Общая характеристика р-элементов VIIA-группы. Галогены.

Элементы фтор F, хлор Сl, бром Вr, иод I, астат Аt, входящие в VIIА-группу, называются галогенами (общее обозначение Г). В переводе с греч. галогены означают «солепорождающие». В эту группу часто включают также водород Н, однако свойства его существенно отличаются от свойств галогенов, и поэтому химические свойства водорода целесообразно рассматривать отдельно.

На валентных орбиталях атомов галогенов находится по семь электронов - два на s- и пять на p-орбиталях. Электронная формула валентной оболочки пs 2 пр 5 , где п - номер периода.

До завершения оболочки благородных газов недостает одного электрона. Поэтому галогены обладают большим сродством к электрону и являются сильными окислителями. Атомы галогенов, присоединяя электрон, образуют однозарядные галогенид-ионы с электронной структурой соответствующего благородного газа (пs 2 пр 6) .

Такая склонность к присоединению электронов характеризует галогены как типичные неметаллы. Галогенид-ионы, особенно Сl - , устойчивы в биосредах.

Одинаковое строение внешнего электронного слоя атомов галогенов обусловливает большое сходство в химических свойствах простых и сложных веществ, образуемых галогенами.

Однако сопоставление свойств однотипных соединений галогенов показывает, что между ними имеются и существенные различия. Последние связаны с изменением атомных радиусов и различным строением внутренних электронных оболочек. Так, например, у хлора валентным электронам предшествует 8-электронная оболочка, а у брома и иода - более рыхлая, склонная к деформации 18-электронная оболочка. Поэтому можно ожидать, что свойства соединений хлора будут отличаться от свойств соединений брома и иода, особенно в тех случаях, когда в образовании химических связей принимают участие предвнешние атомные орбитали.

С повышением заряда ядра в группе от F к Аt: увеличиваются радиусы атомов. Это находит отражение в уменьшении в ряду F-Аt энергии ионизации и сродства к электрону, электроотрицательности, стандартного потенциала восстановления.

Уменьшение энергии ионизации помимо возрастания атомного радиуса объясняется усиливающимся (по мере заполнения электронных оболочек) экранированием заряда ядра электронами внутренних слоев. Также закономерно происходит в ряду Сl-Аt уменьшение энергии сродства к электрону. Это связано с ослаблением притяжения свободного электрона к ядру вследствие увеличения радиуса атома и экранирования. В результате, как и в других группах р-элементов, с увеличением числа заполняемых электронных оболочек неметаллические свойства ослабевают.

Меньшее сродство к электрону у фтора (328 кДж/моль), чем у хлора (349 кДж/моль), объясняется значительным межэлектронным отталкиванием. Увеличение отталкивания свободного электрона атомом фтора обусловлено меньшим размером атома. Так как в ряду F-Сl-Вr-I-Аt энергия сродства вцелом уменьшается, окислительная активность в этом ряду также снижается.

Необходимо отметить, что хотя сродство к электрону у фтора меньше, чем у хлора, элементный фтор тем не менее является наиболее сильным окислителем среди галогенов. Это можно объяснить следующим образом Энергия, необходимая для восстановления газообразного фтора и хлора до отрицательно заряженных ионов слагается из энергии разрыва связи между атомами галогенов Г и сродства к электрону.

Так как химическая связь в молекуле хлора значительно прочнее, энергия разрыва связи в молекуле фтора существенно меньше, чем в молекуле хлора. Незначительный выигрыш в сродстве к электрону атома хлора не компенсирует большую затрату энергии на разрыв химической связи в молекуле хлора. В результате фтор оказывается более сильным окислителем.

Для галогенов характерно многообразие химических соединений. Элементные галогены (нулевая степень окисления) представляют собой двухатомные неполярные молекулы Г 2 . Появление нечетных положительных степеней окисления +1, +3, +5, +7 атомов Сl, Вr, I, Аt связано с переходом электронов на d-орбитали. Например, атом хлора имеет один неспаренный электрон в нормальном состоянии и 5 свободных d-орбиталей с низкой энергией.

Такой атом может быть переведен в зависимости от поглощаемой энергии в возбужденное состояние с тремя, пятью или семью неспаренными электронами.

Исключение составляет фтор. Отсутствие низколежащих d-подуровней у его атома приводит к тому, что процесс возбуждения оказывается невыгодным. Переход электрона на высоколежащий 3d-подуровень требует очень большой затраты энергии. Поэтому для фтора характерна постоянная валентность, равная единице.

Все галогены проявляют степень окисления -1 в водородгалогенидах НГ (например, НF, НСl) и в солях-галогенидах ЭГ (NаF, NаСl и др.).

Водородгалогениды (НГ) - газы, хорошо растворимые в воде. Водные растворы НГ ведут себя как кислоты. Сила кислот НГ растет с уменьшением электроотрицательности галогенов сверху вниз по группе. Такой характер изменения силы кислот НГ объясняется уменьшением прочности связи Н-Г в ряду НF-НСl-НВr-НI и уменьшением энергии гидратации ионов Г - .

Кислородные соединения галогенов (оксиды, кислоты) термически нестабильны. Устойчивость кислородных соединений галогенов в ряду F-Аt в целом возрастает.

Галогены и галогениды. Элементные галогены - вещества общей формулы Г 2 , т.е. состоят из двухатомных молекул: F 2 , Cl 2 , Вr 2 , I 2 , Аt 2 . Связь Г-Г образуется за счет одной σ-связывающей молекулярной орбитали, полученной при перекрывании атомных nр-орбиталей. Остальным связывающим молекулярным орбиталям (π-орбиталям) соответствуют разрыхляющие, заполненные электронами:

Образование двухатомных молекул галогенов из нейтральных атомов сопровождается выделением значительной энергии. В ряду Сl 2 - Вr 2 -I 2 - Аt 2 с увеличением межъядерного расстояния прочность связи между атомами уменьшается. Соответственно уменьшаются в этом ряду энтальпии диссоциации молекул Г 2 . Причиной уменьшения прочности связи в ряду является снижение степени перекрывания связывающих nр-орбиталей. Меньшую прочность связи Г-Г в молекулах фтора по сравнению с другими галогенами можно объяснить тем, что в образовании связи Г-Г не принимают участия d-орбитали.

Элементные галогены Г 2 , как неполярные соединения, плохорастворимы в воде. При 20°С растворимость Сl 2 - 0,091 моль/л, Вr 2 - 0,22 моль/л, I 2 - 0,001 моль/л. Однако равновесие Г 2 (г) ⇄ Г 2 (р) сдвигается вправо вследствие реакций галогенов с водой (принцип Ле Шателье).



Фтор энергично реагирует с водой:

2F 2 + 2Н 2 О = 4НF + О 2 .

При взаимодействии других галогенов с водой помимо соответствующего водородгалогенида образуется кислородсодержащая кислота. Например, хлор реагирует следующим образом:

Сl 2 + Н 2 О ⇄ Н + + Сl - + НСlO

Здесь происходит окисление - восстановление хлора (диспропорционирование). Эта реакция протекает при хлорировании воды.

Значительно лучше, чем в воде, бром и иод растворяются в органических растворителях: этаноле, бензоле, диэтиловом эфире. Это их свойство используют для извлечения брома и иода из водных растворов.

