Пусть некоторое число х Î R + сначала изменили на а, а потом на в, причем число х настолько велико, что оба эти изменения не выводят из множестваR + . Назовем суммой чисел а и в действительное число, выражающее результирующее изменение. Например, если сначала сделать изменение на 4, а потом на 7, число 12 перейдет сначала в 16, а потом 16 перейдет в 23. Но чтобы 12 перешло в 23, надо изменить его на 11, значит, 4 + 7 = 11, как и должно быть. Если же сначала сделать изменение на –4, а потом на –7, то 12 перейдет сначала в 8; а потом в 1. Но чтобы из 12 получить 1, надо изменить 12 на –11. Отсюда следует, что (–4) + (–7) = –11.

Вообще, если а и в – положительные действительные числа и
х > а + в, то при изменении на –в число х а переходит в (x а) в, т.е. в х –(а + в ). Но чтобы получить х – (а + в ),надо изменить х на
–(а + в ). Это показывает, что (–а ) + (–в ) = – (а + в ).

Рассмотрим теперь сложение чисел противоположных знаков. Начнем со случая, когда слагаемые – противоположные числа. Очевидно, что если изменить число х сначала на а , а потом на –а, то получим снова х. Иными словами, х + (а + (–а )) = х. Так как, с другой стороны, и х + 0 = х, то надо положить а + (–а ) = 0. Итак, сумма противоположных чисел равна нулю.

Теперь найдем сумму а + (–в ) в общем случае (мы считаем, что а и в – положительные числа, а потому –в отрицательно). Если а > в, то
а = (а в ) + в, и потому а + (–в ) = (а в )+ в + (–в ). Но последовательные изменения числа х на а в, в и –в можно заменить изменением на а в (изменения на в и –в взаимно уничтожаются). Поэтому положим а + (–в ) = а в, если а > в. Очевидно, что при а > в и (–в ) + а = а в.

Пусть теперь а < в. В этом случае мы имеем –в = (–а )+ (–(в а )), и потому а + (–в ) = а + (–а ) + (–(в а )) = – (в а ). Значит, при a < в надо положить а + (–в ) = – (в а ). Тот же результат получится при сложении –в и а : (–в ) + а = –(в а ).

Полученные правила сложения действительных чисел можно сформулировать в виде следующего определения.

Определение. При сложении двух действительных чисел одного и того же знака получится число того же знака, модуль которого равен сумме модулей слагаемых. При сложении чисел различного знака получается число, знак которого совпадает со знаком слагаемого, имеющего больший модуль, а модуль равен разности большего и меньшего модулей слагаемых. Сумма противоположных чисел равна нулю, а сложение с нулем не меняет числа.

Легко проверить, что сложение в R обладает свойствами коммутативности, ассоциативности и сократимости. Из данного выше определения видно, что нуль – нейтральный элемент относительно сложения, т.е.

а + 0= а.

Вычитание в множестве R определяется как операция, обратная сложению. Поскольку каждое число в в R имеет противоположное ему число –в, такое, что в + (–в ) = 0, то вычитание числа в равносильно сложению с числом –в: а в = а + (–в ).

В самом деле, для любых а и в имеем:

(а + (–в )) + в = а + ((–в ) + в ) = а, а это и означает, что а в = а + (–в ).

Для положительных чисел а и в , таких, что а > в, их разность
а в была изменением, при котором в переходит в а. По аналогии с этим назовем для любых действительных чисел а и в число а в изменением, переводящим в в а . Оно переводит точку 0 в точку а в. Как и для положительных действительных чисел это изменение геометрически изображается направленным отрезком, идущим из точки в в точку а. Его длина равна расстоянию от начала отсчета до точки
а в, т.е. модулю числа а в. Мы доказали следующее важное утверждение:

Длина отрезка, идущего из точки в в точку а, равна |а в |.

Введем в множество R отношение порядка. Будем считать, что
а > в в том и только в том случае, когда разность а в положительна. Легко доказать, что это отношение антисимметрично и транзитивно, т.е. является отношением строгого порядка. При этом для любых а и в из R справедливо одно и только одно из отношений: а = в , а < в, в < а, т.е. отношение порядка в R линейно. Поскольку а – 0 = а, то а > 0, если a Î R + , и а < 0, еслиа Î R – .

