установлено, что атом состоит из двух областей, несущих противоположные заряды.

Заряд области, где сосредоточена почти вся масса атома, условно принято считать положительным. Эта область названа ядром атома. Область положительного заряда атома –ядро - несмотря на преобладание ее массы очень невелика по размерам.

За исключением ядра атома водорода, ядра атомов состоят из

протонов и нейтронов, называемых нуклонами. Протон р –частица имеющая массу mp =1,6726 ·10 -27 кг и положительный электрический заряд 1,6022·10 -19 Кл . Нейтрон n –незаряженная частица, обладающая массой mn = 1,6750 ·10 -27 кг.

На некотором расстоянии от ядра располагаются области с противоположным зарядом – так называемые электронные орбитали

– области определенной вероятности нахождения электрона. Электрон – элементарная частица, обладающая наименьшей массой покояm e = 0,91095·10-30 кг. Заряд электрона принято считать отрицательным. Электроны имеют отрицательный электрический заряд, равный 1,6022·10-19 Кл.

Общее число электронов в атоме равно числу протонов в ядре и поэтому атом электрически нейтрален.

Геометрический размер атома, условно описываемый диаметром его электронной оболочки, имеет порядок 10-10 м, а диаметр атомного ядра – 10-14 м, т.е. по размеру ядро в 10 000 раз меньше, чем атом. Масса атома чрезвычайно мала и сосредоточена в его ядре. Обычно ее выражают в атомных единицах массы (а. е. м.).

В качестве атомной единицы массы принята

массы атома

изотопа углерода 12 6 С.

Число протонов Z в ядре равно заряду ядра, если выражать заряд в единицах заряда электрона. Сумма числа протонов Z и числа нейтроновN равна массовому числуА , т.е. массе атома, выраженной в единицах атомных масс и округленных до целых единиц.

Существуют ядра с одним и тем же значением Z, но различным значением А , т.е. ядра с различным содержанием нейтроновN. Атомы, имеющие одинаковый заряд ядра, но разное количество

а) F б) Ca в) Ar г) Sr
2. Общее число электронов у иона хрома 24Cr3+:
а) 21 б) 24 в) 27 г) 52
3.Максимальное число электронов, занимающих 3s - орбиталь, равно:
а) 14 б) 2 в) 10 г) 6
4.Число орбиталей на f - подуровне:
а) 1 б) 3 в) 5 г) 7
5 .Наименьший радиус атома среди приведённых элементов имеет:
а) Mg б) Ca в) Si г) Cl
6. Из приведённых элементов 3-го периода наиболее ярко выражены неметаллические свойства имеет:
а) Al б) S в) Si г) Ar
7. Ряд элементов, образующих оксиды с общей формулой RO:
а) Ba, Sr, Ca б) P, As, N в) C, Si, Ge г) B, Al, Ga
8. К р-элементам относится:
а) кремний б) актиний в) гелий г) хром
9. Наиболее сходными химическими свойствами обладают простые вещества, образованные элементами:
а) Ca и Si б) Pb и Ag в) Cl и Ar г) P и As
10. Электронная формула атома 1s22s22p63s23p2. Формула его водородного соединения:
а) PH3 б) H2S в) CH4 г) SiH4

11. Составить электронную и электронно-графическую формулу элементов с порядковыми номерами 25, 26, 56 и их ионов. Охарактеризовать их положение в ПСЭ (номер периода, группы, тип элемента, формулы гидридов и высших оксидов).

1 Периодическое повторение числа электронов на внешнем уровне атома объясняет_______________ 2. Количество энергетических уровней атома можно

определить по:
A. номером группы;
Б. номеру периода;
B. порядковым номером.

4. Какая из характеристик химических элементов не меняется в главных подгруппах:
А радиус атома;
Б число электронов на внешнем уровне;
В. число энергетических уровней.

5. Общее у строении атомов элементов с порядковыми номерами 7 и 15:

A. число электронов на внешнем уровне, Б. заряд ядра;

B. число энергетических уровней.

1.Одинаковое число электронов во внешнем электронном слое имеют атомы

1)С и N 2)N и S 3)С и Si 4)He и Ne

2.Окислительная способность атомов возрастает в ряду
1)O→N→C
2)Br→Cl→F
3)S→P→Si
4)O→S→Se

3.Для какого из веществ характерна металлическая связь?
1)Na2O 2) I2 3)H2S 4)Ca

4.К неэлектролитам относят вещество,формула которого
1)H2SO3
2)H2SO4
3)NaOH
4)CH3OH

