Вчера мир потрясла сенсация: ученые наконец-то обнаружили гравитационные волны, существование которых предсказывал Эйнштейн еще сто лет назад. Это прорыв. Искажение пространства-времени (это и есть гравитационные волны - сейчас объясним, что к чему) обнаружили в обсерватории ЛИГО, а одним из ее основателей является - кто бы вы думали? - Кип Торн, автор книги .

Рассказываем, почему открытие гравитационных волн так важно, что сказал Марк Цукерберг и, конечно, делимся историей от первого лица. Кип Торн как никто другой знает, как устроен проект, в чем его необычность и какое значение ЛИГО имеет для человечества. Да-да, все так серьезно.

Открытие гравитационных волн

Научный мир навсегда запомнит дату 11 февраля 2016. В этот день участники проекта ЛИГО (LIGO) объявили: после стольких тщетных попыток гравитационные волны найдены. Это реальность. На самом деле их обнаружили немного раньше: в сентябре 2015 года, но вчера открытие было признано официально. В The Guardian считают, что ученые непременно получат Нобелевскую премию по физике.

Причина гравитационных волн - столкновение двух черных дыр, которое произошло аж… в миллиарде световых лет от Земли. Представляете, насколько огромна наша Вселенная! Так как черные дыры - очень массивные тела, они пускают «рябь» по пространству-времени, немного его искажая. Вот и появляются волны, похожие на те, которые распространяются от камня, брошенного в воду.

Вот так можно представить гравитационные волны, идущие к Земле, например, от червоточины. Рисунок из книги «Интерстеллар. Наука за кадром»

Полученные колебания преобразовали в звук. Интересно, что сигнал от гравитационных волн приходит примерно на той же частоте, что и наша речь. Так что мы можем своими ушами услышать, как сталкиваются черные дыры. Послушайте, как звучат гравитационные волны .

И знаете что? Совсем недавно , что черные дыры устроены не так, как считалось раньше. Но ведь доказательств того, что они в принципе существуют, не было вовсе. А теперь есть. Черные дыры действительно «живут» во Вселенной.

Так, по мнению ученых, выглядит катастрофа – слияние черных дыр, — .

11 февраля состоялась грандиозная конференция, куда съехались больше тысячи ученых из 15 стран. Российские ученые тоже присутствовали. И, конечно, не обошлось без Кипа Торна. «Это открытие - начало изумительного, великолепного квеста для людей: поиска и исследования искривленной стороны Вселенной - объектов и явлений, созданных из искаженного пространства-времени. Столкновение черных дыр и гравитационные волны - наши первые замечательные образцы», - сказал Кип Торн.

Поиск гравитационных волн был одной из главных проблем физики. Теперь они найдены. И гений Эйнштейна подтвержден вновь.

В октябре мы взяли интервью у Сергея Попова, отечественного астрофизика и известного популяризатора науки. Он как в воду глядел! Осенью : «Мне кажется, что сейчас мы стоим на пороге новых открытий, что в первую очередь связано с работой детекторов гравитационных волн LIGO и VIRGO (Кип Торн как раз внес большой вклад в создание проекта LIGO)». Удивительно, правда?

Гравитационные волны, детекторы волн и LIGO

Что ж, а теперь немного физики. Для тех, кто действительно хочется разобраться в том, что такое гравитационные волны. Вот художественное изображение тендекс-линий двух черных дыр, которые вращаются по орбитам друг вокруг друга, против часовой стрелки, и затем сталкиваются. Тендекс-линии порождают приливную гравитацию. Идем дальше. Линии, которые исходят из двух наиболее удаленных друг от друга точек на поверхностях пары черных дыр, растягивают все на своем пути, включая попавшую на рисунок подругу художницы. Линии же, исходящие из области столкновения, все сжимают.

Когда дыры вращаются одна вокруг другой, они увлекают следом свои тендекс-линии, которые походят на струи воды из крутящейся поливалки на газоне. На рисунке из книги «Интерстеллар. Наука за кадром» - пара черных дыр, которые сталкиваются, вращаясь одна вокруг другой против часовой стрелки, и их тендекс-линии.

Черные дыры объединяются в одну большую дыру; она деформирована и вращается против часовой стрелки, увлекая за собой тендекс-линии. Неподвижный наблюдатель, находящийся вдали от дыры, почувствует колебания, когда через него будут проходить тендекс-линии: растяжение, затем сжатие, затем растяжение - тендекс-линии стали гравитационной волной. По мере распространения волн деформация черной дыры постепенно уменьшается, и волны также ослабевают.

Когда эти волны достигают Земли, они имеют вид, показанный в верхней части рисунка ниже. Они растягивают в одном направлении и сжимают в другом. Растяжения и сжатия колеблются (от красного вправо-влево, к синему вправо-влево, к красному вправо-влево и т. д.) по мере того, как волны проходят через детектор в нижней части рисунка.

Гравитационные волны, проходящие через детектор ЛИГО.

Детектор представляет собой четыре больших зеркала (40 килограммов, 34 сантиметра в диаметре), которые закреплены на концах двух перпендикулярных труб, называемых плечами детектора. Тендекс-линии гравитационных волн растягивают одно плечо, сжимая при этом второе, а затем, наоборот, сжимают первое и растягивают второе. И так снова и снова. При периодическом изменении длины плеч зеркала смещаются друг относительно друга, и эти смещения отслеживаются с помощью лазерных лучей способом, который называется интерферометрией. Отсюда и название ЛИГО: Лазерно-интерферометрическая гравитационноволновая обсерватория.

Центр управления ЛИГО, откуда отправляют команды детектору и следят за полученными сигналами. Гравитационные детекторы ЛИГО расположены в Хэнфорде, штат Вашингтон, и Ливингстоне, штат Луизиана. Фото из книги «Интерстеллар. Наука за кадром»

Сейчас ЛИГО - интернациональный проект, в котором участвует 900 ученых из разных стран, со штабом, расположенным в Калифорнийском технологическом институте.

Искривленная сторона Вселенной

Черные дыры, червоточины, сингулярности, гравитационные аномалии и измерения высшего порядка связаны с искривлениями пространства и времени. Поэтому Кип Торн называет их «искривленной стороной Вселенной». У человечества до сих пор очень мало экспериментальных и наблюдательных данных с искривленной стороны Вселенной. Вот почему мы столько внимания отдаем гравитационным волнам: они состоят из искривленного пространства и предоставляют наиболее доступный для нас способ исследовать искривленную сторону.

