa воздуха обычно убывает с высотой (в тропопаузе темп-ра с высотой увеличивается). Высота тропопаузы на земном шаре неодинакова, над экватором она больше, чем над полюсами, а в средних широтах, где существует система сильных западных ветров, изменяется скачкообразно. Тропосфера состоит из смеси нейтральных молекул и атомов газов, входящих в состав сухого воздуха, и паров воды. Диэлектрическая проницаемость, а следовательно, и показатель преломления газа, не содержащего свободных электронов и ионов, обусловлены дополнительными полями, создаваемыми смещением электронов в молекулах (поляризация сухого воздуха) я ориентацией полярных молекул (пары воды) под действием электрич. поля волны.

Показатель преломления тропосферы

где p - давление сухого воздуха, е - давление водяного пара в миллибарах, Т - темп-pa. Показатель преломления не зависит от частоты и очень мало отличается от единицы. Так, у поверхности Земли с увеличением высоты происходит изменение параметров р, Т, е , определяющих значение показателей преломления. При нормальных метеорологич. условиях показатель преломления уменьшается с высотой:

Это приводит к искривлению траектории лучей. Для правильной оценки положения луча относительно поверхности Земли необходимо учитывать сферичность её поверхности, что можно сделать, вводя приведённый показатель преломления (3):

отличающийся от grad n не только по абс. величине, но и по знаку. В условиях нормальной тропосферной рефракции grad n пр > 0. В этом случае луч, вышедший из приподнятого над землёй излучателя под углом к вертикали, при распространении приближается к ней. При распространение лучей происходит в сторону уменьшающихся значений n пр. При этом, в зависимости от значений f 0 , луч может достигнуть поверхности Земли и отразиться от неё, достигнуть точки поворота, определяемой из условия (5), и при нек-ром значении угла f 0 точка поворота может лежать на поверхности Земли. В этом случае траектория луча является границей между областью, в к-рую могут попасть лучи, и областью тени. Нормальная тропосферная рефракция способствует увеличению области прямой видимости.

Метеорологич. условия существ. образом влияют на изменение показателя преломления, т. е. и на рефракцию радиоволн. Обычно в тропосфере давление воздуха н темп-pa С высотой уменьшаются, а давление водяного пара увеличивается. При нек-рых метеорологич. условиях, напр. при движении нагретого над сушей воздуха над более холодной поверхностью моря, темп-ра воздуха с высотой увеличивается, а давление водяного пара уменьшается (инверсия темп-ры и влажности). В этом случае показатель преломления изменяется с высотой не монотонно, т. е. dn пр /dh на нек-рой высоте может изменить знак. Если в интервале высот, определяемом толщиной слоя инверсии, то gradn np <0. В плоскослоистой среде с grad n пр < О лучи отражаются от высоты, определяемой из условия (5). В пространстве, ограниченном снизу поверхностью Земли, а сверху высотой, на к-рой dn пр /dh изменяет знак, возникают условия для волноводного распространения (рис. 7). В тропосферных волноводах, как правило, могут распространяться волны с l < 1 м.

Рис. 7. Траектории УКВ в тропосферном волноводе.


Поглощение радиоволн в тропосфере пренебрежимо мало для всех радиоволн вплоть до сантиметрового диапазона. Поглощение сантиметровых и более коротких волн резко увеличивается, когда частота волны w совпадает с одной из собств. частот колебаний молекул воздуха (резонансное поглощение). Молекулы получают от приходящей волны энергию, к-рая превращается в теплоту p только частично передаётся вторичным волнам. Известен ряд линий резонансного поглощения в тропосфере: l = 1,35 см, 1,5 см, 0,75 см (поглощение в парах воды) и l = 0,5 см, 0,25 см (поглощение в кислороде). Между резонансными линиями лежат области более слабого поглощения (окна прозрачности).

Ослабление радиоволн может быть также вызвано рассеянием на неоднородностях, возникающих при турбулентном движении воздушных масс (см. Турбулентность ).Рассеяние резко увеличивается, когда в воздухе присутствуют капельные неоднородности в виде дождя, снега, тумана. Почти изотропное рассеяние Рэлея на мелкомасштабных неоднородностях делает возможной радиосвязь на расстояниях, значительно превышающих прямую видимость (рис. 8). Т. о., тропосфера существенно влияет на распространение УКВ. Для декаметровых и более длинных волн тропосфера практически прозрачна, и на их распространение влияют земная поверхность и более высокие слои атмосферы.

