Урок и презентация на тему: "Степенные функции. Свойства. Графики"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 11 класса
Интерактивное пособие для 9–11 классов "Тригонометрия"
Интерактивное пособие для 10–11 классов "Логарифмы"

Степенные функции, область определения.

Ребята, на прошлом уроке мы узнали, как работать с числами с рациональным показателем степени. На этом уроке мы рассмотрим степенные функции и ограничимся случаем, когда показатель степени рациональный.
Мы будем рассматривать функции вида: $y=x^{\frac{m}{n}}$.
Рассмотрим сначала функции, у которых показатель степени $\frac{m}{n}>1$.
Пусть нам дана конкретная функция $y=x^2*5$.
Согласно определению, которое мы дали на прошлом уроке: если $x≥0$, то есть область определения нашей функции - это луч ${x}$. Давайте схематично изобразим наш график функции.

Свойства функции $y=x^{\frac{m}{n}}$, $0 2. Не является ни четной, ни нечетной.
3. Возрастает на $$,
б) $(2,10)$,
в) на луче $$.
Решение.
Ребята, вы помните как мы находили наибольшее и наименьшее значение функции на отрезке в 10 классе?
Правильно, мы использовали производную. Давайте решим наш пример и повторим алгоритм поиска наименьшего и наибольшего значения.
1. Найдем производную заданной функции:
$y"=\frac{16}{5}*\frac{5}{2}x^{\frac{3}{2}}-x^3=8x^{\frac{3}{2}}-x^3=8\sqrt{x^3}-x^3$.
2. Производная существует на всей области определения исходной функции, тогда критических точек нет. Найдем стационарные точки:
$y"=8\sqrt{x^3}-x^3=0$.
$8*\sqrt{x^3}=x^3$.
$64x^3=x^6$.
$x^6-64x^3=0$.
$x^3(x^3-64)=0$.
$x_1=0$ и $x_2=\sqrt{64}=4$.
Заданному отрезку принадлежит только одно решение $x_2=4$.
Построим таблицу значений нашей функции на концах отрезка и в точке экстремума:
Ответ: $y_{наим.}=-862,65$ при $x=9$; $y_{наиб.}=38,4$ при $x=4$.

Пример. Решить уравнение: $x^{\frac{4}{3}}=24-x$.
Решение. График функции $y=x^{\frac{4}{3}}$ возрастает, а график функции $у=24-х$ убывает. Ребята, мы с вами знаем: если одна функция возрастает, а другая убывает, то они пересекаются только в одной точке, то есть у нас только одно решение.
Заметим:
$8^{\frac{4}{3}}=\sqrt{8^4}=(\sqrt{8})^4=2^4=16$.
$24-8=16$.
То есть при $х=8$ мы получили верное равенство $16=16$, это и есть решение нашего уравнения.
Ответ: $х=8$.

Пример.
Построить график функции: $y=(x-3)^\frac{3}{4}+2$.
Решение.
График нашей функции получается из графика функции $y=x^{\frac{3}{4}}$, смещением его на 3 единицы вправо и 2 единицы вверх.

Пример. Составить уравнение касательной к прямой $y=x^{-\frac{4}{5}}$ в точке $х=1$.
Решение. Уравнение касательной определяется известной нам формулой:
$y=f(a)+f"(a)(x-a)$.
В нашем случае $a=1$.
$f(a)=f(1)=1^{-\frac{4}{5}}=1$.
Найдем производную:
$y"=-\frac{4}{5}x^{-\frac{9}{5}}$.
Вычислим:
$f"(a)=-\frac{4}{5}*1^{-\frac{9}{5}}=-\frac{4}{5}$.
Найдем уравнение касательной:
$y=1-\frac{4}{5}(x-1)=-\frac{4}{5}x+1\frac{4}{5}$.
Ответ: $y=-\frac{4}{5}x+1\frac{4}{5}$.

Задачи для самостоятельного решения

1. Найти наибольшее и наименьшее значение функции: $y=x^\frac{4}{3}$ на отрезке:
а) $$.
б) $(4,50)$.
в) на луче $$.
3. Решить уравнение: $x^{\frac{1}{4}}=18-x$.
4. Построить график функции: $y=(x+1)^{\frac{3}{2}}-1$.
5. Составить уравнение касательной к прямой $y=x^{-\frac{3}{7}}$ в точке $х=1$.