Представьте, что вам приходилось видеть океан, только когда он спокоен. Вы бы знать не знали о течениях, водоворотах и штормовых волнах. Это напоминает наши сегодняшние знания об искривлении пространства и времени.

Мы почти ничего не знаем о том, как искривленное пространство и искривленное время ведут себя «в шторм» - когда форма пространства бурно колеблется и когда колеблется скорость течения времени. Это необыкновенно манящий рубеж знаний. Ученый Джон Уилер придумал для этих изменений термин «геометродинамика»

Особый интерес в области геометродинамики представляет столкновение двух черных дыр.

Столкновение двух невращающихся черных дыр. Модель из книги «Интерстеллар. Наука за кадром»

На рисунке выше изображен момент столкновения двух черных дыр. Как раз такое событие позволило ученым зафиксировать гравитационные волны. Эта модель построена для невращающихся черных дыр. Сверху: орбиты и тени дыр, вид из нашей Вселенной. Посередине: искривленное пространство и время, вид из балка (многомерного гиперпространства); стрелками показано, как пространство вовлекается в движение, а изменяющимися цветами - как искривляется время. Снизу: форма испускаемых гравитационных волн.

Гравитационные волны от Большого взрыва

Слово Кипу Торну. «В 1975 году Леонид Грищук, мой добрый приятель из России, сделал сенсационное заявление. Он сказал, что в момент Большого взрыва возникло множество гравитационных волн, причем механизм их возникновения (прежде неизвестный) был таков: квантовые флуктуации (случайные колебания - прим. ред) гравитационного поля при Большом взрыве были многократно усилены первоначальным расширением Вселенной и так стали изначальными гравитационными волнами. Эти волны, если их удастся обнаружить, могут рассказать нам, что происходило в момент зарождения нашей Вселенной».

Если ученые найдут первоначальные гравитационные волны, мы узнаем, как зародилась Вселенная.

Люди разгадали далеко на все загадки Вселенной. Все еще впереди.

В последующие годы, по мере того как совершенствовались наши представления о Большом взрыве, стало очевидно: эти изначальные волны должны быть сильными на длинах волн, соизмеримых с величиной видимой Вселенной, то есть на длинах в миллиарды световых лет. Представляете, сколько это?.. А на длинах волн, которые охватывают детекторы ЛИГО (сотни и тысячи километров), волны, скорее всего, окажутся слишком слабыми, чтобы их распознать.

Команда Джейми Бока построила аппарат BICEP2 , с помощью которого был обнаружен след изначальных гравитационных волн. Аппарат, находящийся на Северном полюсе, показан здесь во время сумерек, которые бывают там лишь дважды в год.

Аппарат BICEP2 . Изображение из книги «Интерстеллар. Наука за кадром»

Он окружен щитами, экранирующими аппарат от излучения окружающего ледяного покрова. В правом верхнем углу показан обнаруженный в реликтовом излучении след - поляризационный узор. Линии электрического поля направлены вдоль коротких светлых штрихов.

След начала Вселенной

В начале девяностых космологи поняли, что эти гравитационные волны длиной в миллиарды световых лет должны были оставить уникальный след в электромагнитных волнах, наполняющих Вселенную, - в так называемом космическом микроволновом фоне, или реликтовом излучении. Это положило начало поискам святого Грааля. Ведь если обнаружить этот след и вывести из него свойства изначальных гравитационных волн, можно узнать, как зарождалась Вселенная.

В марте 2014 года, когда Кип Торн писал эту книгу, команда Джеми Бока, космолога из Калтеха, кабинет которого находится рядом с кабинетом Торна, наконец обнаружила этот след в реликтовом излучении.

Это совершенно потрясающее открытие, но есть один спорный момент: след, найденный командой Джеми, мог быть вызван не гравитационными волнами, а чем-то еще.

Если действительно найден след гравитационных волн, возникших при Большом взрыве, значит, произошло космологическое открытие такого уровня, какие случаются, быть может, раз в полвека. Оно дает шанс прикоснуться к событиям, которые происходили спустя триллионную от триллионной от триллионной доли секунды после рождения Вселенной.

Это открытие подтверждает теории, гласящие, что расширение Вселенной в тот миг было чрезвычайно быстрым, на сленге космологов - инфляционно быстрым. И возвещает наступление новой эры в космологии.

Гравитационные волны и «Интерстеллар»

Вчера на конференции по поводу открытия гравитационных волн Валерий Митрофанов, руководитель московской коллаборации ученых LIGO, в которую входят 8 ученых из МГУ, отметил, что сюжет фильма «Интерстеллар» хоть и фантастичен, но не так далек от действительности. А все потому, что научным консультантом был Кип Торн. Сам же Торн выразил надежду, что верит в будущие пилотируемые полеты человека к черной дыре. Пусть они случатся не так скоро, как хотелось бы, и все же сегодня это намного реальнее, чем было раньше.

Не так уж и далек день, когда люди покинут пределы нашей галактики.

Событие всколыхнуло умы миллионов людей. Небезызвестный Марк Цукерберг написал: «Обнаружение гравитационных волн - самое большое открытие в современной науке. Альберт Эйнштейн - один из моих героев, поэтому я воспринял открытие так близко. Столетие назад в рамках Общей Теории Относительности (ОТО) он предсказал существование гравитационных волн. А ведь они так малы, чтобы их обнаружить, что пришло искать их в истоках таких событий, как Большой взрыв, взрывы звезд и столкновения черных дыр. Когда ученые проанализируют полученные данные, перед нами откроется совершенной новый взгляд на космос. И, возможно, это прольет свет на происхождение Вселенной, рождение и процесс развития черных дыр. Это очень вдохновляет - думать о том, сколько жизней и усилий было положено на то, чтобы сорвать покров с этой тайны Вселенной. Этот прорыв стал возможным благодаря таланту блистательных ученых и инженеров, людей разных национальностей, а также новейшим компьютерным технологиям, которые появились только недавно. Поздравляю всех причастных. Эйнштейн бы вами гордился».

Такая вот речь. И это человек, который просто интересуется наукой. Можно себе представить, какая буря эмоций захлестнула ученых, которые внесли свою лепту в открытие. Кажется, мы стали свидетелями новой эры, друзья. Это поразительно.