5. 2 моль катионов и 3 моль анионов образуются при полной диссоциации 1 моль
1)нитрата железа(III)
2)фосфата калия
3)ортофосфорной кислоты
4)сульфата алюминия

6.При взаимодействии каких ионов в растворе образуется слабый электролит?
1)H+ и Cl-
2)H+ и OH-
3)Na+ и Cl-
4)Na+ и OH-

7. И Zn и Mg при обычных условиях реагируют с
1)водой
2)оксидом углерода (IV)
3)соляной кислотой
4)гидроксидом алюминия

8.С оксидом фосфора (V) реагирует каждое из 2-х веществ
1)вода и углекислый газ
2)соляная кислота и оксид кальция
3)гидроксид калия и вода
4)гидроксид меди (II) и цинк

9.Соль и вода образуются в результате взаимодействия гидроксида меди (II) с
1)серой
2)водородом
3)соляной кислотой
4)сульфидом натрия

10.В реакцию с кремниевой кислотой вступает
1)фосфат калия
2)оксид углерода (IV)
3)гидроксид натрия
4)оксид фосфора (V)

11.В реакцию с раствором хлорида цинка вступает
1)Ba(OH)2 2)CuO 3)HNO3 4)Na2SO4

12.В лаборатории имеются растворы,содержащие следующие ионы:
а)Cu 2+ б) Ba 2+ в)Ag+ г)Al 3+
Для обнаружения хлорид-ионов в растворе MgCl2 используют раствор,указанный пол буквой:
1)а
2)б
3)в
4)г

13.В ряду химических элементов Te-Se-S
1)уменьшается число электронных слоев
2)усиливаются неметаллические свойства
3)уменьшается значение электроотрицательности
4)ослабевает кислотных характер высших оксидов
5)увеличивается число электронов во внешнем слое
(2 правильных ответа)

14.Оксид алюминия вступает в реакцию с
1)водой
2)железом
3)гидроксидом калия
4)азотной кислотой
5)сульфатом бария
(2 правильных ответа)

15.(1 изображение)
16.(2 изображение)

17.К 170г раствора с массовой долей нитрата серебра 3% добавили избыток раствора хлорида алюминия.Вычислите массу образовавшегося осадка

Долгое время для исследователей оставались секретом многие свойства материи. Отчего одни вещества отлично проводят электричество, а другие - нет? Почему железо постепенно разрушается под воздействием атмосферы, а благородные металлы отлично сохраняются на протяжении тысяч лет? Многие из этих вопросов нашли ответ после того, как человеку стало известно устройство атома: его строение, число электронов на каждом электронном слое. Более того, освоение даже самых основ строения атомных ядер открыло миру новую эру.

Из каких элементов построен элементарный кирпичик вещества, как они взаимодействуют между собой, чем из этого мы научись пользоваться?

в представлении современной науки

В настоящее время большинство ученых склонны придерживаться планетарной модели строения материи. Согласно этой модели в центре каждого атома находится ядро, крохотное даже по сравнению с атомом (он в десятки тысяч раз мельче целого атома). Зато о массе ядра такого не скажешь. Практически вся масса атома сосредоточена именно в ядре. Ядро заряжено положительно.

Вокруг ядра вращаются электроны по различным орбитам, не круговым, как в случае с планетами Солнечной системы, а объемным (сферы и объемные восьмерки). Число электронов в атоме численно равно заряду ядра. Но рассматривать электрон как частицу, которая движется по какой-то траектории, очень сложно.

Его орбита крохотна, а скорость почти как у светового луча, поэтому правильнее рассматривать электрон вместе с его орбитой как некую отрицательно заряженную сферу.

Члены атомной семьи

Все атомы состоят из 3 составляющих элементов: протонов, электронов и нейтронов.

Протон - главный строительный материал ядра. Его вес равен атомной единице (масса атома водорода) или 1,67 ∙ 10 -27 кг в системе СИ. Заряжена частица положительно, причем заряд ее принят за единицу в системе элементарных электрических зарядов.

Нейтрон - близнец протона по массе, но никак не заряжен.

Две вышеперечисленные частицы называют нуклидами.

Электрон - противоположность протону по заряду (элементарный заряд равен −1). Но вот по весу электрон подкачал, масса его всего-то 9,12 ∙ 10 -31 кг, что почти в 2 тысячи раз легче протона или нейтрона.

Как это «разглядели»

Как можно было разглядеть строение атома, если даже самые современные технические средства не позволяют и в ближайшей перспективе не позволят получить изображения составляющих его частиц. Как же ученые узнали число протонов, нейтронов и электронов в ядре и их расположение?

Предположение о планетарном устройстве атомов было сделано на основе результатов бомбардировки тонкой металлической фольги различными частицами. На рисунке хорошо видно, как взаимодействуют с веществом различные элементарные частицы.