Рис. 8. Рассеяние радиоволн на мелкомасштабных неоднородностях.


Распространение радиоволн в ионосфере. Ионосферу образуют верх. слои земной атмосферы, в к-рой газы частично (до 1%) ионизированы под влиянием УФ-, рентг. и корпускулярного солнечного излучения. Ионосфера электрически нейтральна, она содержит равное кол-во положит. и отрицат. частиц, т. е. является плазмой. Достаточно большая ионизация, оказывающая влияние на Р. р., начинается на высоте 60 км (слой D ), увеличивается до высоты 300-400 км, образуя слои Е. F 1 , F 2 , и затем медленно убывает. В гл. максимуме концентрация электронов N достигает 10 6 см -3 . Зависимость N от высоты меняется со временем суток, года, с солнечной активностью, а также с широтой и долготой. Ионизиров. слой между 200 и 400 км состоит в осн. из равного кол-ва ионов О + и электронов. Эти частицы погружены в нейтральный газ с концентрацией 10 8 см -3 , состоящий в осн. из частиц О 2 , О, N 2 и Не.

В многокомпонентной плазме, содержащей электроны, ионы и нейтральные молекулы и пронизанной магн. полем Земли (см. Земной магнетизм) , могут возникать разл. виды собств. колебаний, имеющих разные частоты. Напр., плазменные (ленгмюровские) частоты электронов и ионов ги-ромагн. частоты электронов и ионов где т, М - массы электрона и иона, е - их заряд, N - концентрация, Н 0 - напряжённость магн. поля Земли. Т. к. то . Напр., для электронов=1,4 МГц, а для ионов атомарного кислорода= 54 Гц.

В зависимости от частоты w радиоволны осн. роль в Р. р. играют те или др. виды собств. колебаний, поэтому электрич. свойства ионосферы различны для разных участков радиодиапазона. При высоких w ионы не успевают следовать за изменениями поля и в Р. р. принимают участие только электроны. Вынужденные колебания свободных электронов ионосферы происходят в про-тивофазе с действующей силой и вызывают поляризацию плазмы в сторону, противоположную электрич. полю волны Е. Поэтому диэлектрич. проницаемость ионосферы e < 1. Она уменьшается с уменьшением частоты: Учёт соударений электронов с атомамии ионами даёт более точные ф-лы для e и s ионосферы:


Здесь v - эфф. частота соударений. Для декаметровых и более коротких волн в большей части ионосферы и показатели преломления h и поглощения приближённо равны:

Поскольку h < 1, фазовая скорость Р. р. УФ = = с/п > с , групповая скорость u гр = с/n < с .

Поглощение в ионосфере пропорц. v, т. к. чем больше число столкновений, тем большая часть энергии, получаемой электроном из волн, переходит в тепло. Поэтому поглощение больше в ниж. областях ионосферы (слой D) , где v больше, т. к. выше плотность газа. С увеличением частоты поглощение уменьшается. Короткие волны испытывают слабое поглощение и распространяются на большие расстояния.

Рефракция радиоволн в ионосфере. В ионосфере распространяются только радиоволны с частотой w > w 0 . При w < w 0 показатель преломления становится чисто мнимым и эл--магн. поле экспоненциально убывает в глубь плазмы. Радиоволна с частотой w, падающая на ионосферу вертикально, отражается от уровня, на к-ром w = w 0 и n = 0. В ниж. части ионосферы электронная концентрация и w 0 увеличиваются с высотой, поэтому с увеличением w посланная с Земли волна всё глубже проникает в ионосферу. Макс. частота радиоволны, к-рая отражается от слоя ионосферы при вертикальном падении, наз. критич. частотой слоя:

Критич. частота слоя F 2 (гл. максимума) изменяется в течение суток и года в широких пределах (от 3-5 до 10 МГц). Для волн с показатель преломления не обращается в нуль и падающая вертикально волна проходит через ионосферу, не отражаясь.

При наклонном падении волны на ионосферу происходит рефракция, как в тропосфере. В ниж. части ионосферы gradM -1 , т. е. поэтому gradи траектория луча отклоняется по направлению к Земле (рис. 9). Радиоволна, падающая на ионосферу под углом f 0 , поворачивает к Земле на высоте h , для к-рой выполнено условие (5). Макс. частота волны, отражающейся от ионосферы при падении под углом (т. е. для данной дальности трассы), равнаи наз. максимально применимой частотой (МПЧ). Волны с отражаясь от ионосферы, возвращаются на Землю, что используется для дальней радиосвязи.