P.S.: Понравилось? Подписывайтесь на нашу рассылку по кругозору . Раз в неделю присылаем познавательные письма и дарим скидки на книги МИФа.

Свободная поверхность жидкости, находящейся в равновесии в поле тяжести, - плоская. Если под влиянием какого-либо внешнего воздействия поверхность жидкости в каком-нибудь месте выводится из ее равновесного положения, то в жидкости возникает движение. Это движение будет распространяться вдоль всей поверхности жидкости в виде волн, называемых гравитационными, поскольку они обусловливаются действием поля тяжести. Гравитационные волны происходят в основном на поверхности жидкости, захватывая внутренние ее слои тем меньше, чем глубже эти слои расположены.

Мы будем рассматривать здесь такие гравитационные волны, в которых скорость движущихся частиц жидкости настолько мала, что в уравнении Эйлера можно пренебречь членом по сравнению с Легко выяснить, что означает это условие физически. В течение промежутка времени порядка периода колебаний, совершаемых частицами жидкости в волне, эти частицы проходят расстояние порядка амплитуды а волны, поэтому скорость их движения - порядка Скорость v заметно меняется на протяжении интервалов времени порядка и на протяжении расстояний порядка вдоль направления распространения волны ( - длина волны). Поэтому производная от скорости по времени - порядка а по координатам - порядка Таким образом, условие эквивалентно требованию

т. е. амплитуда колебаний в волне должна быть мала по сравнению с длиной волны. В § 9 мы видели, что если в уравнении движения можно пренебречь членом то движение жидкости потенциально. Предполагая жидкость несжимаемой, мы можем воспользоваться поэтому уравнениями (10,6) и (10,7). В уравнении (10,7) мы можем теперь пренебречь членом содержащим квадрат скорости; положив и введя в поле тяжести член получим:

(12,2)

Ось выбираем, как обычно, вертикально вверх, а в качестве плоскости х, у выбираем равновесную плоскую поверхность жидкости.

Будем обозначать - координату точек поверхности жидкости посредством ; является функцией координат х, у и времени t. В равновесии так что есть вертикальное смещение жидкой поверхности при ее колебаниях.

Пусть на поверхность жидкости действует постоянное давление Тогда имеем на поверхности согласно (12,2)

Постоянную можно устранить переопределением потенциала (прибавлением к нему независящей от координат величины Тогда условие на поверхности жидкости примет вид

Малость амплитуды колебаний в волне означает, что смещение мало. Поэтому можно считать, в том же приближении, что вертикальная компонента скорости движения точек поверхности совпадает с производной по времени от смещения Но так что имеем:

В силу малости колебаний можно в этом условии взять значения производных при вместо Таким образом, получаем окончательно следующую систему уравнений, определяющих движение в гравитационной волне:

Будем рассматривать волны на поверхности жидкости, считая эту поверхность неограниченной. Будем также считать, что длина волны мала по сравнению с глубиной жидкости; тогда можно рассматривать жидкость как бесконечно глубокую. Поэтому мы не пишем граничных условий на боковых границах и на дне жидкости.

Рассмотрим гравитационную волну, распространяющуюся вдоль оси и однородную вдоль оси в такой волне все величины не зависят от координаты у. Будем искать решение, являющееся простой периодической функцией времени и координаты х:

где ( - циклическая частота (мы будем говорить о ней просто как о частоте), k - волновой вектор волны, - длина волны. Подставив это выражение в уравнение получим для функции уравнение

Его решение, затухающее в глубь жидкости (т. е. при ):

Мы должны еще удовлетворить граничному условию (12,5), Подставив в него (12,5), найдем связь между частотой b волновым вектором (или, как говорят, закон дисперсии волн):

Распределение скоростей в жидкости получается дифференцированием потенциала по координатам:

Мы видим, что скорость экспоненциально падает по направлению в глубь жидкости. В каждой заданной точке пространства (т. е. при заданных х, z) вектор скорости равномерно вращается в плоскости х, оставаясь постоянным по своей величине.

Определим еще траекторию частиц жидкости в волне. Обозначим временно посредством х, z координаты движущейся частицы жидкости (а не координаты неподвижной точки в пространстве), а посредством - значения х, для равновесного положения частицы. Тогда а в правой части (12,8) можно приближенно написать вместо , воспользовавшись малостью колебаний. Интегрирование по времени дает тогда:

Таким образом, частицы жидкости описывают окружности вокруг точек с радиусом, экспоненциально убывающим по направлению в глубь жидкости.

Скорость U распространения волны равна, как будет показано в § 67, Подставив сюда находим, что скорость распространения гравитационных волн на неограниченной поверхности бесконечно глубокой жидкости равна

Она растет при увеличении длины волны.

Длинные гравитационные волны

Рассмотрев гравитационные волны, длина которых мала по сравнению с глубиной жидкости, остановимся теперь на противоположном предельном случае волн, длина которых велика по сравнению с глубиной жидкости.

Такие волны называются длинными.

Рассмотрим сначала распространение длинных волн в канале. Длину канала (направленную вдоль оси х) будем считать неограниченной Сечение канала может иметь произвольную форму и может меняться вдоль его длины. Площадь поперечного сечения жидкости в канале обозначим посредством Глубина и ширина канала предполагаются малыми по сравнению с длиной волны.

Мы будем рассматривать здесь продольные длинные волны, в которых жидкость движется вдоль канала. В таких волнах компонента скорости вдоль длины канала велика по сравнению с компонентами

Обозначив просто как v и опуская малые члены, мы можем написать -компоненту уравнения Эйлера в виде

а -компоненту - в виде

(квадратичные по скорости члены опускаем, поскольку амплитуда волны по-прежнему считается малой). Из второго уравнения имеем, замечая, что на свободной поверхности ) должно быть

Подставляя это выражение в первое уравнение, получаем:

Второе уравнение для определения двух неизвестных можно вывести методом, аналогичным выводу уравнения непрерывности. Это уравнение представляет собой по существу уравнение непрерывности применительно к рассматриваемому случаю. Рассмотрим объем жидкости, заключенный между двумя плоскостями поперечного сечения канала, находящимися на расстоянии друг от друга. За единицу времени через одну плоскость войдет объем жидкости, равный а через другую плоскость выйдет объем Поэтому объем жидкости между обеими плоскостями изменится на

February 11th, 2016

Буквально несколько часов назад пришло известие, которое давно ждали в научном мире. Группа ученых из нескольких стран, работающих в составе международного проекта LIGO Scientific Collaboration, заявляют, что при помощи нескольких обсерваторий-детекторов им удалось зафиксировать в лабораторных условиях гравитационные волны.