Число электронов, прошедших сквозь металл, в опытах равнялось нулю. Это объясняется просто: отрицательно заряженные электроны отталкиваются от электронных оболочек металла, также имеющих отрицательный заряд.

Пучок протонов (заряд +) проходил через фольгу, но с «потерями». Часть отталкивалась от попавшихся на пути ядер (вероятность таких попаданий очень незначительна), часть отклонялась от первоначальной траектории, пролетев слишком близко к одному из ядер.

Самыми «результативными» в части преодоления металла стали нейтроны. Нейтрально заряженная частица терялась только в случае прямого столкновения с ядром вещества, 99,99% же нейтронов благополучно проходили сквозь толщу металла. Кстати, размер ядер тех или иных химических элементов удалось рассчитать именно исходя из количества нейтронов на входе и не выходе.

На основе полученных данных и была построена доминирующая в настоящее время теория строения вещества, которая успешно объясняет большинство вопросов.

Чего и сколько

Число электронов в атоме зависит от порядкового номера. Так, в атоме обычного водорода имеется всего один протон. Вокруг же по орбите кружится единственный электрон. Следующий элемент периодической таблицы - гелий устроен чуточку сложнее. Его ядро состоит из двух протонов и двух нейтронов и имеет, таким образом, атомную массу 4.

С ростом порядкового номера растут размеры и масса атома. Порядковый номер химического элемента в таблице Менделеева соответствует заряду ядра (количеству в нем протонов). Число электронов в атоме равно числу протонов. Так, атом свинца (порядковый номер 82) имеет в своем ядре 82 протона. На орбитах вокруг ядра находятся 82 электрона. Чтобы рассчитать количество нейтронов в ядре, достаточно от атомной массы отнять число протонов:

Почему их всегда поровну

Любая система в нашей Вселенной стремится к стабильности. Применительно к атому это выражается в его нейтральности. Если на секунду представить, что все без исключения атомы во Вселенной обладают тем или иным зарядом разной величины с разными знаками, можно себе представить, какой бы в мире наступил хаос.

Но так как число протонов и электронов в атоме равно, итоговый заряд каждого «кирпичика» равен нулю.

Число же нейтронов в атоме - величина самостоятельная. Более того, атомы одного и того же химического элемента могут иметь различное число этих частиц с нулевым зарядом. Пример:

  • 1 протон + 1 электрон + 0 нейтронов = водород (атомная масса 1);
  • 1 протон + 1 электрон + 1 нейтрон = дейтерий (атомная масса 2);
  • 1 протон + 1 электрон + 2 нейтрона = тритий (атомная масса 3).

В данном случае число электронов в атоме не меняется, атом остается нейтральным, изменяется его масса. Такие вариации химических элементов принято называть изотопами.

Всегда ли атом нейтрален

Нет, не всегда число электронов в атоме равно числу протонов. Если бы у атома на время нельзя было «отобрать» электрон или два, не существовало бы такого понятия, как гальваника. На атом, как на любую материю, можно воздействовать.

Под влиянием достаточно сильного электрического поля с наружного слоя атома один или несколько электронов могут «улететь». В этом случае частичка вещества перестает быть нейтральной и называется ионом. Она может передвигаться в среде газа или жидкости, перенося электрический заряд от одного электрода к другому. Таким образом запасают электрический заряд в аккумуляторных батареях, а также наносят тончайшие пленки из одних металлов на поверхности других (золочение, серебрение, хромирование, никелирование и т.д.).

Нестабильно число электронов и в металлах - проводниках электрического тока. Электроны наружных слоев как бы гуляют с атома на атом, перенося по проводнику электрическую энергию.

Инструкция

Если атом электронейтрален, то число электронов в нем равно числу протонов. Число протонов соответствует атомному элемента в таблице Менделеева. Например, имеет первый атомный номер, поэтому его атом имеет один . Атомный номер натрия - 11, поэтому атом натрия имеет 11 электронов .

Атом также может терять или присоединять . В этом случае атом становится ионом, имеющим электрический положительный или . Допустим, один из электронов натрия покинул электронную оболочку атома. Тогда атом натрия станет положительно заряженным ионом, имеющим +1 и 10 электронов на своей электронной . При присоединении электронов атом становится отрицательным ионом.

Атомы могут также соединяться в молекулы, наименьшую частицу вещества. Количество электронов в молекуле равно количеству электронов всех входящих в нее атомов. Например, воды H2O состоит из двух атомов водорода, каждый из которых имеет по одному электрону, и атома , который имеет 8 электронов . То есть, в молекуле воды всего 10 электронов .