Рис. 9. Схематическое изображение радиолучей определённой частоты при различных углах падения на ионосферу.

Рис. 10. Распространение коротких волн между Землёй и ионосферой: а - много-скачковая траектория; б - скользящая траектория.


Вследствие сферичности Земли величина угла f 0 ограничена и дальность связи при однократном отражении от ионосферы3500-4000 км. Связь на большие расстояния осуществляется за счёт неск. последоват. отражений от ионосферы и Земли ("скачков", рис. 10,а ). Возможны и более сложные волноводные траектории, возникающие за счёт горизонтального градиента N или рассеяния на неоднородностях ионосферы при Р. р. с частотой w> w МПЧ. В результате рассеяния угол падения луча на слой F 2 оказывается больше, чем при обычном распространении. Луч испытывает ряд последоват. отражений от слоя F 2 , пока не попадёт в область с таким градиентом N , к-рый вызовет отражение части энергии назад к Земле (рис. 10, б) .

Влияние магнитного поля Земли Н 0 . В магн. поле Н 0 на электрон, движущийся со скоростью u , действует Лоренца сила под влиянием к-рой он вращается по окружности в плоскости, перпендикулярной Н 0 , с гиромагн. частотой w H . Траектория каждой заряж. частицы - винтовая линия с осью вдоль Н 0 . Действие силы Лоренца приводит к изменению характера вынужденных колебаний электронов под действием электрич. поля волны, а следовательно, к изменению электрич. свойств среды. В результате ионосфера становится анизотропной гиротропной средой, электрич. свойства к-рой зависят от направления Р. р. и описываются не скалярной величиной e, а тензором диэлект-рич. проницаемости . Падающая на такую среду волна испытывает двойное лучепреломление ,т. е. расщепляется на две волны, отличающиеся скоростью и направлением распространения, поглощением и поляризацией. Если направление Р. р.то падающую волну можно представить себе в виде суммы двух линейно поляризованных волн си. Для первой, "необыкновенной", волны (е )характер вынужденного движения электронов под действием поля волны Е изменяется (появляется компонента ускорения, перпендикулярная Е )и поэтому изменяется п . Для второй, "обыкновенной", волны (о ) вынужденное движение остаётся таким же, как и без поля Н 0 (присила Лоренца равна 0). Для этих двух волн (без учёта соударений) квадраты показателей преломления равны

При Р. р. вдоль

В последнем случае обе волны имеют круговую поляризацию, причём у "необыкновенной" волны вектор E вращается в сторону вращения электрона, а у "обыкновенной" - в противоположную сторону. При произвольном направлении Р. р. (относительно Н„) поляризация нормальных волн эллиптическая.

По мере Р. р. в ионосфере увеличивается сдвиг фаз между волнами и изменяется поляризация суммарной волны. Напр., при P.p. вдоль Н 0 это приводит к повороту плоскости поляризации (Фарадея эффект ),а при Р. р. перпендикулярно Н 0 - к периодич. чередованию линейной и круговой поляризаций (см. Коттона - Мутона эффект) , Т. к. показатели преломления волн различны, отражение их происходит на разной высоте (рис. 11). Направление волнового вектора k при Р. р. в ионосфере может отличаться от u гр.

Рис. 11 . Расщепление радиоволны в результате двойного лучепреломления в ионосфере.


Низкочастотные волны в ионосфере. Осн. часть энергии НЧ-радиоволн практически не проникает в ионосферу. Волны отражаются от её ниж. границы (днём - вследствие сильной рефракции в D -слое, ночью - от E-слоя , как от границы двух сред с разными электрич. свойствами). Распространение этих волн хорошо описывается моделью, согласно к-рой однородные и изотропные Земля и ионосфера образуют приземный волновод с резкими сферич. стенками, в к-ром и происходит Р. р. Такая модель объясняет наблюдаемое убывание поля с расстоянием и возрастание амплитуды поля с высотой. Последнее связано со скольжением волн вдоль вогнутой поверхности волновода, приводящим к своеобразной "фокусировке" поля. Это явление аналогично открытому Рэлеем в акустике эффекту "шепчущей галереи". Амплитуда радиоволн значительно возрастает в антиподной по отношению к источнику точке Земли. Это объясняется сложением радиоволн, огибающих Землю по всем направлениям и сходящихся на противоположной стороне.