Они занимаются анализом данных, поступающих с двух лазерно-интерферометрических гравитационно-волновых обсерваторий (Laser Interferometer Gravitational-Wave Observatory — LIGO), расположенных в штатах Луизиана и Вашингтон в США.

Как говорилось на пресс-конференции проекта LIGO,гравитационные волны были зарегистрированы 14 сентября 2015 года сначала на одной обсерватории, а затем через 7 миллисекунд на другой.

На основе анализа полученных данных, которым занимались ученые из многих стран, в том числе и из России, было установлено, что гравитационная волна была вызвана столкновением двух черных дыр массой в 29 и 36 раз больше массы Солнца. После этого они слились в одну большую черную дыру.

Это произошло произошло 1,3 миллиарда лет назад. Сигнал пришел к Земле со стороны созвездия Магелланово облако.

Сергей Попов (астрофизик Государственного астрономического института Штернберга МГУ) объяснил, что такое гравитационные волны и почему так важно их измерять.

Современные теории гравитации — это геометрические теории гравитации, более-менее все, начиная с теории относительности. Геометрические свойства пространства влияют на движение тел или таких объектов как световой луч. И наоборот — распределение энергии (это то же, что и масса в пространстве) влияет на геометрические свойства пространства. Это очень здорово, потому что это просто визуализировать — вся эта разлинованная в клеточку эластичная плоскость имеет под собой некий физический смысл, хотя, разумеется не так все буквально.

Физики используют слово «метрика». Метрика — это то, что описывает геометрические свойства пространства. И вот у нас с ускорением движутся тела. Самое простое — вращается огурец. Важно, чтобы это был, например, не шарик и не сплюснутый диск. Легко себе представить, что когда такой огурец крутится на эластичной плоскости, от него побежит рябь. Представьте себе, что вы стоите где-то, и огурец то одним концом к вам повернется, то другим. Он по-разному влияет на пространство и время, бежит гравитационная волна.

Итак, гравитационная волна — это рябь, бегущая по метрике пространства-времени.

Бусы в космосе

Это фундаментальное свойство наших базовых представлений о том, как устроена гравитация, и люди сто лет хотят это проверить. Хотят убедиться в том, что эффект есть и что он виден в лаборатории. В природе это увидели уже около трех десятков лет назад. Как в быту должны проявлять себя гравитационные волны?

Проще всего это проиллюстрировать так: если бросить в космосе бусы, чтобы они легли кружком, и когда гравитационная волна будет проходить перпендикулярно их плоскости, то они начнут превращаться в эллипс, сжатый то в одну сторону, то в другую. Дело в том, что пространство вокруг них будет возмущено, и они будут это чувствовать.

«Г» на Земле

Примерно такую штуку люди и делают, только не в космосе, а на Земле.

На расстоянии четырех километров друг от друга висят зеркала в виде буквы «г» [имеются в виду американские обсерватории LIGO].

Бегают лазерные лучи — это интерферометр, хорошо понятная вещь. Современные технологии позволяют измерить фантастически малый эффект. Я до сих пор не то чтобы не верю, я верю, но просто в голове не укладывается — смещение зеркал, висящих на расстоянии четырех километров друг от друга составляет меньше, чем размер атомного ядра. Это мало даже по сравнению с длиной волны этого лазера. В этом и была загвоздка: гравитация — самое слабое взаимодействие, и поэтому смещения очень маленькие.

Понадобилось очень много времени, люди пытались это делать с 1970-х годов, потратили жизнь на поиски гравитационных волн. И сейчас только технические возможности позволяют получить регистрацию гравитационной волны в лабораторных условиях, то есть вот она тут пришла, и зеркала сместились.

Направление

В течение года если все будет хорошо, то в мире будут работать уже три детектора. Три детектора — это очень важно, потому что вот эти штуки очень плохо определяют направление сигнала. Примерно так же как и мы на слух плохо определяем направление источника. «Звук откуда-то справа» — эти детекторы примерно так чувствуют. Но если стоят поодаль друг от друга три человека, и один слышит звук справа, другой слева, а третий сзади, то мы очень точно можем определить направление звука. Чем больше будет детекторов, чем больше они будут разбросаны по земному шару, тем точнее мы сможем определить направление на источник, и тогда начнется астрономия.

Ведь конечная задача не только подтвердить общую теорию относительности, но и получить новое астрономическое знание. Вот представьте, что есть черная дыра весом в десять масс Солнца. И она сталкивается с другой черной дырой весом в десять масс Солнца. Столкновение происходит на скорости света. Энергии прорва. Это правда. Ее фантастически много. И ее никак не… Это только рябь пространства и времени. Я бы сказал, что детектирование слияния двух черных дыр на долгое время станет самым надежным подтверждением того, что черные дыры — это примерно такие черные дыры, о которых мы думаем.

Давайте пройдемся по вопросам и явлениям, которые она могла бы раскрыть.

Существуют ли черные дыры на самом деле?

Сигнал, который ожидается от анонса LIGO, возможно, был произведен двумя сливающимися черными дырами. Подобные события - самые энергетические из известных; сила гравитационных волн, излучаемых ими, может ненадолго затмить все звезды наблюдаемой Вселенной в сумме. Сливающиеся черные дыры также весьма просто интерпретировать по весьма чистым гравитационным волнам.

Слияние черных дыр происходит, когда две черных дыр вращаются по спирали друг относительно друга, излучая энергию в виде гравитационных волн. Эти волны имеют характерный звук (ЛЧМ), который можно использовать для измерения массы двух этих объектов. После этого черные дыры обычно сливаются.

«Представьте два мыльных пузыря, которые подходят так близко, что образуют один пузырь. Деформируется более крупный пузырь», - говорит Тибальд Дамур, гравитационный теоретик из Института передовых научных исследований близ Парижа. Окончательная черная дыра будет идеально сферической формы, но предварительно должна испустить гравитационные волны предсказуемого типа.

Одним из важнейших научных последствий обнаружения слияния черных дыр будет подтверждение существования черных дыр - по крайней мере идеально круглых объектов, состоящих из чистого, пустого, искривленного пространства-времени, как предсказывает общая теория относительности. Другое последствие - слияние проходит так, как предсказывали ученые. У астрономов есть масса косвенных подтверждений этого феномена, но пока это были наблюдения звезд и перегретого газа на орбите черных дыр, а не самих черных дыр.