В медицинской практике в качестве обеззараживающего средства используются водно-спиртовые (w(I 2) = 5%) и спиртовые (w(I 2) = 10%) растворы иода.

Для элементных галогенов характерны окислительно-восстановительные реакции. Эти реакции сопровождаются разрывом связи Г-Г с присоединением электронов к атомам галогена и образованием галогенид-ионов.

Элементные галогены являются сильными окислителями и вступают во взаимодействие почти со всеми простыми веществами - металлами и неметаллами, образуя галогениды. С кислородом и азотом галогены непосредственно не взаимодействуют. Наиболее быстро с выделением большого количества теплоты протекает реакция галогенов с металлами. Так, например, металлический натрий, помещенный в атмосферу хлора, сгорает с образованием натрия хлорида:

2Nа (т) + Сl 2 (г) = 2NаСl (т)

Хлор непосредственно взаимодействует со многими неметаллами (фосфором, мышьяком, сурьмой и кремнием) даже при низкой температуре. Так, белый фосфор загорается в атмосфере хлора при комнатной температуре:

2Р + 5Сl 2 = 2РСl 5

Аналогичным образом бром и иод вступают в реакции с металлами и неметаллами. Однако химическая активность брома и иода ниже, чем хлора

Особенно высокую химическую активность проявляет фтор. Так, щелочные металлы, железо, свинец, а также неметаллы S, Р уже при комнатной температуре загораются в атмосфере фтора. При нагревании со фтором реагируют даже благородные газы ксенон и криптон:

Хе + 2F 2 = ХеF 4

Являясь наиболее электроотрицательным элементом, фтор образует соединения с элементами IIА-группы, устойчивость которых уменьшается в ряду ВеF 2 - МgF 2 - СаF 2 - SrF 2 -ВаF 2 . Во многих биохимических процессах фтор выступает ингибитором, блокируя активные центры ферментов, содержащих Мg 2+ , Са 2+ и ионы других металлов.

Сопоставление свойств элементных галогенов показывает, что их химическая активность убывает в ряду F 2 - Сl 2 - Вr 2 - I 2 -Аt 2 . Например, фтор реагирует с водородом со взрывом даже в темноте. Хлор без освещения не реагирует с водородом, но при нагревании или при ярком свете реакция протекает со взрывом (по цепному механизму). Бром с водородом взаимодействует только при нагревании, а иод - только при сильном нагревании, да и то не полностью, так как начинает идти обратная реакция разложения водородиодида.

Различная окислительная способность галогенов проявляется и в их действии на биоорганические вещества и ткани живых организмов. Так, газообразный Сl 2 , являющийся сильным окислителем, представляет собой отравляющее вещество, вызывающее раздражение слизистых оболочек глаза, носа, гортани, тяжелое поражение легких. В отличие от хлора, иод - мягкий окислитель, обладающий антисептическим действием. Но при больших концентрациях иода и длительном применении возможны явления иодизма (насморк, крапивница, сыпь на коже и т.д.).

Водородгалогениды . Среди соединений галогенов, в которых они проявляют степень окисления -1, одними из наиболее важных в практическом и теоретическом отношении являются водородгалогениды. Химическая связь в газообразных НГ - полярная ковалентная. Электронная пара, осуществляющая связь, сильно смещена к более электроотрицательному элементу - галогену.

С точки зрения метода ВС химическая связь в НГ имеет одинаковый характер.

Так как электронная структура всех водородгалогенидов одинакова, с ростом ионного радиуса галогена свойства НГ в ряду F - I монотонно изменяются (исключение составляет НF). Снижение прочности химической связи в молекулах НГ в ряду НF - НСl - НВr - НI находит отражение в уменьшении энтальпий диссоциации молекул НГ на атомы и в увеличении энтальпии и энергии Гиббса образования молекул НГ.

Как и в случае свободных галогенов, причиной падения прочности связи в ряду НF-НСl-НВr-НI является понижение степени перекрывания орбиталей атомов водорода и галогенов.

Дипольный момент, характеризующий полярность связи в ряду НF-НСl-НВr-НI, уменьшается от 6,4 до 1,3. Исходя из максимальной полярности НF, можно предположить: 1) растворимость водородгало-генидов в воде в этом ряду должна уменьшаться; 2) сила образующихся галогеноводородных кислот: НF (фтороводородная - плавиковая), НСl (хлороводородная - соляная), НВr (бромоводородная), НI (иодоводородная) также должна падать.

Однако из экспериментальных данных следует, что степень ионизации, соответственно и сила кислот Н-Г в ряду от F к I, наоборот, возрастают. Растворимость от НF к НСl падает, но от НСl к НI растет.

Причиной наблюдаемого изменения растворимости и силы водородгалогенных кислот является увеличение радиуса Г - -ионов от F - к I - и уменьшение их гидратации.

При растворении газообразного НГ в воде происходит гидратация При этом наблюдается разрыв полярной связи Н-Г и образование гидратированных ионов. Гидратированные протоны Н + и анионы I - оказываются изолированными друг от друга Их взаимодействие становится чисто электростатическим. Но так как ионные радиусы в ряду F - - Сl - - Вr - - I - увеличиваются, то кулоновское взаимодействие между ионом гидроксония Н 3 О + и галогенид-ионами в этом ряду уменьшается, что и приводит к увеличению степени ионизации галогеноводородных кислот в ряду НF-НСl-НВr-НI. Исходя из тех же соображений, можно объяснить и изменение растворимости НГ в этом ряду.

Рассмотренный пример показывает, что правильный теоретический прогноз физико-химических свойств растворенных веществ возможен лишь при учете не только характеристик молекул этих веществ, но и их взаимодействия с растворителем.

По мере увеличения межъядерного расстояния в ряду НF-НСl-НВr-НI увеличивается восстановительная активность водородгалогенидов и галогеноводородных кислот.

Так, O 2 восстанавливается иодоводородной кислотой уже при обычной температуре:

О 2 + 4Н + + 4I - = 2Н 2 О + 2I 2 .

Бромоводородная кислота взаимодействует с дикислородом медленнее, а соляная кислота вообще не окисляется дикислородом. Индифферентность аниона Сl - в кислой среде весьма существенна с точки зрения физиологии и медицины.

Используя индифферентность хлорид-иона, его вводят в состав многих лечебных препаратов. Вводные растворы натрия хлорида - изотонический (мас. доля 0,9%) и гипертонические (мас. доля 3-5-10%) широко применяют в медицинской практике. Использование гипертонических растворов основано на законах осмоса.

Хлорид-ион присутствует в организме в макроколичествах. В форме соляной кислоты является необходимым компонентом желудочного сока. Соляная кислота играет важную роль в процессе пищеварения.

Желудочный сок (рН от 1 до 3) содержит катион Н + и анионы Сl - , Н 2 РО 4 - , НSО 4 - . Однако концентрация хлорид-ионов Сl - значительно превышает концентрацию других анионов. Поэтому говорят, что соляная кислота содержится в желудочном соке и ее массовая доля составляет около 0,3%.