Влияние магн. поля Земли обусловливает ряд особенностей распространения НЧ-волн в ионосфере: сверхдлинные волны могут выходить из приземного волновода за пределы ионосферы, распространяясь вдоль силовых линий геомагн. поля между сопряжёнными точками А и В Земли (рис. 12). Из ф-лы (8) видно, что при в случае продольного распространения нигде не обращается в 0, т. е. волна проходит через ионосферу без отражения. В ночной атмосфере приближение геом. оптики нарушается и частичное прохождение есть при любом угле падения. Разряды молний · в атмосфере - естеств. источник НЧ-волн. В диапазоне 1-10 кГц они приводят к образованию т. н. свистящих атмосфериков ,к-рые распространяются указанным образом и создают на выходе приёмника сигнал с характерным свистом.


Рис. 12 .

При Р. р. инфразвуковых частот с w " W H важную роль играют колебания ионов, ионосфера ведёт себя как проводящая нейтральная жидкость, движение к-рой описывается ур-ниями магнитной гидродинамики . В ионосфере возможно распространение неск. типов маг-нитогидродинамич. волн, в частности альвеновских волн , распространяющихся вдоль геомагн. поля с характерной скоростью(где r - плотность газа), и магнитозвуковых волн, к-рые распространяются изотропно (подобно звуку).

Нелинейные эффекты при распространении радиоволн в ионосфере проявляются уже для радиволн сравнительно небольшой интенсивности и связаны с нарушением линейной зависимости поляризации среды от электрич. поля волны (см. Нелинейная оптика )."На-гревная" нелинейность играет осн. роль, когда характерные размеры возмущённой электрич. полем области плазмы во много раз больше длины свободного пробега электронов. Т. к. длина свободного пробега электронов в плазме значительна, электрон успевает получить от поля заметную энергию за время одного пробега. Передача энергии при столкновениях от электронов к ионам, атомам и молекулам затруднена из-за большого различия в их массах. В результате электроны плазмы сильно "разогреваются" уже в сравнительно слабом электрич. поле, что изменяет эфф. частоту соударений. Поэтому b и s плазмы становятся зависящими от поля Е волны и Р. р. приобретает нелинейный характер. "Возмущение" диэлектрич. проницаемости

Где - характерное "плазменное" поле, Т - темп-pa плазмы, d - ср. доля энергии, теряемая электроном при одном соударении с тяжёлой частицей, - частота соударений.

Т. о., нелинейные эффекты становятся заметными, когда поле волны E сравнимо с E p , к-рое в зависимости от частоты волны и области ионосферы составляет ~10 -4 -10 -1 В/см.

Нелинейные эффекты могут проявляться как самовоздействие волны и как взаимодействие волн между собой. Самовоздействие мощной волны приводит к изменению её поглощения и глубины модуляции. Поглощение мощной радиоволны нелинейно зависит от её амплитуды. Частота соударений v с увеличением темп-ры электронов может как расти (в ниж. слоях, где осн. роль играют соударения с нейтральными частицами), так и убывать (при соударении с ионами). В первом случае поглощение резко возрастает с увеличением мощности волны ("насыщение" поля в плазме). Во втором случае поглощение падает (т. и. просветление плазмы для мощной радиоволны). Из-за нелинейного изменения поглощения амплитуда волны нелинейно зависит от амплитуды падающего поля, поэтому её модуляция искажается (автомодуляция и демодуляция волны). Изменение h в поле мощной волны приводит к искажению траектории луча. При распространении узконаправленных пучков радиоволн это может привести к самофокусировке пучка аналогично самофокусировке света и к образованию волноводного канала в плазме.

Взаимодействие волн в условиях нелинейности приводит к нарушению суперпозиции принципа .В частности, если мощная волна с частотой w 1 модулирована по амплитуде, то благодаря изменению поглощения эта модуляция может передаться др. волне с частотой w 2 , проходящей в той же области ионосферы (рис. 13) Это явление, называемое кросс модуляцией или Люксембург-Горьковским эффектом , имеет практич. значение при радиовещании в диапазоне ср. волн.


Рис. 13 . Ионосферная кроссмодуляция происходит в области пересечения лучей.

Нагрев ионосферы в поле мощной волны в КВ-диапа-зоне может вызвать тепловую параметрич. неустойчивость в ионосфере, к-рая приводит к аномально большому поглощению радиоизлучения и расслоению плазмы (см. Параметрический резонанс) . В области резонанса образуются сильно вытянутые вдоль Н 0 неоднородности ионосферы (с продольным масштабом 1 км, поперечным - 0,5100 м), к-рые перспективны для дальней связи в диапазоне УКВ. В поле очень мощных радиоволн электроны столь сильно разогреваются, что возникает электрич. пробой газа.