Нетрудно доказать, что если а > в, то для любого с Î R имеем
а + с > в + с.

Определение

Множество действительных чисел является объединением множеств рациональных и иррациональных чисел. Буква R является обозначением рассматриваемого множества. Множество R представляется промежутком вида (- ∞ ; + ∞).

Замечание

Стоит заметить, что любое рациональное число всегда может принимать вид бесконечной десятичной периодической дроби, любое иррациональное число бесконечной десятичной непериодической дроби, исходя из вышесказанного следует вывод, что множество, включающее в себя конечные и бесконечные периодические и непериодические десятичные дроби принадлежит множеству R .

Yandex.RTB R-A-339285-1

Геометрическая модель действительных чисел

Координатная прямая непосредственно представляет собой геометрическую модель множества R . Следовательно, каждой точке на координатной прямой всегда можно поставить в соответствие некоторое действительное число.

Сравнение действительных чисел

Сравнение действительных чисел можно производить воспользовавшись либо геометрической моделью, либо их можно сравнивать аналитически. Рассмотрим оба способа сравнения. На координатной прямой расположено в произвольном порядке два числа. Определить, какое из них больше достаточно просто. Большее число всегда находится правее другого.

Аналитически определись какое число является большим или меньшим какого либо числа тоже возможно, для этого достаточно найти разность этих чисел и затем сравнить ее с нулем. Если полученная разность будет иметь положительный знак, то первое число (уменьшаемое разности) будет больше чем второе число (вычитаемое разности); если же разность будет иметь отрицательный знак, то первое число (уменьшаемое разности) будет меньше, чем второе число (вычитаемое разности).

Ниже рассмотрим примеры, демонстрирующие оба способа сравнения:

Пример 1

Сравнить числа f r a c 185 и 4 .

Решение

Для сравнения данных чисел найдем разность этих чисел.

f r a c 185 - 4 = f r a c 185 - f r a c 205 = - f r a c 25 чтобы вычислить данную разность, надо привести данные числа к общему знаменателю, воспользовавшись правилом приведения к общему знаменателю. Проделав данную операцию, видим, что знаменатель в данном примере равен 5. После этого опираясь на правило вычитания дробей с одинаковым знаменателем, вычтем из числителя первой дроби числитель второй дроби, а знаменатель оставим прежним. Обратим внимание, что разность приведенных чисел является отрицательной, значит первое число (уменьшаемое) меньше второго (вычитаемого), т. е. f r a c 185 < 4 .

Пример 2

Сравнить числа f r a c 185 и 4 с помощью координатной прямой.

Решение

Чтобы сравнить данные числа, следует определить геометрическое место точек этих чисел на координатной прямой. Т.е. сравниваемые действительные числа будут соответствовать определенным координатам на координатной прямой, а именно числам f r a c 185 и 4 . Для начала преобразуем неправильную дробь frac185 в смешанное число т.е. выделим целую часть, следовательно, получим 3 f r a c 35 .

Далее на координатной прямой отметим точки, координаты которых будут равны 3 f r a c 35 и 4 . f r a c 185 содержит в себе 3 целых, значит данное число расположено левее 4. Как уже известно, меньшее число лежит левее, исходя из этого напрашивается вывод, что f r a c 185 < 4 .

Можно сделать вывод, что вне зависимости от внешнего вида сравнения действительных чисел можно реализовать все арифметические операции, а именно сложение, вычитание, умножение и деление. Однако перед выполнением действий с действительными числами следует учитывать исходные знаки данных чисел т.е. определить является каждое число положительными или отрицательными.

Сложение действительных чисел

Чтобы сложить два действительных числа с одинаковыми знаками следует сначала сложить их модули и затем перед суммой поставить их общий знак. Например:

(+ 8) + (+ 2) = + 10 ; (- 5) + (- 4) = - 9 .