Для выработки соляной кислоты в желудке необходим NаСl - поваренная соль. Вы деление соляной кис лоты из клеток слизистой оболочки (рис 8.10) желудка можно описать следующим уравнением:

Н 2 СО 3(кровь) + Сl - = НСO 3 - (кровь) + НСl (желудок)

Соляная кислота желудочного сока не обходима для перехода фермента пепсина в активную форму. Пепсин обеспечивает переваривание белков путем гидролитического расщепления пептидных связей (отсюда название фермента).

Кислородные кислоты хлора и их соли. Среди кислородных соединений галогенов наибольшее значение для практического применения имеют кислородные кислоты хлора и их соли. Кислородные кислоты хлора значительно менее устойчивы, чем их соли.

Кислота состава НСlО, где атомы хлора проявляют степень окисления +1. в свободном состоянии не выделена. Она называется гипохлористой (хлорноватистой), а соли ее - гипохлоритами. Гипохлористая кислота получается при взаимодействии хлора с водой:

Сl 2 + Н 2 О ⇄ Сl - + НСlO + Н + .

При этом один из атомов молекулы хлора присоединяет электрон от другого атома и восстанавливается, а другой атом хлора, отдавая электрон, окисляется:

Реакция гидролиза хлора является обратимой и сильно смещена влево.

Кислота НСlО настолько слабая, что даже угольной кислотой вытесняется из растворов гипохлоритов:

NаСlO + Н 2 О + СО 2 = NаНСО 3 + НСlO

Степень гидролиза хлора зависит от разбавления. Изменение общей концентрации хлора от 100 до 20 ммоль/л приводит к увеличению степени гидролиза от 0,33 до 0,73. Таким образом, хлорная вода всегда содержит наряду с молекулами Сl 2 значительное количество НСlO.

Гипохлористая кислота нестойка и даже в водном растворе распадается под действием света. Механизм распада можно представить в виде двух стадий:

НСlO + hν = НСl + [О]

где [О] - монокислород, активная форма кислорода.

Гипохлористая кислота является очень сильным окислителем, именно ее образованием объясняется бактерицидное и отбеливающее действие хлорной воды. Выделяющийся при распаде НСlO монокислород обесцвечивает красители и убивает микроорганизмы.

Гипохлористая кислота способна реагировать с органическими соединениями RН (R - органический радикал) по следующим схемам:

RН + НСlО= RОН + НСl

RН + НСlO = RСl + Н 2 O

т.е. и как окислитель, и как хлорирующее вещество.

Например, НСlO разрушает (денатурирует) белки, из которых состоят микроорганизмы. При этом хлор замещает атомы водорода пептидных связей белка:

R-СО-NН-R 1 + НСlO → R-СО-NСl-R 1 + Н 2 О

В результате нарушается вторичная структура белков, что приводит к гибели микроорганизмов. Поэтому с целью обеззараживания воды можно применять ее хлорирование. Отсюда следует, что бактерицидное действие водных растворов хлора связано как с образованием монокислорода, так и с хлорирующим действием гипохлористой кислоты. Образующееся в хлорированной воде небольшое количество соляной кислоты безвредно, и такая вода пригодна для употребления.

Гипохлористая кислота более сильный окислитель, чем газообразный Сl 2 . Это можно доказать экспериментально: сухой хлор менее эффективно отбеливает ткани, чем «сырой», содержащий НСlO.

Бром и иод, проявляя степень окисления +1, образуют также кислородные кислоты НВrО (гипобромистая) и НIO (гипоиодистая).

Сила кислородсодержащих кислот в ряду Сl-Вr-I уменьшается вследствие роста ковалентного радиуса атомов галогенов в этом ряду, что сопровождается ослаблением ковалентной связи О-Г.

Окислительные свойства НГО в ряду от Сl к I так же уменьшаются, а относительная устойчивость возрастает. Так, при нагревании НГО или действии на них света

2НГО(р) = 2НГ(р) + О 2 (г).

Химизм антисептического и дезинфицирующего действия иода во многом аналогичен действию хлора. Так, иод, подобно хлору, замещает водородные атомы у атомов азота в молекулах белков микроорганизмов, что приводит к их гибели:

R-СО-NН-R 1 + НIO → R-СО-NI-R 1 + Н 2 О

В медицинской практике, в быту и промышленности находят применение соли гипохлористой кислоты, а также препараты хлора и иода, отщепляющие активные формы галогенов.

Если к хлорной воде добавить щелочь, то равновесие гидролиза хлора сместится вправо (принцип Ле Шателье) вследствие нейтрализации гипохлористой и соляной кислот:

НСl + НСlO + 2КОН = КСl + КСlO + 2Н 2 О

или в ионном виде:

НСlO + ОН - = ОСl - + Н 2 О

Полученный таким способом раствор калия хлорида и гипохлорита называется жавелевой водой. Она применяется для отбеливания тканей. Ее отбеливающие свойства обусловлены тем, что калий гипохлорит взаимодействует с оксидом углерода(IV) воздуха в присутствии воды:

КСlO + Н 2 О + СО 2 = НСlO + КНСО 3

или в ионном виде:

СlО - + Н 2 О + СО 2 = НСlO + НСО 3 -

т.е. образуется гипохлористая кислота, которая разрушает красящие вещества.

Действуя хлором на гидроксид кальция (II), получают смесь, называемую белильной или хлорной известью:

2Са(ОН) 2 + 2Сl 2 = Cа(СlО) 2 + 2Н 2 О + СаСl 2

Ее можно рассматривать как смешанную соль соляной и гипохлористой кислот, которой отвечает следующая формула строения:

Хлорная известь - белый порошок с резким запахом, является сильным окислителем и применяется как дезинфицирующее, отбеливающее и дегазирующее средство.

Во влажном воздухе СаОСl 2 взаимодействует с оксидом углерода (IV), постепенно выделяя гипохлористую кислоту, которая, как рассматривалось ранее, разлагается с образованием монокислорода. НСlО выделяется также в результате гидролиза:

Са(ОСl)Сl + Н 2 О ⇄ СаОН + + НСlO + Сl -

При действии на хлорную известь соляной кислотой происходит выделение свободного хлора:

Са(ОСl)Сl + 2НСl = СаСl 2 + Сl 2 + Н 2 О

Ва(СlO 2) 2 + Н 2 SО 4 = 2НСlО 2 + ВаSО 4

При нагревании гипохлористой кислоты легко протекает ее разложение с образованием хлорноватой кислоты НСlO 3:

3НОСl = 2НСl + НСlО 3

В молекуле хлорноватой кислоты атом хлора проявляет степень окисления +5.Соли хлорноватой кислоты называются хлоратами. Если не на холоду, а через горячий раствор щелочи, например КОН, пропускать хлор, то вместо КСlО образуется КСlO 3:

3Сl 2 + 6КОН = 5КСl + КСlO 3 + 3Н 2 О

Продуктами реакции являются калий хлорид и калий хлорат - КСlO 3 (бертолетова соль). Хлорноватая кислота в свободном состоянии не выделена, но в отличие от НСlО и НСlО 2 известны ее концентрированные растворы (до 40%). Хлорноватая кислота является сильной кислотой). По окислительной активности НСlO 3 уступает НСlО 2 .

В больших количествах хлораты токсичны.

Перхлорная (хлорная) кислота НСlО 4 (атом хлора имеет степень окисления +7) - бесцветная жидкость, способная взрываться, но ее водные растворы вполне устойчивы. Перхлорная кислота - самая сильная из всех известных кислот.