Если размеры возмущённой полем волны области плазмы много меньше длины свободного пробега электронов, нагревная нелинейность становится слабой. Это имеет место при коротких импульсах и узких пучках радиоволн. В этом случае осн. роль играет т. н. стрикционная нелинейность, связанная с тем, что неоднородное перем. электрич. поле волны оказывает давление на электроны, вызывающее сжатие плазмы. Концентрация электронов N , а следовательно, e и s становятся зависящими от амплитуды поля. Стрикционная нелинейность приводит к изменению диэлектрич. проницаемости меньшей нагревного изменения на неск. порядков (при той же мощности волны). Стрикционная нелинейность играет важную роль в параметрич. неустойчивости ионосферы.

Распространение радиоволн в космических условиях. За исключением планет и их ближайших окрестностей, б. ч. вещества во Вселенной ионизована. Параметры космич. плазмы меняются в широких пределах. Напр., концентрация электронов и ионов вблизи орбиты Земли ~1-10 см -3 , в ионосфере Юпитера ~10 5 см -3 , в солнечной короне ~10 8 см -3 , в недрах звёзд~10 27 см -3 . Из космич. пространства к Земле приходит широкий спектр эл--магн. волн, к-рые на пути из космоса должны пройти через ионосферу и тропосферу. Через атмосферу Земли без заметного затухания распространяются волны двух осн. частотных диапазонов: "радиоокно" соответствует диапазону от ионосферных критич. частот w кr до частот сильного поглощения аэрозолями и газами атмосферы (10 МГц - 20 ГГц), "оптич. окно" охватывает диапазон видимого и ИК-излучения (1-10 3 ТГц). Атмосфера также частично прозрачна в диапазоне НЧ (<300 кГц), где распространяются свистящие атмосферики и магнитогидродинамич. волны.

В космич. условиях источник радиоволн и их приёмник часто быстро движутся один относительно другого. В результате Доплера эффекта это приводит к изменению w на , где u - относит. скорость. Понижение частоты при удалении корреспондентов (красное смещение )свойственно излучению удаляющихся от нас далёких галактик. Радиоволны в космич. плазме подвержены рефракции, связанной с неоднородностью среды (рис. 14). Напр., вследствие рефракции в атмосфере Земли источник радиоволн виден выше над горизонтом, чем в действительности. Для определения расстояния до пульсаров и при интерпретации результатов радиолокации Солнца и планет необходимо учитывать, что в космич. плазме

Рис. 14. Траектории радиолучей с l = 5 м в солнечной короне.


Возможности радиосвязи с объектами, находящимися в космич. пространстве или на др. планетах, разнообразны и связаны с наличием и строением их атмосфер. Если космич. плазма находится в магн. поле (магнитосфера Юпитера, области солнечных пятен, магнитосферы пульсаров), то она является гиротропной средой, подобно земной ионосфере. Для всех планет с атмосферами общая трудность радиосвязи состоит в том, что при входе космич. аппарата в плотные слои атмосферы вокруг него создаётся плотная плазменная оболочка, затрудняющая прохождение радиоволн. На планетах типа Меркурия и Луны, практически не имеющих атмосферы и ионосферы, на Р. р. оказывает влияние только поверхность планеты. Из-за отсутствия отражения от ионосферы дальность связи вдоль поверхности такой планеты невелика (рис. 15) и может быть увеличена только при помощи ретрансляции через спутник.

Рис. 15. Зависимость дальности r радиосвязи на поверхности Луны от частоты w/2p.


Распространение радиоволн разных диапазонов. Радиоволны очень низких (3-30 кГц) и низких (30- 300 кГц) частот огибают земную поверхность вследствие волноводного распространения и дифракции, сравнительно слабо проникают в ионосферу и мало поглощаются ею. Отличаются высокой фазовой стабильностью и способностью равномерно покрывать большие площади, включая полярные районы. Это обусловливает возможность их использования для устойчивой дальней и сверхдальней радиосвязи и радионавигации, несмотря на высокий уровень атм. помех. Полоса частот от 150 до 300 кГц используется для радиовещания. Большое число геофиз. исследований выполняется путём наблюдений за сигналами естеств. происхождения, к-рые генерируются, напр., молниевыми разрядами и частицами радиац. поясов Земли. Трудности применения этого частотного диапазона обусловлены громоздкостью антенных систем с высоким уровнем атм. помех, с относит. ограниченностью скорости передачи информации.