Чтобы сложить два действительных числа с разными знаками следует для начала обратить внимание на знак числа, если знак одного из чисел отрицательный, тогда это число следует вычитать из другого, если положительный – сложить с другим. Далее нужно сложить либо вычесть данные числа и поставить знак большего модуля. Например

(+ 2) + (- 7) = - 5 ; (+ 10) + (- 4) = + 6 .

Вычитание действительных чисел

Вычитание действительных чисел можно представить в виде сложения: a - b = a + (- b) , то есть, чтобы вычесть из числа а число b, достаточно к уменьшаемому прибавить число, противоположное вычитаемому.

Например: (+ 5) - (- 7) = (+ 3) + (+ 7) = 12 ; (+ 6) - (+ 4) = (+ 6) + (- 4) = + 2 .

Умножение действительных чисел

Чтобы умножить (разделить) два действительных числа необходимо умножить (разделить) их модули. И затем перед результатом поставить знак по приведенному в таблице правилу знаков ниже.

При умножении и делении действительных чисел желательно помнить пословицу: «Друг моего друга - мой друг, враг моего врага - мой друг, друг моего врага - мой враг, враг моего друга - мой враг».

Например:

(+ 2) (+ 7) = + 14 ; (- 2) (+ 6) = - 12 ; (- 2) (- 8) = 16 ;

Свойства арифметических действий над действительными числами (основные законы алгебры)

В алгебре существуют так называемые основные законы алгебры. Они практически всегда принимаются за истину (случаи ложности данных законов не рассматриваем) и сформулированы в виде следующих свойств-тождеств:

  1. a + b = b + a ;
  2. (a + b) + c = a + (b + c) ;
  3. a + 0 = a ;
  4. a + (- a) = 0 ;
  5. a b = b a ;
  6. (a b) c = a (b c) ;
  7. a (b + c) = a b + a c ;
  8. a · 1 = a ;
  9. a · 0 = 0 ;
  10. a · 1 a = 1 , (a ≠ 0) .

Свойства 1 и 5 выражают переместительный закон (коммутативность) сложения и умножения соответственно;

Cвойства 2 и 6 выражают сочетательный закон (ассоциативность);

Cвойство 7 - распределительный закон (дистрибутивность) умножения относительно сложения;

Cвойства 3 и 8 указывают на наличие нейтрального элемента для сложения и умножения соответственно;

Cвойства 4 и 10 – на наличие нейтрализующего элемента соответственно.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Если число α нельзя представить в виде несократимой дроби $$\frac{p}{q}$$, то его называют иррациональным.
Иррациональное число записывается в виде бесконечной непериодической десятичной дроби.

Факт существования иррациональных чисел продемонстрируем на примере.
Пример 1.4.1. Докажите, что не существует рационального числа, квадрат которого равен 2.
Решение. Предположим, что существует несократимая дробь $$\frac{p}{q}$$ такая, что $$(\frac{p}{q})^{2}=2$$
или $$p^{2}=2q^{2}$$. Отсюда следует, что $$p^{2}$$ кратно 2, а значит, и p кратно 2. В противном случае, если p не делится на 2, т.е. $$p=2k-1$$, то $$p^{2}=(2k-1)^{2}=4k^{2}-4k+1$$ также не делится на 2. Следовательно, $$p=2k$$ $$\Rightarrow$$ $$p^{2}=4k^{2}$$ $$\Rightarrow$$ $$4k^{2}=2q^{2}$$ $$\Rightarrow$$ $$q^{2}=2k^{2}$$.
Поскольку $$q^{2}$$ кратно 2, то и q кратно 2, т.е. $$q=2m$$.
Итак, числа p и q имеют общий множитель – число 2, а значит, дробь $$\frac{p}{q}$$ сократимая.
Это противоречие означает, что сделанное предположение неверно, тем самым утверждение доказано.
Множество рациональных и иррациональных чисел называется множеством действительных чисел.
В множестве действительных чисел аксиоматически вводятся операции сложения и умножения: любым двум действительным числам a и b ставится в соответствие число $$a+b$$ и произведение $$a\cdot b$$.
Кроме того, в этом множестве вводятся отношения "больше", "меньше" и равенства:
$$a>b$$ тогда и только тогда, когда a - b – положительное число;
$$a a = b тогда и только тогда, когда a - b = 0.
Перечислим основные свойства числовых неравенств.
1. Если $$a>b$$ и $$b>c$$ $$\Rightarrow$$ $$a>c$$.
2. Если $$a>b$$ и $$c>0$$ $$\Rightarrow$$ $$ac>bc$$.
3. Если $$a>b$$ и $$c<0$$ $$\Rightarrow$$ $$ac 4. Если $$a>b$$ и c – любое число $$\Rightarrow$$ $$a+c>b+c$$.
5. Если a, b, c, d – положительные числа такие, что $$a>b$$ и $$c>d$$ $$\Rightarrow$$ $$ac>bd$$.
Следствие. Если a и b – положительные числа и $$a>b$$ $$\Rightarrow$$ $$a^{2}>b^{2}$$.
6. Если $$a>b$$ и $$c>d$$ $$\Rightarrow$$ $$a+c>b+d$$.
7. Если $$a>0$$, $$b>0$$ и $$a>b$$ $$\Rightarrow$$ $$\frac{1}{a}<\frac{1}{b}$$.