Окислительная активность НСlО 4 меньше, чем у НСlO 3 , а кислотные свойства выражены сильнее. Соли хлорной кислоты - перхлораты в сухом состоянии являются мощными окислителями и используются для минерализации различных биоматериалов при определении содержащихся в них неорганических компонентов.

Сравнивая свойства кислородных кислот хлора, можно сделать следующие выводы: по мере увеличения степени окисления хлора в ряду НСlО-НСlО 2 -НСlO 3 -НСlО 4 сила кислот увеличивается.

Такой характер изменения кислотных свойств объясняется тем, что по мере увеличения числа атомов кислорода в ряду НО-Сl, НО-СlO, НО-СlO 2 , НО-СlО 3 прочность связи О-Н ослабевает. Резкое возрастание силы кислот с увеличением числа атомов кислорода (увеличение числа связей Сl-О) можно объяснить оттягиванием электронной плотности от связи Н-О на связь Сl-О.

Сравнение окислительных свойств кислородных кислот хлора показывает, что в ряду анионов СlО - - СlО 2 - - СlО 3 - - СlO 4 - уменьшается окислительная способность. Такой характер изменения окислительной активности можно объяснить повышением устойчивости в указанном ряду анионов, обусловленной увеличением числа электронов, принимающих участие в образовании σ- и π-связей.

Комплексные соединения галогенов. Галогены входят в состав комплексных соединений как в качестве лигандов, так и комплексообразователей. Более склонны элементы VIIА-группы к комплексообразованию в качестве лигандов с ионами металлов. Обычно устойчивость галогенидных комплексов уменьшается в ряду F>Сl>Вr>I, но для некоторых ионов металлов наблюдается обратный порядок.

Образование комплексных галогенидов имеет место и в живых организмах. Так, токсическое действие избытка фторид-ионов на организм связано с образованием фторидных комплексов с катионами металлов, входящих в активные центры ферментов Е:

Е-М n + + F - → [Е-М-F] n -1

В результате блокирования свободной орбитали металла подавляется активность ферментов.

Важными комплексными соединениями галогенов, применяемых в медицине, являются противоопухолевые препараты (химиотерапия). Активными считаются цис-диаминдихлороплатина (II) [Рt(NН 3) 2 Сl 2 ] и цис-диаминтетрахлороплатина (IV) [Рt(NН 3) 2 Сl 4 ].

Известны комплексы, где комплексообразователем является галогенид-ион, а лигандами - молекулы галогенов. Такие комплексы состава [Г∙(Г 2) x ] - называются полигалогенидами. Так, увеличение растворимости молекулярного иода в воде в присутствии калия иодида связано с образованием комплексного иона:

I - + I 2 ⇄ -

Диссоциация комплекса (реакция обратимая) обеспечивает присутствие в растворе полииодида элементного иода, обладающего бактерицидными свойствами. Поэтому в медицинской практике используют раствор иода с добавлением КI.

Задача 808.
Исходя из строения атомов галогенов, указать, какие валентные состояния характерны для фтора, хлора, брома и йода. Какие степени окисленности проявляют галогены в своих соединениях?
Решение:
На внешнем электронном слое атомы галогенов содержат семь электронов – два на s- и пять на р-орбиталях (ns 2 np 5). До полного завершения внешнего электронного слоя атомам галогенов не хватает одного электрона, поэтому атомы всех галогенов легко присоединяют по одному электрону, образуя однозарядные отрицательные ионы (Г - ). Валентность галогенов при этом равна единице, а степень окисления равна -1.

Атомы фтора не содержат свободные d-орбитали, поэтому невозможен переход s- и р-электронов на d-орбитали. Отсюда фтор всегда в своих соединениях находится в степени окисления -1 и, при этом проявляет валентность равную единице. Остальные галогены имеют свободные d- орбитали, поэтому возможен переход одного s- и двух р-электронов на d-подуровни. Распределение электронов внешнего электронного уровня атомов фтора, хлора, брома и йода по квантовым ячейкам имеет вид:

Нормальное состояние атома фтора:

Нормальное состояние атома галогена (хлора, брома и йода):

Состояние атомов галогенов (хлора, брома и йода) при возбуждении:

Поэтому атомы хлора, брома и йода проявляют различные степени окисления от -1 до 0, а также от +1 до +7. Характерными степенями окисления для них являются -1, 0, +3, +5, +7. Степень окисления -1 характерна для всех галогенов, так как их атомы обладают в невозбуждённом состоянии одним неспаренным электроном, который может участвовать в образовании одной связи по ковалентному механизму. Степень окисления +1 наблюдается тогда, когда атом галогена отдаёт свой единственный неспаренный р-электрон более электроотрицательному элементу, например, кислороду. Исключением является фтор, так как он самый электроотрицательный элемент. Степени окисления хлора, брома и йода в возбуждённом состоянии их атомов могут принимать значения, характеризующиеся тремя, пятью и семью неспаренными электронами (+3, +5, +7).

За исключением некоторых оксидов (ClO 2 , Cl 2 O 6) галогены кроме фтора (-1), проявляют нечётные степени окисления в своих соединениях.

Задача 809.
Дать сравнительную характеристику атомов галогенов, указав: а) характер изменения первых потенциалов ионизации; 6) характер энергии сродства к электрону.
Решение:
а) Первые потенциалы ионизации у атомов галогенов закономерно уменьшаются с увеличением порядкового номера элемента, что свидетельствует об усилении металлических свойств. Так у фтора потенциал ионизации I равен 17,42 эВ, у хлора – 12,97 эВ, у брома – 11,48 эВ, у йода – 10,45 эВ. Эта закономерность связана с возрастанием радиусов атомов, так как с увеличение порядкового номера элемента появляются новые электронные слои. Увеличение числа промежуточных электронных слоёв, расположенных между ядром атома и внешними электронами, приводит к более сильному экранированию ядра, т. е. к уменьшению его эффективного заряда. Оба эти фактора (растущее удаление внешних электронов от ядра и удаление его эффективного заряда) приводят к ослаблению связи внешних электронов с ядром и, следовательно, к уменьшению потенциала ионизации.

б) Энергия сродства к электрону – это энергия, выделяющаяся при присоединении к свободному атому. У атомов галогенов с ростом порядкового номера элемента сродство к электрону закономерно уменьшается в ряду: F, Cl, Br, I. У атома хлора сродство к электрону больше, чем фтора, потому что у хлора появляется на внешнем энергетическом уровне d-подуровень. Уменьшение энергии сродства к электрону с ростом заряда ядра атома объясняется ростом радиуса атома элемента и, следовательно, уменьшением при этом эффективного заряда ядра.