«Научное сообщество, включая меня, недолюбливает черные дыры. Мы принимаем их как должное, - говорит Франс Преториус, специалист по симуляциям ОТО в Принстонском университете в Нью-Джерси. - Но если задуматься о том, какое это удивительное предсказание, нам нужно воистину удивительное доказательство».


Движутся ли гравитационные волны со скоростью света?

Когда ученые начинают сравнивать наблюдения LIGO с наблюдениями других телескопов, первое, что они проверяют, это в одно ли время прибыл сигнал. Физики считают, что гравитация передается частицами-гравитонами, гравитационным аналогом фотонов. Если, как у фотонов, у этих частиц нет массы, то гравитационные волны будут двигаться со скоростью света, соответствуя предсказанию о скорости гравитационных волн в классической теории относительности. (На их скорость может влиять ускоряющееся расширение Вселенной, но это должно проявляться на дистанциях, значительно превосходящих те, что покрывает LIGO).

Вполне возможно, впрочем, что гравитоны обладают небольшой массой, а значит, гравитационные волны будут двигаться со скоростью меньше световой. Так что, например, если LIGO и Virgo обнаружат гравитационные волны и выяснят, что волны прибыли на Землю позже связанных с космическим событием гамма-лучей, это может иметь судьбоносные последствия для фундаментальной физики.

Состоит ли пространство-время из космических струн?

Еще более странное открытие может случиться, если всплески гравитационных волн будут обнаружены выходящими из «космических струн». Эти гипотетические дефекты кривизны пространства-времени, которые могут быть, а могут и не быть связаны с теорий струн, должны быть бесконечно тонкими, но растянутыми на космические расстояния. Ученые прогнозируют, что космические струны, если они существуют, могут случайно перегибаться; если струна перегнется, она вызовет гравитационный всплеск, который могли бы измерить детекторы вроде LIGO или Virgo.

Могут ли нейтронные звезды быть неровными?

Нейтронные звезды - это остатки больших звезд, которые коллапсировали под собственным весом и стали настолько плотными, что электроны и протоны начали плавиться в нейтроны. Ученые плохо понимают физику нейтронных дыр, но гравитационные волны могли бы многое о них рассказать. К примеру, интенсивная гравитация на их поверхности приводит к тому, что нейтронные звезды становятся почти идеально сферическими. Но некоторые ученые предположили, что на них могут быть также «горы» - высотой в несколько миллиметров - которые делают эти плотные объекты диаметром в 10 километров, не больше, слегка асимметричными. Нейтронные звезды обычно крутятся очень быстро, поэтому асимметричное распределение массы будет деформировать пространство-время и производить постоянный гравитационно-волновой сигнал в форме синусоиды, замедляя вращение звезды и излучая энергию.

Пары нейтронных звезд, которые вращаются друг вокруг друга, также производят постоянный сигнал. Подобно черным дырам, эти звезды движутся по спирали и в конечном счете сливаются с характерным звуком. Но его специфика отличается от специфики звука черных дыр.

Отчего взрываются звезды?

Черные дыры и нейтронные звезды образуются, когда массивные звезды перестают светить и коллапсируют сами в себя. Астрофизики думают, что этот процесс лежит в основе всех распространенных типов взрывов сверхновых типа II. Моделирование таких сверхновых пока не показало, отчего они зажигаются, но прослушивание гравитационно-волновых всплесков, испускаемых настоящей сверхновой, как полагают, может дать ответ. В зависимости от того, на что похожи волны всплесков, насколько они громкие, как часто происходят и как коррелируют со сверхновыми, за которыми следят электромагнитные телескопы, эти данные могут помочь исключить кучу существующих моделей.

Как быстро расширяется Вселенная?

Расширение Вселенной означает, что далекие объекты, которые удаляются от нашей галактики, выглядят более красными, чем являются в действительности, поскольку излучаемый ими свет растягивается по мере их движения. Космологи оценивают темпы расширения Вселенной, сравнивая красное смещение галактик с тем, как далеки они от нас. Но это расстояние обычно оценивается по яркости сверхновых типа Ia, и эта методика оставляет кучу неопределенностей.

Если несколько детекторов гравитационных волн по всему миру обнаружат сигналы от слияния одних и тех же нейтронных звезд, вместе они могут абсолютно точно оценить громкость сигнала, а вместе с тем и расстояние, на котором произошло слияние. Они также смогут оценить направление, а с ним и выявить галактику, в которой произошло событие. Сравнивая красное смещение этой галактики с расстоянием до сливающихся звезд, можно получить независимый темп космического расширения, возможно, более точный, чем позволяют современные методы.

источники

http://www.bbc.com/russian/science/2016/02/160211_gravitational_waves

http://cont.ws/post/199519

Вот тут мы как то выясняли , а вот что такое и . Посмотрите еще как выглядит Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Гравитационные волны – изображение художника

Гравитационные волны - возмущения метрики пространства-времени, отрывающиеся от источника и распространяющиеся подобно волнам (так называемая «рябь пространства-времени»).

В общей теории относительности и в большинстве других современных теорий гравитации гравитационные волны порождаются движением массивных тел с переменным ускорением. Гравитационные волны свободно распространяются в пространстве со скоростью света. Ввиду относительной слабости гравитационных сил (по сравнению с прочими) эти волны имеют весьма малую величину, с трудом поддающуюся регистрации.

Поляризованная гравитационная волна

Гравитационные волны предсказываются общей теорией относительности (ОТО), многими другими . Впервые они были непосредственно обнаружены в сентябре 2015 года двумя детекторами-близнецами , на которых были зарегистрированы гравитационные волны, возникшие, вероятно, в результате слияния двух и образования одной более массивной вращающейся чёрной дыры. Косвенные свидетельства их существования были известны с 1970-х годов - ОТО предсказывает совпадающие с наблюдениями темпы сближения тесных систем за счёт потери энергии на излучение гравитационных волн. Прямая регистрация гравитационных волн и их использование для определения параметров астрофизических процессов является важной задачей современной физики и астрономии.