Геометрическая интерпретация действительных чисел.
Возьмем прямую l , см. рис. 1.4.1, и зафиксируем на ней точку O – начало отсчета.
Точка O разбивает прямую на две части – лучи. Луч, направленный вправо, назовем положительным лучом, а луч, направленный влево – отрицательным. На прямой отметим отрезок, принятый за единицу длины, т.е. вводим масштаб.

Рис. 1.4.1. Геометрическая интерпретация действительных чисел.

Прямая с выбранным началом отсчета, положительным направлением и масштабом называется числовой прямой.
Каждой точке числовой прямой можно поставить в соответствие действительное число по следующему правилу:

– точке О поставим в соответствие нуль;
– каждой точке N на положительном луче поставим в соответствие положительное число a, где a – длина отрезка ON ;
– каждой точке M на отрицательном луче поставим в соответствие отрицательное число b, где $$b=-\left | OM \right |$$ (длина отрезка OM, взятая со знаком минус).
Таким образом, между множеством всех точек числовой прямой и множеством действительных чисел устанавливается взаимно–однозначное соответствие, т.е. :
1) каждой точке на числовой прямой поставлено в соответствие одно и только одно действительное число;
2) разным точкам поставлены в соответствие разные числа;
3) нет ни одного действительного числа, которое не соответствовало бы какой–либо точке числовой прямой.

Пример 1.4.2. На числовой прямой отметьте точки, соответствующие числам:
1) $$1\frac{5}{7}$$ 2) $$\sqrt{2}$$ 3) $$\sqrt{3}$$
Решение. 1) Для того, чтобы отметить дробное число $$\frac{12}{7}$$, надо построить точку, соответствующую $$\frac{12}{7}$$.
Для этого надо отрезок длины 1 разделить на 7 равных частей. Эту задачу решаем так.
Проводим произвольный луч из т.О и на этом луче отложим 7 равных отрезков. Получим
отрезок ОА, и из т. А проведем прямую до пересечения с 1.

Рис. 1.4.2. Деление единичного отрезка на 7 равных частей.

Прямые, проведенные параллельно прямой А1 через концы отложенных отрезков, делят отрезок единичной длины на 7 равных частей (рис.1.4.2). Это дает возможность построить точку, изображающую число $$1\frac{5}{7}$$ (рис.1.4.3).

Рис. 1.4.3. Точка числовой оси, соответствующая числу $$1\frac{5}{7}$$.

2) Число $$\sqrt{2}$$ можно получить так. Построим прямоугольный треугольник с единичными катетами. Тогда длина гипотенузы равна $$\sqrt{2}$$; этот отрезок откладываем от О на числовой прямой (рис.1.4.4).
3) Для построения точки, удаленной от т.О на расстояние $$\sqrt{3}$$ (вправо) надо построить прямоугольный треугольник с катетами длиной 1 и $$\sqrt{2}$$. Тогда его гипотенуза имеет длину $$\sqrt{2}$$, что позволяет указать искомую точку на числовой оси.
Для действительных чисел определено понятие модуля (или абсолютной величины).