Задача 810.
Дать сравнительную характеристику свойств образуемых галогенами простых веществ, указав характер изменения: а) стандартных энтальпий диссоциации молекул Г2; б) агрегатного состояния простых веществ при обычной температуре и давлении; в) окислительно-восстановительных свойств. Назвать причины, вызывающие эти изменения.
Решение:
а) В ряду Cl 2 - Br 2 - I 2 прочность связи между атомами в молекуле постепенно уменьшается, что находит отражение в уменьшении энтальпии диссоциации молекул Г 2 на атомы. Причины этого можно объяснить тем, что с увеличением размеров внешних электронных облаков взаимодействующих атомов степень их перекрывания уменьшается, а область перекрывания располагается всё дальше от атомных ядер. Поэтому при переходе от хлора к брому и йоду притяжение ядер атомов галогенов к области перекрывания электронных облаков уменьшается. Кроме того, в ряду: Cl - Br - I возрастает число промежуточных электронных слоёв, экранирующих ядро, что также ослабляет взаимодействие атомных ядер с областью перекрывания электронных облаков. Однако из этих данных выпадает фтор: прочность связи между атомами фтора в молекуле F 2 меньше, чем у хлора. Это можно объяснить отсутствием d-подуровня во внешнем электронном слое атома фтора. В молекулах других галогенов есть свободные d-орбитали и поэтому между атомами имеет место дополнительное донорно-акцепторное взаимодействие, упрочняющее связь между атомами.

б) В обычных условиях фтор и хлор, газообразные вещества, бром – жидкость, а йод – кристаллическое вещество. Температуры плавления и кипения галогенов закономерно увеличиваются в ряду F - Cl - Br - I. Объясняется это тем, что с увеличением радиуса атомов возрастает Поляризуемость молекул. В результате усиливается межмолекулярное дисперсионное взаимодействие, что обуславливает возрастание температур плавления и кипения простых веществ галогенов.

в) Окислительно-восстановительные свойства галогенов закономерно изменяются в ряду F 2 - Cl 2 - Br 2 - I 2 . Окислительные свойства уменьшаются в ряду галогенов от фтора к йоду, самый слабый окислитель – йод. Восстановительные свойства в ряду галогенов увеличиваются, самый слабый восстановитель – фтор. Происходит так, потому что в группе с увеличением порядкового номера элемента последовательно возрастают радиусы атомов и анионов Г- и уменьшается сродство к электрону и электроотрицательность элементов. Поэтому способность отдавать электроны увеличивается, а принимать – уменьшается в ряду
F 2 - Cl 2 - Br 2 - I 2 .

Задача 811.
Энергия диссоциации молекул галогенов по схеме Г 2 ↔ 2Г составляет для фтора, хлора, брома и йода соответственно 155, 243, 190, 149 кДж/моль. Объяснить наибольшую прочность молекул хлора.
Решение:
В ряду C l2 - Br 2 - I 2 прочность связи между атомами в молекуле постепенно уменьшается, что находит отражение в уменьшении энтальпии диссоциации молекул Г 2 на атомы. Причины этого можно объяснить тем, что с увеличением размеров внешних электронных облаков взаимодействующих атомов степень их перекрывания уменьшается, а область перекрывания располагается всё дальше от атомных ядер. Поэтому при переходе от хлора к брому и йоду притяжение ядер атомов галогенов к области перекрывания электронных облаков уменьшается. Кроме того, в ряду: Cl - Br - I возрастает число промежуточных электронных слоёв, экранирующих ядро, что также ослабляет взаимодействие атомных ядер с областью перекрывания электронных облаков. Однако из этих данных выпадает фтор: прочность связи между атомами фтора в молекуле F 2 меньше, чем у хлора. Это можно объяснить отсутствием d-подуровня во внешнем электронном слое атома фтора. В молекулах других галогенов есть свободные d-орбитали и поэтому между атомами имеет место дополнительное донорно-акцепторное взаимодействие, упрочняющее связь между атомами. К тому же у хлора радиус атома ещё сравнительно мал, только чуть больше, чем у фтора, но значительно меньше, чем у брома и йода. Поэтому энергия связи в молекуле Cl 2 значительно больше, чем у F 2 . Дополнительные донорно-акцепторные связи называют дативные .

Схема образования связей в молекулах F 2 и Cl 2.

Галогены в периодической таблице расположены слева от благородных газов. Эти пять токсических неметаллических элементов входят в 7 группу периодической таблицы. К ним относятся фтор, хлор, бром, йод и астат. Хотя астат радиоактивен и имеет только короткоживущие изотопы, он ведет себя, как йод, и его часто причисляют к галогенам. Поскольку галогенные элементы имеют семь валентных электронов, им необходим лишь один дополнительный электрон для образования полного октета. Эта характеристика делает их более активными, чем другие группы неметаллов.

Общая характеристика

Галогены образуют двухатомные молекулы (вида Х 2 , где Х обозначает атом галогена) - устойчивую форму существования галогенов в виде свободных элементов. Связи этих двухатомных молекул являются неполярными, ковалентными и одинарными. позволяют им легко вступать в соединение с большинством элементов, поэтому они никогда не встречаются в несвязанном виде в природе. Фтор - наиболее активный галоген, а астат - наименее.

Все галогены образуют соли I группы с похожими свойствами. В этих соединениях галогены присутствуют в виде галоидных анионов с зарядом -1 (например, Cl - , Br -). Окончание -ид указывает на наличие галогенид-анионов; например Cl - называется «хлорид».

Кроме того, химические свойства галогенов позволяют им действовать в качестве окислителей - окислять металлы. Большинство химических реакций, в которых участвуют галогены - окислительно-восстановительные в водном растворе. Галогены образуют одинарные связи с углеродом или азотом в где степень их окисления (СО) равна -1. Когда атом галогена замещён ковалентно-связанным атомом водорода в органическом соединении, префикс гало- может быть использован в общем смысле, или префиксы фтор-, хлор-, бром- , йод- - для конкретных галогенов. Галогенные элементы могут иметь перекрёстную связь с образованием двухатомных молекул с полярными ковалентными одинарными связями.

Хлор (Cl 2) стал первым галогеном, открытым в 1774 г., затем были открыты йод (I 2), бром (Br 2), фтор (F 2) и астат (At, обнаружен последним, в 1940 г.). Название «галоген» происходит от греческих корней hal- («соль») и -gen («образовывать»). Вместе эти слова означают «солеобразующий», подчёркивая тот факт, что галогены, вступая в реакцию с металлами, образуют соли. Галит - это название каменной соли, природного минерала, состоящего из хлорида натрия (NaCl). И, наконец, галогены используются в быту - фторид содержится в зубной пасте, хлор обеззараживает питьевую воду, а йод содействует выработке гормонов щитовидной железы.

Химические элементы

Фтор - элемент с атомным номером 9, обозначается символом F. Элементарный фтор впервые был обнаружен в 1886 г. путем выделения его из плавиковой кислоты. В свободном состоянии фтор существует в виде двухатомной молекулы (F 2) и является наиболее распространенным галогеном в земной коре. Фтор - наиболее электроотрицательный элемент в периодической таблице. При комнатной температуре является бледно-жёлтым газом. Фтор также имеет относительно небольшой атомный радиус. Его СО - -1, за исключением элементарного двухатомного состояния, в котором его степень окисления равна нулю. Фтор чрезвычайно химически активен и непосредственно взаимодействует со всеми элементами, кроме гелия (He), неона (Ne) и аргона (Ar). В растворе H 2 O, плавиковой кислоты (HF) является слабой кислотой. Хотя фтор сильно электроотрицателен, его электроотрицательность не определяет кислотность; HF является слабой кислотой в связи с тем, что ион фтора основной (рН> 7). Кроме того, фтор производит очень мощные окислители. Например, фтор может вступать в реакцию с инертным газом ксеноном и образует сильный окислитель дифторид ксенона (XeF 2). У фтора множество применений.