Водород в чистом виде на Земле редко встречается, но он очень распространен в составе соединений: содержится в воде, в растительных и животных организмах, в природных газах. В космосе же это самый распространенный элемент.

Вам понадобится

  • Издание по общей химии или учебник по химии 8-9 класс.

Инструкция

Для того чтобы определить водород, необходимо знать некоторые его . Какие-то из них помогут справиться с поставленной задачей в короткий срок, а какие-то требуют нахождения в химической . Необязательно использовать все методы, хватает одного или двух.
Водород - самый легкий из всех . Например, может стоять задача - определить водород, имея в наличии несколько сосудов с неизвестными газами. В этом случае нужно обратить внимание на сосуд - водород должен находиться либо в перевернутом, либо в закрытом (возможно стеклом, которое можно отодвинуть для дальнейшего определения). Иначе водород улетучится. Запаха и цвета этот газ не имеет.

При поджигании водород горит несветящимся пламенем, при этом образуется вода. Хороший способ определения, но весьма опасный, т.к. смесь водорода и кислорода называют гремучим газом из-за ее способности взрываться. Хотя нужно отметить, что при низких температурах данная не пойдет. Только при 300?C начинает образовываться небольшое количество воды, при 500?C происходит возгорание, а при 700?C - взрыв.

Если газ пропустить над накаленным оксидом меди, то медь восстановится - в результате получится красноватый металл. Для проведения этого опыта необходимо соблюдать правила безопасности и, желательно находится в соответствующих (в лаборатории).

Также в определении водорода может помочь температур. При -240?C и под давлением он сжижается, при
-252,8?C при атмосферном - кипит. Если процесс кипения не останавливать, выпаривая жидкость, то водород примет вид твердых прозрачных кристаллов.

Есть еще один способ, при помощи которого водород можно определить даже в различных смесях - это хроматографический способ определения (хроматография - это физико-химический метод разделения веществ путем распределения компонентов между двумя фазами). Существенный минус данного метода заключается в том, что не у каждого есть доступ к соответствующим приборам в лаборатории и квалификация для работы с ними. Но способ этот очень точный.

Видео по теме

Сначала определите химический состав и агрегатное состояние вещества. Если исследуется газ, измерьте его температуру, объем и давление или поместите в нормальные условия и измерьте только объем. После этого рассчитайте количество молекул и атомов . Для определения количества атомов в твердом теле или жидкости найдите их массу и молярную массу, а затем количество молекул и атомов .

Вам понадобится

  • манометр, термометр, весы и таблица Менделеева, узнать постоянную Авогадро.

Инструкция

Определение количества в газеС помощью и термометра измерьте давление в Паскалях газа в Кельвинах. Затем геометрически определите объем газа в помещении или посудине в . После этого перемножьте значения давления и объема и поделите на числовое значение температуры и число 8,31. Полученный результат умножьте на постоянную Авогадро, которая равна 6,022*10^23.Если температура газа составляет 273,15 Кельвин (00С), а давление 760 мм.рт.ст., что является нормальными условиями, достаточно измерить объем газа, в котором определяется количество частиц в кубических метрах, поделить его на число 0,224 и умножить на 6,022*10^23. При обоих способах, если молекула газа многоатомная, умножьте полученное число на количество атомов в молекулах.

Определение количества атомов в твердом теле или жидкости из чистого веществаНайдите массу исследуемого тела в граммах. После этого в таблице Менделеева найдите молекулярную массу данного чистого вещества, которая будет равна его молярной массе, выраженной в граммах на моль. Затем значение поделите на молярную массу и умножьте на 6,022*10^23.

Количество атомов в веществе с многоатомными молекуламиУзнайте химическую формулу вещества. Затем измерьте его массу в граммах. С помощью таблицы Менделеева узнайте молярную массу каждого из элементов, которые входят в структуру исследуемого вещества. Например, для поваренной соли это и хлор. Если в формуле не один атом одного элемента, умножьте молярную массу на их количество . После этого сложите все получившиеся массы – получите молярную массу данного вещества. Поделите массу вещества на его молярную массу и умножьте на 6,022*10^23. Полученное число умножьте на общее число атомов в молекуле.

Определение количества атомов в смеси веществЕсли есть смесь, или расплав нескольких веществ, то узнайте их доли в нем. Затем найдите массы этих веществ. Например, в 10 % растворе поваренной соли еще 90 % воды. Найдите массу раствора, после чего эту массу умножьте на 0,1, чтобы узнать массу поваренной соли и на 0,9, чтобы узнать массу воды. После этого действуйте как в пункте для веществ с многоатомными молекулами, а результаты по соли и воде сложите.