В рамках ОТО гравитационные волны описываются решениями уравнений Эйнштейна волнового типа, представляющими собой движущееся со скоростью света (в линейном приближении) возмущение метрики пространства-времени. Проявлением этого возмущения должно быть, в частности, периодическое изменение расстояния между двумя свободно падающими (то есть не испытывающими влияния никаких сил) пробными массами. Амплитудой h гравитационной волны является безразмерная величина - относительное изменение расстояния. Предсказываемые максимальные амплитуды гравитационных волн от астрофизических объектов (например, компактных двойных систем) и явлений (взрывов , слияний , захватов чёрными дырами и т. п.) при измерениях в весьма малы (h =10 −18 -10 −23). Слабая (линейная) гравитационная волна согласно общей теории относительности переносит энергию и импульс, двигается со скоростью света, является поперечной, квадрупольной и описывается двумя независимыми компонентами, расположенными под углом 45° друг к другу (имеет два направления поляризации).

Различные теории по-разному предсказывают скорость распространения гравитационных волн. В общей теории относительности она равна скорости света (в линейном приближении). В других теориях гравитации она может принимать любые значения, в том числе до бесконечности. По данным первой регистрации гравитационных волн их дисперсия оказалась совместимой с безмассовым гравитоном, а скорость оценена как равная скорости света.

Генерация гравитационных волн

Система из двух нейтронных звезд порождает рябь пространства-времени

Гравитационную волну излучает любая материя, движущаяся с асимметричным ускорением. Для возникновения волны существенной амплитуды необходимы чрезвычайно большая масса излучателя или/и огромные ускорения, амплитуда гравитационной волны прямо пропорциональна первой производной ускорения и массе генератора, то есть ~ . Однако если некоторый объект движется ускоренно, то это означает, что на него действует некоторая сила со стороны другого объекта. В свою очередь, этот другой объект испытывает обратное действие (по 3-му закону Ньютона), при этом оказывается, что m 1 a 1 = − m 2 a 2 . Получается, что два объекта излучают гравитационные волны только в паре, причём в результате интерференции они взаимно гасятся почти полностью. Поэтому гравитационное излучение в общей теории относительности всегда носит по мультипольности характер как минимум квадрупольного излучения. Кроме того, для нерелятивистских излучателей в выражении для интенсивности излучения имеется малый параметр где - гравитационный радиус излучателя, r - его характерный размер, T - характерный период движения, c - скорость света в вакууме.

Наиболее сильными источниками гравитационных волн являются:

  • сталкивающиеся (гигантские массы, очень небольшие ускорения),
  • гравитационный коллапс двойной системы компактных объектов (колоссальные ускорения при довольно большой массе). Как частный и наиболее интересный случай - слияние нейтронных звёзд. У такой системы гравитационно-волновая светимость близка к максимально возможной в природе планковской светимости.

Гравитационные волны, излучаемые системой двух тел

Два тела, движущиеся по круговым орбитам вокруг общего центра масс

Два гравитационно связанных тела с массами m 1 и m 2 , движущиеся нерелятивистски (v << c ) по круговым орбитам вокруг их общего центра масс на расстоянии r друг от друга, излучают гравитационные волны следующей энергии, в среднем за период:

Вследствие этого система теряет энергию, что приводит к сближению тел, то есть к уменьшению расстояния между ними. Скорость сближения тел:

Для Солнечной системы, например, наибольшее гравитационное излучение производит подсистема и . Мощность этого излучения примерно 5 киловатт. Таким образом, энергия, теряемая Солнечной системой на гравитационное излучение за год, совершенно ничтожна по сравнению с характерной кинетической энергией тел.

Гравитационный коллапс двойной системы

Любая двойная звезда при вращении её компонент вокруг общего центра масс теряет энергию (как предполагается - за счёт излучения гравитационных волн) и, в конце концов, сливается воедино. Но для обычных, некомпактных, двойных звёзд этот процесс занимает очень много времени, много большее настоящего возраста . Если же двойная компактная система состоит из пары нейтронных звёзд, чёрных дыр или их комбинации, то слияние может произойти за несколько миллионов лет. Сначала объекты сближаются, а их период обращения уменьшается. Затем на заключительном этапе происходит столкновение и несимметричный гравитационный коллапс. Этот процесс длится доли секунды, и за это время в гравитационное излучение уходит энергия, составляющая по некоторым оценкам более 50 % от массы системы.

Основные точные решения уравнений Эйнштейна для гравитационных волн

Объёмные волны Бонди - Пирани - Робинсона

Эти волны описываются метрикой вида . Если ввести переменную и функцию , то из уравнений ОТО получим уравнение

Метрика Такено

имеет вид , -функции, удовлетворяют тому же уравнению.

Метрика Розена

Где удовлетворяют

Метрика Переса

При этом

Цилиндрические волны Эйнштейна - Розена

В цилиндрических координатах такие волны имеют вид и выполняются

Регистрация гравитационных волн

Регистрация гравитационных волн достаточно сложна ввиду слабости последних (малого искажения метрики). Приборами для их регистрации являются детекторы гравитационных волн. Попытки обнаружения гравитационных волн предпринимаются с конца 1960-х годов. Гравитационные волны детектируемой амплитуды рождаются при коллапсе двойного . Подобные события происходят в окрестностях ориентировочно раз в десятилетие.

С другой стороны, общая теория относительности предсказывает ускорение взаимного вращения двойных звёзд из-за потери энергии на излучение гравитационных волн, и этот эффект надёжно зафиксирован в нескольких известных системах двойных компактных объектов (в частности, пульсаров с компактными компаньонами). В 1993 году «за открытие нового типа пульсаров, давшее новые возможности в изучении гравитации» открывателям первого двойного пульсара PSR B1913+16 Расселу Халсу и Джозефу Тейлору мл. была присуждена Нобелевская премия по физике. Ускорение вращения, наблюдаемое в этой системе, полностью совпадает с предсказаниями ОТО на излучение гравитационных волн. Такое же явление зафиксировано ещё в нескольких случаях: для пульсаров PSR J0737-3039, PSR J0437-4715, SDSS J065133.338+284423.37 (обычно сокращённо J0651) и системы двойных RX J0806. Например, расстояние между двумя компонентами A и B первой двойной звезды из двух пульсаров PSR J0737-3039 уменьшается примерно на 2,5 дюйма (6,35 см) в день из-за потерь энергии на гравитационные волны, причём это происходит в согласии с ОТО. Все эти данные интерпретируются как непрямые подтверждения существования гравитационных волн.