Хлор - элемент с атомным номером 17 и химическим символом Cl. Обнаружен в 1774 г. путём выделения его из соляной кислоты. В своём элементарном состоянии он образует двухатомную молекулу Cl 2 . Хлор имеет несколько СО: -1, +1, 3, 5 и 7. При комнатной температуре он является светло-зеленым газом. Так как связь, которая образуется между двумя атомами хлора, является слабой, молекула Cl 2 обладает очень высокой способностью вступать в соединения. Хлор реагирует с металлами с образованием солей, которые называются хлориды. Ионы хлора являются наиболее распространенными ионами, они содержатся в морской воде. Хлор также имеет два изотопа: 35 Cl и 37 Cl. Хлорид натрия является наиболее распространенным соединением из всех хлоридов.

Бром - химический элемент с атомным номером 35 и символом Br. Впервые был обнаружен в 1826 г. В элементарной форме бром является двухатомной молекулой Br 2 . При комнатной температуре представляет собой красновато-коричневую жидкость. Его СО - -1, + 1, 3, 4 и 5. Бром более активен, чем йод, но менее активен, чем хлор. Кроме того, бром имеет два изотопа: 79 Вг и 81 Вг. Бром встречается в бромида, растворённых в морской воде. За последние годы производство бромида в мире значительно увеличилось благодаря его доступности и продолжительному времени жизни. Как и другие галогены, бром является окислителем и очень токсичен.

Йод - химический элемент с атомным номером 53 и символом I. Йод имеет степени окисления: -1, +1, +5 и +7. Существует в виде двухатомной молекулы, I 2 . При комнатной температуре является твёрдым веществом фиолетового цвета. Йод имеет один стабильный изотоп - 127 I. Впервые обнаружен в 1811 г. с помощью морских водорослей и серной кислоты. В настоящее время ионы йода, могут быть выделены в морской воде. Несмотря на то что йод не очень хорошо растворим в воде, его растворимость может возрасти при использовании отдельных йодидов. Йод играет важную роль в организме, участвуя в выработке гормонов щитовидной железы.

Астат - радиоактивный элемент с атомным номером 85 и символом At. Его возможные степени окисления: -1, +1, 3, 5 и 7. Единственный галоген, не являющийся двухатомной молекулой. В нормальных условиях является металлическим твёрдым веществом чёрного цвета. Астат является очень редким элементом, поэтому о нём известно немного. Кроме того, астат имеет очень короткий период полураспада, не дольше нескольких часов. Получен в 1940 г. в результате синтеза. Полагают, что астат похож на йод. Отличается

В таблице ниже показано строение атомов галогенов, структура внешнего слоя электронов.

Подобное строение внешнего слоя электронов обусловливает то, что физические и химические свойства галогенов похожи. Вместе с тем при сопоставлении этих элементов наблюдаются и различия.

Периодические свойства в группе галогенов

Физические свойства простых веществ галогенов изменяются с повышением порядкового номера элемента. Для лучшего усвоения и большей наглядности мы предлагаем вам несколько таблиц.

Точки плавления и кипения в группе возрастают по мере роста размера молекулы (F

Таблица 1. Галогены. Физические свойства: точки плавления и кипения

Галоген

Т плавления (˚C)

Т кипения (˚C)

  • Атомный радиус увеличивается.

Размер ядра увеличивается (F < Cl < Br < I < At), так как увеличивается число протонов и нейтронов. Кроме того, с каждым периодом добавляется всё больше уровней энергии. Это приводит к большей орбитали, и, следовательно, к увеличению радиуса атома.

Таблица 2. Галогены. Физические свойства: атомные радиусы

Ковалентный радиус (пм)

Ионный (X -) радиус (пм)

  • Энергия ионизации уменьшается.

Если внешние валентные электроны не находятся вблизи ядра, то для их удаления от него не потребуется много энергии. Таким образом, энергия, необходимая для выталкивания внешнего электрона не столь высока в нижней части группы элементов, так как здесь больше энергетических уровней. Кроме того, высокая энергия ионизации заставляет элемент проявлять неметаллические качества. Йод и дисплей астат проявляют металлические свойства, потому что энергия ионизации снижается (At < I < Br < Cl < F).

Таблица 3. Галогены. Физические свойства: энергия ионизации

  • Электроотрицательность уменьшается.

Число валентных электронов в атоме возрастает с увеличением уровней энергии при прогрессивно более низких уровнях. Электроны прогрессивно дальше от ядра; Таким образом, ядро ​​и электроны не как притягиваются друг к другу. Увеличение экранирования наблюдается. Поэтому Электроотрицательность уменьшается с ростом периода (At < I < Br < Cl < F).

Таблица 4. Галогены. Физические свойства: электроотрицательность

  • Сродство к электрону уменьшается.

Так как размер атома увеличивается с увеличением периода, сродство к электрону, как правило, уменьшается (В < I < Br < F < Cl). Исключение - фтор, сродство которого меньше, чем у хлора. Это можно объяснить меньшим размером фтора по сравнению с хлором.

Таблица 5. Сродство галогенов к электрону

  • Реактивность элементов уменьшается.

Реакционная способность галогенов падает с ростом периода (At

Водород + галогены

Галогенид образуется, когда галоген реагирует с другим, менее электроотрицательным элементом с образованием бинарного соединения. Водород реагирует с галогенами, образуя галогениды вида НХ:

  • фтороводород HF;
  • хлороводород HCl;
  • бромоводород HBr;
  • иодоводород HI.

Галогениды водорода легко растворяются в воде с образованием галогенводородной (плавиковой, соляной, бромистоводородной, иодистоводородной) кислоты. Свойства этих кислот приведены ниже.

Кислоты образуются следующей реакцией: HX (aq) + H 2 O (l) → Х - (aq) + H 3 O + (aq).

Все галоидоводороды образуют сильные кислоты, за исключением HF.

Кислотность галогеноводородных кислот увеличивается: HF

Плавиковая кислота способна гравировать стекло и некоторые неорганические фториды длительное время.

Может показаться нелогичным, что HF является самой слабой галогенводородной кислотой, так как фтор обладает самой высокой электроотрицательностью. Тем не менее связь Н-F очень сильна, в результате чего кислота очень слабая. Сильная связь определяется короткой длиной связи и большой энергией диссоциации. Из всех галогенидов водорода HF имеет самую короткую длину связи и самую большую энергию диссоциации связи.

Галогенные оксокислоты

Галогенные оксокислоты представляют собой кислоты с атомами водорода, кислорода и галогена. Их кислотность может быть определена с помощью анализа структуры. Галогенные оксокислоты приведены ниже:

  • Хлорноватистая кислота HOCl.
  • Хлористая кислота HClO 2 .
  • Хлорноватая кислота HClO 3 .
  • Хлорная кислота HClO 4 .
  • Бромноватистая кислота HOBr.
  • Бромноватая кислота HBrO 3 .
  • Бромная кислота HBrO 4 .
  • Иодноватистая кислота HOI.
  • Йодноватая кислота HIO 3 .
  • Метайодная кислота HIO4, H5IO6.