Степенная функция, ее свойства и график Демонстрационный материал Урок-лекция Понятие функции. Свойства функции. Степенная функция, ее свойства и график. 10 класс Все права защищены. Copyright с Copyright с




Ход урока: Повторение. Функция. Свойства функций. Изучение нового материала. 1. Определение степенной функции.Определение степенной функции. 2. Свойства и графики степенных функций.Свойства и графики степенных функций. Закрепление изученного материала. Устный счет. Устный счет. Итог урока. Задание на дом.Задание на дом.






Область определения и область значений функции Все значения независимой переменной образуют область определения функции х y=f(x) f Область определения функции Область значений функции Все значения, которые принимает зависимая переменная образуют область значений функции Функция. Свойства функции


График функции Пусть задана функция где хУ у х,75 3 0,6 4 0,5 График функции – это множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты – соответствующим значениям функции. Функция. Свойства функции


У х Область определения и область значений функции 4 y=f(x) Область определения функции: Область значений функции: Функция. Свойства функции


Четная функция у х y=f(x) График четной функции симметричен относительно оси ОУ Функция у=f(x) называется четной, если f(-x) = f(x) для любого х из области определения функции Функция. Свойства функции


Нечетная функция у х y=f(x) График нечетной функции симметричен относительно начала координат О(0;0) Функция у=f(x) называется нечетной, если f(-x) = -f(x) для любого х из области определения функции Функция. Свойства функции


Определение степенной функции Функция, где р – заданное действительное число, называется степенной. р у=х р Р= х у 0 Ход урока








Степенная функция х у 1.Областью определения и областью значений степенных функций вида, где n – натуральное число, являются все действительные числа. 2. Эти функции – нечетные. График их симметричен относительно начала координат. Свойства и графики степенной функции




Степенные функции с рациональным положительным показателем Область определения- все положительные числа и число 0. Область значений функций с таким показателем – также все положительные числа и число 0. Эти функции не являются ни четными ни нечетными. у х Свойства и графики степенной функции


Степенная функция с рациональным отрицательным показателем. Областью определения и областью значений таких функций являются все положительные числа. Функции не являются ни четными ни нечетными. Такие функции убывают на всей своей области определения. у х Свойства и графики степенной функции Ход урока

На области определения степенной функции y = x p имеют место следующие формулы:
; ;
;
; ;
; ;
; .

Свойства степенных функций и их графики

Степенная функция с показателем равным нулю, p = 0

Если показатель степенной функции y = x p равен нулю, p = 0 , то степенная функция определена для всех x ≠ 0 и является постоянной, равной единице:
y = x p = x 0 = 1, x ≠ 0 .

Степенная функция с натуральным нечетным показателем, p = n = 1, 3, 5, ...

Рассмотрим степенную функцию y = x p = x n с натуральным нечетным показателем степени n = 1, 3, 5, ... . Такой показатель также можно записать в виде: n = 2k + 1 , где k = 0, 1, 2, 3, ... - целое не отрицательное. Ниже представлены свойства и графики таких функций.

График степенной функции y = x n с натуральным нечетным показателем при различных значениях показателя степени n = 1, 3, 5, ... .

Область определения: -∞ < x < ∞
Множество значений: -∞ < y < ∞
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно возрастает
Экстремумы: нет
Выпуклость:
при -∞ < x < 0 выпукла вверх
при 0 < x < ∞ выпукла вниз
Точки перегибов: x = 0, y = 0
x = 0, y = 0
Пределы:
;
Частные значения:
при x = -1,
y(-1) = (-1) n ≡ (-1) 2k+1 = -1
при x = 0, y(0) = 0 n = 0
при x = 1, y(1) = 1 n = 1
Обратная функция:
при n = 1 , функция является обратной к самой себе: x = y
при n ≠ 1 , обратной функцией является корень степени n :

Степенная функция с натуральным четным показателем, p = n = 2, 4, 6, ...

Рассмотрим степенную функцию y = x p = x n с натуральным четным показателем степени n = 2, 4, 6, ... . Такой показатель также можно записать в виде: n = 2k , где k = 1, 2, 3, ... - натуральное. Свойства и графики таких функций даны ниже.