Средние волны (300-3000 кГц) днём распространяются вдоль поверхности Земли (земная, или прямая, волна). Отражённая от ионосферы волна практически отсутствует, т. к. волны сильно поглощаются в D -слое ионосферы. Ночью из-за отсутствия солнечного излучения D -слой исчезает, появляется ионосферная волна, отражённая от E -слоя, и дальность приёма возрастает. Сложение прямой и отражённой волн влечёт за собой сильную изменчивость поля, поэтому ионосферная волна - источник помех для мн. служб, использующих распространение земной волны. Ср. волны применяются для радиовещания, радиотелеграфной и радиотелефонной связи, радионавигации.

Короткие волны (3-30 МГц) слабо поглощаются D - и Е -слоями и отражаются от F-слоя , когда их частотымпч. В результате их отражения от ионосферы возможна связь как на малых, так и на больших расстояниях при значительно меньшем уровне мощности передатчика и гораздо более простых антеннах, чем в более низкочастотных диапазонах. Этот диапазон применяется для радиотелефонной и радиотелеграфной связи, радиовещания, а также для радиолюбительской связи. Особенность радиосвязи в этом диапазоне - наличие замираний (фединга) сигнала из-за изменений условий отражения от ионосферы и интер-ференц. эффектов. КВ-линии связи подвержены влиянию атм. помех. Ионосферные бури вызывают прерывание связи.

Для очень высоких частот и УКВ (30 - 1000 МГц) преобладает Р. р. внутри тропосферы и проникновение сквозь ионосферу. Роль земной волны падает. Поля помех в НЧ-части этого диапазона всё ещё могут определяться отражениями от ионосферы, и до частоты 60 МГц ионосферное рассеяние продолжает играть значит. роль. Все виды Р. р., за исключением тропосферного рассеяния, позволяют передавать сигналы с шириной полосы частот в неск. МГц. В этой части спектра возможно очень высокое качество звукового радиовещания при дальности 50-100 км. Радиовещание с частотной модуляцией работает на частотах вблизи 100 МГц.

В этом же диапазоне частот ведётся телевиз. вещание. Для радиоастрономии выделено неск. узких спектральных полос, к-рые используют также для космич. связи, радиолокации, метеорологии, кроме того, для любительской связи.

Волны УВЧ и СВЧ (1000-10 000 МГц) распространяются в осн. в пределах прямой видимости и характеризуются низким уровнем шумов. В этом диапазоне при Р. р. играют роль известные области макс. поглощения и частоты излучения хим. элементов (напр., линии водорода вблизи 1420 МГц). В этом диапазоне размещены многоканальные системы широкополосной связи для передачи телефонных и телевиз. сигналов. Высокая направленность антенн позволяет использовать низкий уровень мощности в радиорелейных системах, а тропосферное рассеяние обеспечивает дальность радиосвязи ~ 800 км. Этот диапазон применяют в радионавигац. и радиолокац. службах. Для радиоастрономич. наблюдений выделены полосы частот за атомарным водородом, радикалом ОН и континуальным излучением. В космич. радиосвязи полоса частот ~ 1000- 10 000 МГц - наиб. важная часть радиодиапазона.

Волны СВЧ (>10 ГГц) распространяются только в пределах прямой видимости. Потери в этом диапазоне неск. выше, чем на более низких частотах, причём на их величину сильно влияет кол-во осадков. Роет потерь на этих частотах частично компенсируется возрастанием эффективности антенных систем. СВЧ служат в радиолокации, радионавигации и метеорологии. На линиях связи между поверхностью Земли и космосом могут использоваться частоты < 20 ГГц. Для связи в космосе могут применяться значительно более высокие частоты. При этом отсутствуют взаимные помехи между космич. и некосмич. службами. Диапазон СВЧ важен также для радиоастрономии.

Лит.: Долуханов М. П., Распространение радиоволн, 4 изд., М., 1972; Бреховских Л. М., Волны в слоистых средах, 2 изд., М., 1973; Гинзбург В. Л., Распространение электромагнитных волн в плазме, 2 изд., М., 1967; Татарский В. И., Распространение волн в турбулентной атмосфере, М., 1967; Fок В. А., Проблемы дифракции и распространения электромагнитных волн, М., 1970; Гуревич А. В., Шварцбург А. Б., Нелинейная теория распространения радиоволн в ионосфере, М., 1973; Железняков В. В., Электромагнитные волны в космической плазме, М., 1977.

П. А. Беспалов, М. Б, Виноградова .