В каждой из этих кислот протон связан с атомом кислорода, поэтому сравнение длин связей протонов здесь бесполезно. Доминирующую роль здесь играет электроотрицательность. Активность кислотны возрастает с увеличением числа атомов кислорода, связанный с центральным атомом.

Внешний вид и состояние вещества

Основные физические свойства галогенов кратко можно выразить в следующей таблице.

Состояние вещества (при комнатной температуре)

Галоген

Внешний вид

фиолетовый

красно-коричневый

газообразное

бледно-жёлто-коричневый

бледно-зелёный

Объяснение внешнего вида

Цвет галогенов является результатом поглощения видимого света молекулами, что вызывает возбуждение электронов. Фтор поглощает фиолетовый свет, и, следовательно, выглядит светло-жёлтым. Йод, наоборот, поглощает жёлтый свет и выглядит фиолетовым (жёлтый и фиолетовый - дополняющие цвета). Цвет галогенов становится темнее с ростом периода.

В закрытых ёмкостях жидкий бром и твёрдый йод находятся в равновесии со своими парами, которые можно наблюдать в виде цветного газа.

Хотя цвет астата неизвестен, предполагается, что он должен быть темнее йода (т. е. черным) в соответствии с наблюдаемой закономерностью.

Теперь, если вас попросят: «Охарактеризуйте физические свойства галогенов», вам будет что сказать.

Степень окисления галогенов в соединениях

Степень окисления часто используется вместо понятия "валентность галогенов". Как правило, степень окисления равна -1. Но если галоген связан с кислородом или другим галогеном, он может принимать другие состояния: СО кислорода -2 имеет приоритет. В случае двух различных атомов галогена, соединенных вместе, более электроотрицательный атом превалирует и принимает СО -1.

Например, в хлориде йода (ICl) хлор имеет СО -1, и йод +1. Хлор является более электроотрицательным, чем йод, поэтому его СО равна -1.

В бромной кислоте (HBrO 4) кислород обладает СО -8 (-2 х 4 атома = -8). Водород имеет общую степень окисления +1. Сложение этих значений даёт СО -7. Так как конечное СО соединения должно быть нулевым, то СО брома равна +7.

Третьим исключением из правила является степень окисления галогена в элементарной форме (X 2), где его СО равна нулю.

Галоген

СО в соединениях

1, +1, +3, +5, +7

1, +1, +3, +4, +5

1, +1, +3, +5, +7

Почему СО фтора всегда -1?

Электроотрицательность увеличивается с ростом периода. Поэтому фтор имеет самую высокую электроотрицательность из всех элементов, что подтверждается его положением в периодической таблице. Его электронная конфигурация 1s 2 2s 2 2p 5 . Если фтор получает еще один электрон, крайние р-орбитали полностью заполнены и составляют полный октет. Поскольку фтор имеет высокую электроотрицательность, он может легко отобрать электрон у соседнего атома. Фтор в этом случае изоэлектронен инертному газу (с восемью валентными электронами), все его внешние орбитали заполнены. В таком состоянии фтор гораздо более стабилен.

Получение и применение галогенов

В природе галогены находятся в состоянии анионов, поэтому свободные галогены получают методом окисления путём электролиза или с помощью окислителей. Например, хлор вырабатывается гидролизом раствора поваренной соли. Применение галогенов и их соединений многообразно.

  • Фтор . Несмотря на то что фтор очень реактивен, он используется во многих областях промышленности. Например, он является ключевым компонентов политетрафторэтилена (тефлона) и некоторых других фторполимеров. Хлорфторуглероды представляют собой органические которые ранее использовались в качестве хладагентов и пропеллентов в аэрозолях. Их применение прекратилось из-за возможного их воздействия на окружающую среду. Их заменили гидрохлорфторуглероды. Фтор добавляют в зубную пасту (SnF 2) и питьевую воду (NaF) для предотвращения разрушения зубов. Этот галоген содержится в глине, используемой для производства некоторых видов керамики (LiF), используется в ядерной энергетике (UF 6), для получения антибиотика фторхинолона, алюминия (Na 3 AlF 6), для изоляции высоковольтного оборудования (SF 6).
  • Хлор также нашёл разнообразное применение. Он используется для дезинфекции питьевой воды и плавательных бассейнов. (NaClO) является основным компонентом отбеливателей. Соляная кислота широко используется в промышленности и лабораториях. Хлор присутствует в поливинилхлориде (ПВХ) и других полимерах, которые используются для изоляции проводки, труб и электроники. Кроме того, хлор оказался полезен и в фармацевтической промышленности. Лекарственные средства, содержащие хлор, используются для лечения инфекций, аллергии и диабета. Нейтральная форма гидрохлорида - компонент многих препаратов. Хлор используется также для стерилизации больничного оборудования и дезинфекции. В сельском хозяйстве хлор является компонентом многих коммерческих пестицидов: ДДТ (дихлородифенилтрихлорэтан) использовался в качестве сельскохозяйственного инсектицида, но его использование было прекращено.

  • Бром , благодаря своей негорючести, применяется для подавления горения. Он также содержится в бромистом метиле, пестициде, используемом для хранения урожая и подавления бактерий. Однако чрезмерное использование было прекращено из-за его воздействия на озоновый слой. Бром применяют при производстве бензина, фотоплёнки, огнетушителей, лекарств для лечения пневмонии и болезни Альцгеймера.
  • Йод играет важную роль в надлежащем функционировании щитовидной железы. Если организм не получает достаточного количества йода, происходит увеличение щитовидной железы. Для профилактики зоба данный галоген добавляют в поваренную соль. Йод также используется в качестве антисептического средства. Йод содержится в растворах, используемых для очистки открытых ран, а также в дезинфицирующих спреях. Кроме того, йодид серебра имеет важное значение в фотографии.
  • Астат - радиоактивный и редкоземельный галоген, поэтому ещё нигде не используется. Тем не менее полагают, что этот элемент может помочь йоду в регуляции гормонов щитовидной железы.

Валентные электроны находятся на внешней оболочке атома. Их количество определяет число возможных химических соединений, которые атом может образовать. Лучший способ определить количество валентных электронов - воспользоваться периодической таблицей Менделеева.

Шаги

Часть 1

Поиск валентных электронов при помощи периодической таблицы

Непереходные металлы

    Пронумеруйте каждый столбец периодической таблицы с 1 по 18 (начиная с первого столбца слева). Как правило, все элементы одного столбца таблицы Менделеева имеют одинаковое число валентных электронов. Столбцы - это группы, на которые делятся химические элементы.

    • Например, над водородом (Н) напишите цифру 1, так как с него начинается первый столбец, а над гелием (He) напишите цифру 18, так как с него начинается восемнадцатый столбец.
  1. Теперь в таблице Менделеева найдите элемент, число валентных электронов которого вы хотите найти. Вы можете сделать это по символу элемента (буквы в каждой ячейке), по его атомному номеру (число в левом верхнем углу каждой ячейки) или любой другой доступной вам информации.