Рис. 1.4.4. Точка числовой оси, соответствующая числу $$\sqrt{2}$$.

Модулем действительного числа a называется:
– само это число, если a – положительное число;
– нуль, если a – нуль;
-a , если a – отрицательное число.
Модуль числа a обозначается $$\left | a \right |$$.
Определение модуля (или абсолютной величины) можно записать в виде

$$\left | a \right |=\left\{\begin{matrix}a, a\geq0\\-a, a<0\end{matrix}\right.$$ (1.4.1)

Геометрически модуль числа a означает расстояние на числовой прямой от начала отсчета О до точки, соответствующей числу a .
Отметим некоторые свойства модуля.
1. Для любого числа a справедливо равенство $$\left | a \right |=\left | -a \right |$$.
2. Для любых чисел a и b справедливы равенства

$$\left | ab \right |=\left | a \right |\cdot \left | b \right |$$; $$\left | \frac{a}{b} \right |=\frac{\left | a \right |}{\left | b \right |}$$ $$(b\neq 0)$$; $$\left | a \right |^{2}=a^{2}$$.

3. Для любого числа a справедливо неравенство $$\left | a \right |\geq 0$$.
4. Для любого числа a справедливо неравенство $$-\left | a \right |\leq a\leq \left | a \right |$$.
5. Для любых чисел a и b справедливо неравенство

$$\left | a+b \right |\leq \left | a \right |+\left | b \right |$$

Рассмотрим следующие числовые множества.
Если $$a 1) отрезком называется множество всех действительных чисел α для каждого из которых справедливо: $$a\leq \alpha \leq b$$;
2) интервалом (a; b) называется множество всех действительных чисел α , для каждого из которых справедливо: $$a<\alpha 3) полуинтервалом (a; b] называется множество всех действительных чисел α для каждого из которых справедливо: $$a<\alpha \leq b$$.
Аналогично можно ввести полуинтервал .
В некоторых случаях говорят о "промежутках", понимая под этим либо луч, либо отрезок, либо интервал, либо полуинтервал.

Множество R всех действительных чисел обозначают так: $$(-\infty; \infty)$$.
Для любого действительного числа a вводится понятие степени с натуральным показателем n , а именно

$$a^{n}=\underbrace {a\cdot a\cdot a\cdot a...a}$$, $$n\geq 2$$ и $$a^{1}=a$$.

Пусть a – любое отличное от нуля число, тогда по определению $$a^{0}=1$$.
Нулевая степень нуля не определена.
Пусть a – любое отличное от нуля число, m – любое целое число. Тогда число $$a^{m}$$ определяется по правилу:

$$a^{m}=\left\{\begin{matrix}a, m=1;\\\underbrace{a\cdot a\cdot a\cdot a...a}, m\in N, m\geq2;\\1, m=0;\\\frac{1}{a^{n}}, m=-n, n\in N\end{matrix}\right.$$

при этом a m называется степенью с целым показателем.

Прежде, чем определить понятие степени с рациональным показателем, введем понятие арифметического корня.
Арифметическим корнем степени n (n ∈ N , n > 2 ) неотрицательного числа a называется неотрицательное число b такое, что b n = a . Число b обозначается как $$b\sqrt[n]{a}$$.
Свойства арифметических корней (a > 0 , b > 0 , n, m, k натуральные числа.)

1. $$\sqrt[n]{ab}=\sqrt[n]{a}\cdot \sqrt[n]{b}$$ 5. $$\sqrt[n]{\sqrt[k]{a}}=\sqrt{a}$$
2. $$(a)^{\frac{k}{n}}=\sqrt[n]{a^{k}}$$ 6. $$\sqrt[n]{a^{m}}=\sqrt{a^{mk}}$$
3. $$(\sqrt[n]{a})^{k}=\sqrt[n]{a^{k}}$$ 7. $$\sqrt{a^{2}}=\left | a \right |$$
4. $$\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}} (b\neq 0)$$ 8. $$\sqrt{a^{2n}}=\left | a \right |$$

Пусть a < 0 , а n – натуральное число, большее 1. Если n – четное число, то равенство b n = a не выполняется ни при каком действительном значении b . Это значит, что в области действительных чисел нельзя определить корень четной степени из отрицательного числа. Если же n – нечетное число, то существует единственное действительное число b такое, что b n = a . Это число обозначают √n a и называют корнем нечетной степени из отрицательного числа.
Используя определение возведения в целую степень и определение арифметического корня, дадим определение степени с рациональным показателем.
Пусть a – положительное число и $$r=\frac{p}{q}$$ – рациональное число, причем q – натуральное число.