По оценкам наиболее сильными и достаточно частыми источниками гравитационных волн для гравитационных телескопов и антенн являются катастрофы, связанные с коллапсами двойных систем в ближайших галактиках. Ожидается, что в ближайшем будущем на усовершенствованных гравитационных детекторах будет регистрироваться несколько подобных событий в год, искажающих метрику в окрестности на 10 −21 -10 −23 . Первые наблюдения сигнала оптико-метрического параметрического резонанса, позволяющего обнаружить воздействие гравитационных волн от периодических источников типа тесной двойной на излучение космических мазеров, возможно, были получены на радиоастрономической обсерватории РАН, Пущино.

Ещё одной возможностью детектирования фона гравитационных волн, заполняющих Вселенную, является высокоточный тайминг удалённых пульсаров - анализ времени прихода их импульсов, которое характерным образом изменяется под действием проходящих через пространство между Землёй и пульсаром гравитационных волн. По оценкам на 2013 год, точность тайминга необходимо поднять примерно на один порядок, чтобы можно было задетектировать фоновые волны от множества источников в нашей Вселенной, и эта задача может быть решена до конца десятилетия.

Согласно современным представлениям, нашу Вселенную заполняют реликтовые гравитационные волны, появившиеся в первые моменты после . Их регистрация позволит получить информацию о процессах в начале рождения Вселенной. 17 марта 2014 года в 20:00 по московскому времени в Гарвард-Смитсоновском центре астрофизики американской группой исследователей, работающей над проектом BICEP 2, было объявлено о детектировании по поляризации реликтового излучения ненулевых тензорных возмущений в ранней Вселенной, что также является открытием этих реликтовых гравитационных волн. Однако почти сразу этот результат был оспорен, поскольку, как выяснилось, не был должным образом учтён вклад . Один из авторов, Дж. М. Ковац (Kovac J. M. ), признал, что «с интерпретацией и освещением данных эксперимента BICEP2 участники эксперимента и научные журналисты немного поторопились».

Экспериментальное подтверждение существования

Первый зафиксированный гравитационно-волновой сигнал. Слева данные с детектора в Хэнфорде (H1), справа - в Ливингстоне (L1). Время отсчитывается от 14 сентября 2015, 09:50:45 UTC. Для визуализации сигнала он отфильтрован частотным фильтром с полосой пропускания 35-350 Герц для подавления больших флуктуаций вне диапазона высокой чувствительности детекторов, также были применены полосовые режекторные фильтры для подавления шума самих установок. Верхний ряд: напряжения h в детекторах. GW150914 сначала прибыл на L1 и через 6 9 +0 5 −0 4 мс на H1; для визуального сравнения данные с H1 показаны на графике L1 в обращённом и сдвинутом по времени виде (чтобы учесть относительную ориентацию детекторов). Второй ряд: напряжения h от гравитационно-волнового сигнала, пропущенные через такой же полосный фильтр 35-350 Гц. Сплошная линия - результат численной относительности для системы с параметрами, совместимыми с найденными на базе изучения сигнала GW150914, полученный двумя независимыми кодами с результирующим совпадением 99,9. Серые толстые линии - области 90 % доверительной вероятности формы сигнала, восстановленные из данных детекторов двумя различными методами. Тёмно-серая линия моделирует ожидаемые сигналы от слияния чёрных дыр, светло-серая не использует астрофизических моделей, а представляет сигнал линейной комбинацией синусоидально-гауссовых вэйвлетов. Реконструкции перекрываются на 94 %. Третий ряд: Остаточные ошибки после извлечения отфильтрованного предсказания сигнала численной относительности из отфильтрованного сигнала детекторов. Нижний ряд: представление частотной карты напряжений, показывающее возрастание доминирующей частоты сигнала со временем.

11 февраля 2016 года коллаборациями LIGO и VIRGO. Сигнал слияния двух чёрных дыр с амплитудой в максимуме около 10 −21 был зарегистрирован 14 сентября 2015 года в 9:51 UTC двумя детекторами LIGO в Хэнфорде и Ливингстоне через 7 миллисекунд друг от друга, в области максимальной амплитуды сигнала (0,2 секунды) комбинированное отношение сигнал-шум составило 24:1. Сигнал был обозначен GW150914. Форма сигнала совпадает с предсказанием общей теории относительности для слияния двух чёрных дыр массами 36 и 29 солнечных; возникшая чёрная дыра должна иметь массу 62 солнечные и параметр вращения a = 0,67. Расстояние до источника около 1,3 миллиарда , излучённая за десятые доли секунды в слиянии энергия - эквивалент около 3 солнечных масс.

История

История самого термина «гравитационная волна», теоретического и экспериментального поиска этих волн, а также их использования для исследований явлений недоступных иными методам.