    • Например, определим число валентных электронов углерода (С). Его атомный номер 6 и с него начинается четырнадцатая группа.
    • В этом подразделе мы не рассматриваем переходные металлы, которые расположены в группах с 3 по 12. Эти элементы немного отличаются от остальных, поэтому описанные здесь методы на них не распространяются. Переходные металлы будут рассмотрены в следующем подразделе.
  2. Используйте номера групп, чтобы определить количество валентных электронов в непереходных металлах. Цифра, стоящая в номере группы в разряде единиц, определяет число валентных электронов в атомах элементов. Другими словами:

    • Группа 1: 1 валентный электрон
    • Группа 2: 2 валентных электрона
    • Группа 13: 3 валентных электрона
    • Группа 14: 4 валентных электрона
    • Группа 15: 5 валентных электрона
    • Группа 16: 6 валентных электрона
    • Группа 17: 7 валентных электрона
    • Группа 18: 8 валентных электрона (за исключением гелия, у которого 2 валентных электрона)
    • В нашем примере, так как углерод находится в группе 14, можно заключить, что один атом углерода имеет четыре валентных электрона.

    Переходные металлы

    1. Найдите элемент в группах с 3 по 12. В этих группах расположены переходные металлы. В этом подразделе мы расскажем, как определить число валентных электронов в атомах таких элементов. Заметьте, что в некоторых элементах число валентных электронов определить нельзя.

      • Например, рассмотрим тантал (Ta); его атомный номер 73. Далее мы найдем число его валентных электронов (или, по крайней мере, попробуем это сделать).
      • Обратите внимание, что переходные металлы включают лантаноиды и актиноиды (они также называются редкоземельными металлами) - два ряда элементов, которые, как правило, расположены ниже основной таблицы и которые начинаются с лантана и актиния. Все эти элементы относятся к группы 3 периодической таблицы.
    2. Чтобы понять, почему сложно определить число валентных электронов у переходных металлов, необходимо дать небольшое пояснение о расположении электронов в атомах.

    3. Используйте номера групп, чтобы определить количество валентных электронов в переходных металлах. Здесь номер группы, как правило, соответствует диапазону возможного числа валентных электронов.

      • Группа 3: 3 валентных электрона
      • Группа 4: 2–4 валентных электрона
      • Группа 5: 2–5 валентных электронов
      • Группа 6: 2–6 валентных электронов
      • Группа 7: 2–7 валентных электронов
      • Группа 8: 2 или 3 валентных электрона
      • Группа 9: 2 или 3 валентных электрона
      • Группа 10: 2 или 3 валентных электрона
      • Группа 11: 1 или 2 валентных электрона
      • Группа 12: 2 валентных электрона
      • В нашем примере тантал расположен в группе 5, поэтому можно заключить, что его атом имеет от двух до пяти валентных электрона (в зависимости от ситуации).

    Часть 2

    Нахождение валентных электронов при помощи электронной конфигурации
    1. Электронная конфигурация - это формула расположения электронов по электронным орбиталям атома химического элемента. Другими словами, это простой и наглядный способ представления электронных орбиталей атома с использованием букв и цифр.

      • Например, рассмотрим электронную конфигурацию натрия (Na): 1s 2 2s 2 2p 6 3s 1
      • Обратите внимание, что электронная конфигурация строится по формуле: (цифра)(буква) (надстрочная цифра) (цифра)(буква) (надстрочная цифра) ...
      • ... и так далее. Здесь (цифра)(буква) - это обозначение электронной орбитали, а (надстрочная цифра) - это число электронов на этой орбитали.
      • В нашем примере в атоме натрия 2 электрона на 1s-орбитали плюс 2 электрона на 2s-орбитали плюс 6 электронов на 2р-орбитали плюс 1 электрон на 3s-орбитали. Всего 11 электронов, что верно, так как атомный номер натрия 11.
      • Учтите, что подуровни электронных оболочек имеют определенное число электронов. Максимальное количество электронов для орбиталей следующее:
        • s: 2 электрона
        • p: 6 электронов
        • d: 10 электронов
        • f: 14 электронов
    2. Теперь вы знаете, как расшифровывать электронную конфигурацию, и сможете найти число валентных электронов определенного элемента (за исключением, конечно, переходных металлов). Если электронная конфигурация дана в задаче, перейдите к следующему шагу. Если нет, читайте дальше.

      • Вот полная электронная конфигурация оганесона (Og; атомный номер 118): 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 6d 10 7p 6
      • Теперь, чтобы определить электронную конфигурацию любого элемента, вам просто нужно заполнить этот шаблон (до тех пор, пока у вас не останется электронов). Это проще, чем кажется. Например, определите электронную конфигурацию хлора (Cl; атомный номер 17), атом которого имеет 17 электронов: 1s 2 2s 2 2p 6 3s 2 3p 5
      • Обратите внимание, что общее число электронов равно 17: 2 + 2 + 6 + 2 + 5 = 17. Вам нужно изменить количество электронов на последней орбитали, так как предыдущие орбитали такие же, как в шаблоне (ибо полностью заполнены электронами).
      • Для получения подробной информации об электронных конфигурациях прочитайте .
    3. Орбитали заполняются электронами по правилу октета: первые два электрона заполняют 1s-орбиталь, следующие два электрона заполняют 2s-орбиталь, следующие шесть электронов заполняют 2р-орбиталь (и так далее). Когда мы имеем дело с атомами непереходных металлов, мы говорим, что эти орбитали образуют вокруг атома «орбитальные оболочки», причем каждая следующая оболочка расположена дальше, чем предыдущая. Два электрона содержит только первая оболочка, а все остальные оболочки содержат по восемь электронов (кроме, опять же, атомов переходных металлов). Это называется правилом октета.

      • Например, рассмотрим бор (B). Его атомный номер 5, то есть атом бора включает пять электронов, а его электронная конфигурация выглядит следующим образом: 1s 2 2s 2 2p 1 . Так как первая орбитальная оболочка имеет только два электрона, то можно заключить, что у бора только две оболочки: первая с двумя электронами (на 1s-орбитали), а вторая с тремя (на 2s- и 2р-орбиталях).
      • В качестве другого примера рассмотрим хлор (Cl), у которого три орбитальные оболочки: первая с двумя электронами на 1s-орбитали, вторая с двумя электронами на 2s-орбитали и шестью электронами на 2р-орбитали, третья с двумя электронами на 3s-орбитали и пятью электронами на 3p-орбитали.
    4. Найдите число электронов на внешней оболочке. Это и будет число валентных электронов определенного элемента. Если внешняя оболочка полностью заполнена (другими словами, если она имеет восемь электронов или два электрона в случае первой оболочки), то элемент является инертным и не будет легко вступать в реакцию с другими элементами. Опять же, данные правила не распространяются на переходные металлы.

      • Например, рассмотрим бор. Так как на внешней оболочке бора находятся три электрона, то можно заключить, что у бора три валентных электрона.
    5. Используйте строки таблицы Менделеева для определения числа орбитальных оболочек. Строки периодической таблицы химических элементов называются периодами. Каждый период соответствует количеству электронных оболочек атомов. Вы можете использовать это для определения числа валентных электронов элемента - просто посчитайте порядковый номер элемента в периоде, начиная слева. Учтите, что данный метод не распространяется на переходные металлы.

      • Например, мы знаем, что у селена четыре орбитальные оболочки, потому что этот элемент расположен в четвертом периоде. Так как это шестой элемент (слева) четвертого периода (без учета переходных металлов), можно заключить, что внешняя четвертая оболочка содержит шесть электронов, и, таким образом, у селена шесть валентных электрона.