Видео по теме

Атом состоит из ядра и окружающих его электронов , которые вращаются вокруг него по атомным орбиталям и образуют электронные слои (энергетические уровни). Количество отрицательно заряженных частиц на внешних и внутренних уровнях определяет свойства элементов. Число электронов , содержащихся в атоме , можно найти, зная некоторые ключевые моменты.

Вам понадобится

  • - бумага;
  • - ручка;
  • - периодическая система Менделеева.

Инструкция

Чтобы определить количество электронов , воспользуйтесь периодической системой Д.И. Менделеева. В этой таблице элементы расположены в определенной последовательности, которая тесно связана с их атомным строением. Зная, что положительный всегда равен порядковому номеру элемента, вы легко найдете количество отрицательных частиц. Ведь известно - атом в целом нейтрален, а значит, число электронов будет равно числу и номеру элемента в таблице. Например, равен 13. Следовательно, количество электронов у него будет 13, у натрия – 11, у – 26 и т.д.

Если вам необходимо найти количество электронов на энергетических уровнях, сначала повторите принцип Пауля и правило Хунда. Потом распределите отрицательные частицы по уровням и подуровням с помощью все той же периодической системы, а точнее ее периодов и групп. Так номер горизонтального ряда (периода) указывает на количество энергетических слоев, а вертикального (группы) – на число электронов на внешнем уровне.

Не забывайте о том, что количество внешних электронов равно номеру группы только у элементов, которые находятся в главных подгруппах. У элементов побочных подгрупп количество отрицательно заряженных частиц на последнем энергетическом уровне не может быть больше двух. Например, у (Sc), находящегося в 4 периоде, в 3 группе, побочной подгруппе, их 2. В то время как у (Ga), который находится в том же периоде и той же группе, но в главной подгруппе, внешних электронов 3.

При подсчете электронов в , учтите, что последние образуют молекулы. При этом атомы могут принимать, отдавать отрицательно заряженные частицы или образовывать общую пару. Например, в молекуле водорода (H2) общая пара электронов . Другой случай: в молекуле фторида натрия (NaF) общая сумма электронов будет равна 20. Но в ходе атом натрия отдает свой электрон и у него остается 10, а фтор принимает - получается тоже 10.

Полезный совет

Помните, что на внешнем энергетическом уровне может быть только 8 электронов. И это не зависит от положения элемента в таблице Менделеева.

Атом состоит из чрезвычайно плотного ядра, окруженного электронным «облаком». Ядро ничтожно мало по сравнению с внешними размерами облака, и состоит из протонов и нейтронов. Атом в обычном состоянии нейтрален, а электроны несут отрицательный заряд. Но атом может также перетянуть чужие электроны, или отдать свои. В таком случае он уже будет являться отрицательно заряженным или положительно заряженным ионом. Как определить, сколько электронов содержится в атоме ?

Инструкция

  • Прежде всего, вам на помощь придет Таблица Менделеева. Заглянув в нее, вы увидите, что каждый химический элемент имеет не только свое строго определенное место, но и индивидуальный порядковый номер. Например, у водорода он равен единице, у углерода – 6, у золота – 79 и так далее.
  • Именно порядковый номер характеризует количество протонов в ядре, то есть положительный заряд ядра атома. Поскольку атом в обычном состоянии нейтрален, положительный заряд должен быть уравновешен отрицательным зарядом. Следовательно, у водорода – один электрон, углерода – шесть электронов, у золота – семьдесят девять электронов.
  • Ну а как определить количество электронов в атоме , если атом, в свою очередь, входит в состав какой-либо более сложной молекулы? Например, каково количество электронов в атомах натрия и хлора, если они образуют молекулу всем вам хорошо известной обычной поваренной соли?
  • И тут нет ничего сложного. Начните с того, что напишите формулу этого вещества, она будет иметь следующий вид: NaCl. Из формулы вы увидите, что молекула поваренной соли состоит из двух элементов, а именно: щелочного металла натрия и газа-галогена хлора. Но это уже не нейтральные атомы натрия и хлора, а их ионы. Хлор, образуя ионную связь с натрием, тем самым «перетянул» к себе один из его электронов, а натрий, соответственно, его «отдал».
  • Снова посмотрите в Таблицу Менделеева. Вы увидите, что натрий имеет порядковый номер 11, хлор – 17. Следовательно, теперь у иона натрия будет 10 электронов, у иона хлора – 18.
  • Действуя по такому же алгоритму, легко можно определить количество электронов у любого химического элемента, будь то в виде нейтрального атома или иона.