Положительное число

$$b=\sqrt[q]{a^{p}}$$

называется степенью числа a с показателем r и обозначается как

$$b=a^{r}$$, или $$a^{\frac{p}{q}}=\sqrt[q]{a^{r}}$$, здесь $$q\in N$$, $$q\geq2$$.

Рассмотрим основные свойства степени с рациональным показателем.

Пусть a и b – любые положительные числа, r 1 и r 2 – любые рациональные числа. Тогда справедливы следующие свойства:

1. $$(ab)^{r_{1}}=a^{r_{1}}\cdot b^{r_{1}}$$
2. $$(\frac{a}{b})^{r_{1}}=\frac{a^{r_{1}}}{b^{r_{1}}}$$
3. $$a^{r_{1}}\cdot a^{r_{2}}=a^{r_{1}+r_{2}}$$
4. $$\frac{a^{r_{1}}}{a^{r_{2}}}=a^{r_{1}-r_{2}}$$
5. $$(a^{r_{1}})^{r_{2}}=a^{r_{1}r_{2}}$$ (1.4.2)
6. $$a^{0}=1$$
7. Если $$a>1$$ и $$r_{1}>0\Rightarrow a^{r_{1}}> 1$$
8. Если $$0< a< 1$$ и $$r_{1}>0\Rightarrow 0< a^{r_{1}}< 1$$
9. Если $$a>1$$ и $$r_{1}>r_{2}\Rightarrow a^{r_{1}}> a^{r_{2}}$$
10. Если $$0< a< 1$$ и $$r_{1}>r_{2}\Rightarrow a^{r_{1}}> a^{r_{2}}$$

Понятие степени положительного числа обобщается для любого действительного показателя α .
Определение степени положительного числа a с действительными показателями α .

1. Если $$\alpha > 0$$ и

1) $$\alpha=m$$, $$m\in N \Rightarrow a^{\alpha}=\left\{\begin{matrix}a, m=1\\\underbrace{a\cdot a\cdot a\cdot a....a}, m\geq 2\end{matrix}\right.$$

2) $$\alpha=\frac{p}{q}$$, где p и q - натуральные числа $$\Rightarrow a^{\alpha}=\sqrt[q]{a^{p}}$$

3) α - иррациональное число, тогда

а) если a > 1, то a α - число большее, чем a r i и меньшее, чем a r k , где r i α с недостатком, r k - любое рациональное приближение числа α с избытком;
b) если 0 < a < 1, то a α - число большее, чем a r k и меньшее, чем a r i ;
c) если a = 1, то a α = 1.

2. Если $$\alpha=0$$, то a α = 1.

3. Если $$\alpha<0$$, то $$a^{\alpha}=\frac{1}{a^{\left | \alpha \right |}}$$.

Число a α называется степенью, число a – основание степени, число α – показатель степени.
Степень положительного числа с действительным показателем обладает теми же свойствами, что и степень с рациональным показателем.

Пример 1.4.3. Вычислите $$\sqrt{81}\cdot\sqrt{\frac{16}{6}}$$.

Решение. Воспользуемся свойством корней:

$$\sqrt{81}\cdot\sqrt{\frac{16}{6}}=\sqrt{\frac{81\cdot16}{6}}=\sqrt{\frac{3^{4}\cdot2^{4}}{3\cdot2}}=\sqrt{3^{3}\cdot2^{3}}=6$$

Ответ. 6.

Пример 1.4.4. Вычислите $$6,25^{1,5}-2,25^{1,5}$$

1) 4 2) 8 3) 8,25 4) 12,25