  • 1900 - Лоренц предположил, что гравитация «…может распространятся со скоростью, не большей скорости света»;
  • 1905 - Пуанкаре впервые ввёл термин гравитационная волна (onde gravifique). Пуанкаре, на качественном уровне, снял устоявшиеся возражения Лапласа и показал, что связанные с гравитационными волнами поправки к общепринятым законам тяготения Ньютона порядка сокращаются, таким образом, предположение о существовании гравитационных волн не противоречит наблюдениям;
  • 1916 - Эйнштейн показал, что в рамках ОТО механическая система будет передавать энергию гравитационным волнам и, грубо говоря, любое вращение относительно неподвижных звёзд должно рано или поздно остановиться, хотя, конечно, в обычных условиях потери энергии порядка ничтожны и практически не поддаются измерению (в этой работе он ещё ошибочно полагал, что механическая система, постоянно сохраняющая сферическую симметрию, может излучать гравитационные волны);
  • 1918 - Эйнштейн вывел квадрупольную формулу, в которой излучение гравитационных волн оказывается эффектом порядка , тем самым исправив ошибку в своей предыдущей работе (осталась ошибка в коэффициенте, энергия волны в 2 раза меньше);
  • 1923 - Эддингтон - поставил под сомнение физическую реальность гравитационных волн «…распространяются… со скоростью мысли». В 1934 году, при подготовке русского перевода своей монографии «Теория относительности», Эддингтон добавил несколько глав, включая главы с двумя вариантами расчётов потерь энергии вращающимся стержнем, но отметил, что использованные методы приближенных расчётов ОТО, по его мнению, неприменимы к гравитационно связанным системам, поэтому сомнения остаются;
  • 1937 - Эйнштейн совместно с Розеном исследовал цилиндрические волновые решения точных уравнений гравитационного поля. В ходе этих исследований у них возникли сомнения, что гравитационные волны, возможно, являются артефактом приближенных решений уравнений ОТО (известна переписка относительно рецензии на статью Эйнштейна и Розена «Существуют ли гравитационные волны?»). Позднее он нашёл ошибку в рассуждениях, окончательный вариант статьи с фундаментальными правками был опубликован уже в «Journal of the Franklin Institute»;
  • 1957 - Герман Бонди и Ричард Фейнман предложили мысленный эксперимент «трость с бусинками» в котором обосновали существование физических последствий гравитационных волн в ОТО;
  • 1962 - Владислав Пустовойт и Михаил Герценштейн описали принципы использования интерферометров для обнаружения длинноволновых гравитационных волн;
  • 1964 - Филип Петерс и Джон Мэтью теоретически описали гравитационные волны, излучаемые двойными системами;
  • 1969 - Джозеф Вебер, основатель гравитационно-волновой астрономии, сообщает об обнаружении гравитационных волн с помощью резонансного детектора - механической гравитационной антенны. Эти сообщения порождают бурный рост работ в этом направлении, в частности, Ренье Вайс, один из основателей проекта LIGO, начал эксперименты в то время. На настоящий момент (2015) никому так и не удалось получить надёжных подтверждений этих событий;
  • 1978 - Джозеф Тейлор сообщил об обнаружении гравитационного излучения в двойной системе пульсара PSR B1913+16. Исследования Джозефа Тейлора и Рассела Халса заслужили Нобелевскую премию по физике за 1993 год. На начало 2015 года три пост-кеплеровских параметра, включающих уменьшение периода вследствие излучения гравитационных волн, было измерено, как минимум, для 8 подобных систем;
  • 2002 - Сергей Копейкин и Эдвард Фомалонт произвели с помощью радиоволной интерферометрии со сверхдлинной базой измерения отклонения света в гравитационном поле Юпитера в динамике, что для некоторого класса гипотетических расширений ОТО позволяет оценить скорость гравитации - отличие от скорости света не должно превышать 20 % (данная трактовка не общепринята);
  • 2006 - международная команда Марты Бургей (Обсерватория Паркса, Австралия) сообщила о существенно более точных подтверждениях ОТО и соответствия ей величины излучения гравитационных волн в системе двух пульсаров PSR J0737-3039A/B;
  • 2014 - астрономы Гарвард-Смитсоновского центра астрофизики (BICEP) сообщили об обнаружении первичных гравитационных волн при измерениях флуктуаций реликтового излучения. На настоящий момент (2016) обнаруженные флуктуации считаются не имеющими реликтового происхождения, а объясняются излучением пыли в Галактике;
  • 2016 - международная команда LIGO сообщила об обнаружении события прохождения гравитационных волн GW150914. Впервые сообщено о прямом наблюдении взаимодействующих массивных тел в сверхсильных гравитационных полях со сверхвысокими относительными скоростями (< 1,2 × R s , v/c > 0.5), что позволило проверить корректность ОТО с точностью до нескольких постньютоновских членов высоких порядков. Измеренная дисперсия гравитационных волн не противоречит сделанным ранее измерениям дисперсии и верхней границы массы гипотетического гравитона (< 1,2 × 10 −22 эВ), если он в некотором гипотетическом расширении ОТО будет существовать.


Что значит для нас обнаружение гравитационных волн.

Думаю, все уже в курсе, что пару дней назад учёные впервые объявили об обнаружении гравитационных волн. Про это было много новостей, по ТВ, на новостных сайтах и вообще везде. Однако при этом никто не затруднился объяснить доступным языком, что дает нам это открытие в практическом плане.

На самом деле, всё просто, достаточно провести аналогию с подводной лодкой:

Источник:

Обнаружение подводных лодок - является первой и главной задачей при борьбе с ними. Как и всякий предмет, лодка своим присутствием влияет на окружающую среду. Иными словами, лодка имеет собственные физические поля. К более известным физическим полям подводной лодки относятся гидроакустическое, магнитное, гидродинамическое, электрическое, низкочастотное электромагнитное, а также тепловое, оптическое. Выделение физических полей лодки на фоне полей океана (моря) лежит в основе главных способов обнаружения.
Способы обнаружения подводных лодок разделяются по типу физических полей: Акустический, Магнитометрический, Радиолокационный, Газовый, Тепловой и.т.д.

С космосом та же фигня. Мы смотрим на звезды через телескопы, делаем фотографии Марса, ловим излучения и вообще пытаемся познать небеса всеми доступными способами. А теперь, после того как зафиксированы эти волны, добавился и ещё один способ изучения - гравитационный. Мы сможем осмотреть космос основываясь на этих колебаниях.

То есть, как подводная лодка прошла в морском пространстве, и оставила за собой "след", по которому её могут вычислить, точно так же и небесные тела, теперь могут изучаться под другим углом для более полной картины. В будущем, мы сможем посмотреть как гравитационные волны огибают разные светила, галактики, планеты, научимся ещё лучше вычислять космические траектории объектов (А может даже и заранее узнавать и прогнозировать приближения метеоритов) увидим поведение волн в особых условиях, ну и всякое такое.

Что это даст?

Пока не ясно. Но со временем, аппаратура станет более точной и чувствительной, и о гравитационных волнах наберётся богатый материал. Основываясь на этих материалах пытливые умы начнут находить разного рода аномалии, загадки и закономерности. Эти закономерности и аномалии, в свою очередь, будут служить либо опровержением, либо подтверждением старых теорий. Будут создаваться дополнительные математические формулы, интересные гипотезы (Британские учёные выяснили, что голуби находят дорогу домой ориентируясь по гравитационным волнам!) и многое подобное. А жёлтая пресса, обязательно запустит какой-нибудь миф, типа "Гравитационное цунами", которое однажды нагрянет, накроет нашу солнечную систему и всему живому придет кидык. И Вангу приплетут ещё. Короче, весело будет:]

И что в итоге?

В итоге, мы получим более совершенную область науки, которая сможет давать более точное и широкое представление о нашем мире. А если повезёт и учёным попадётся какой-нибудь удивительный эффект... (Типа, если две гравитационные волны в полнолуние "врезаются" друг в друга под определённым углом с нужной скоростью, то случается локальный очаг антигравитации, о-па!)... то мы сможем надеяться на серьёзный научный прогресс.