График степенной функции y = x n с натуральным четным показателем при различных значениях показателя степени n = 2, 4, 6, ... .

Область определения: -∞ < x < ∞
Множество значений: 0 ≤ y < ∞
Четность: четная, y(-x) = y(x)
Монотонность:
при x ≤ 0 монотонно убывает
при x ≥ 0 монотонно возрастает
Экстремумы: минимум, x = 0, y = 0
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
;
Частные значения:
при x = -1 , y(-1) = (-1) n ≡ (-1) 2k = 1
при x = 0, y(0) = 0 n = 0
при x = 1, y(1) = 1 n = 1
Обратная функция:
при n = 2 , квадратный корень:
при n ≠ 2 , корень степени n :

Степенная функция с целым отрицательным показателем, p = n = -1, -2, -3, ...

Рассмотрим степенную функцию y = x p = x n с целым отрицательным показателем степени n = -1, -2, -3, ... . Если положить n = -k , где k = 1, 2, 3, ... - натуральное, то ее можно представить в виде:

График степенной функции y = x n с целым отрицательным показателем при различных значениях показателя степени n = -1, -2, -3, ... .

Нечетный показатель, n = -1, -3, -5, ...

Ниже представлены свойства функции y = x n с нечетным отрицательным показателем n = -1, -3, -5, ... .

Область определения: x ≠ 0
Множество значений: y ≠ 0
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно убывает
Экстремумы: нет
Выпуклость:
при x < 0 : выпукла вверх
при x > 0 : выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Знак:
при x < 0, y < 0
при x > 0, y > 0
Пределы:
; ; ;
Частные значения:
при x = 1, y(1) = 1 n = 1
Обратная функция:
при n = -1 ,
при n < -2 ,

Четный показатель, n = -2, -4, -6, ...

Ниже представлены свойства функции y = x n с четным отрицательным показателем n = -2, -4, -6, ... .

Область определения: x ≠ 0
Множество значений: y > 0
Четность: четная, y(-x) = y(x)
Монотонность:
при x < 0 : монотонно возрастает
при x > 0 : монотонно убывает
Экстремумы: нет
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Знак: y > 0
Пределы:
; ; ;
Частные значения:
при x = 1, y(1) = 1 n = 1
Обратная функция:
при n = -2 ,
при n < -2 ,

Степенная функция с рациональным (дробным) показателем

Рассмотрим степенную функцию y = x p с рациональным (дробным) показателем степени , где n - целое, m > 1 - натуральное. Причем, n, m не имеют общих делителей.

Знаменатель дробного показателя - нечетный

Пусть знаменатель дробного показателя степени нечетный: m = 3, 5, 7, ... . В этом случае, степенная функция x p определена как для положительных, так и для отрицательных значений аргумента x . Рассмотрим свойства таких степенных функций, когда показатель p находится в определенных пределах.

Показатель p отрицательный, p < 0

Пусть рациональный показатель степени (с нечетным знаменателем m = 3, 5, 7, ... ) меньше нуля: .

Графики степенных функций с рациональным отрицательным показателем при различных значениях показателя степени , где m = 3, 5, 7, ... - нечетное.

Нечетный числитель, n = -1, -3, -5, ...

Приводим свойства степенной функции y = x p с рациональным отрицательным показателем , где n = -1, -3, -5, ... - нечетное отрицательное целое, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: x ≠ 0
Множество значений: y ≠ 0
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно убывает
Экстремумы: нет
Выпуклость:
при x < 0 : выпукла вверх
при x > 0 : выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Знак:
при x < 0, y < 0
при x > 0, y > 0
Пределы:
; ; ;
Частные значения:
при x = -1, y(-1) = (-1) n = -1
при x = 1, y(1) = 1 n = 1
Обратная функция:

Четный числитель, n = -2, -4, -6, ...

Свойства степенной функции y = x p с рациональным отрицательным показателем , где n = -2, -4, -6, ... - четное отрицательное целое, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: x ≠ 0
Множество значений: y > 0
Четность: четная, y(-x) = y(x)
Монотонность:
при x < 0 : монотонно возрастает
при x > 0 : монотонно убывает
Экстремумы: нет
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Знак: y > 0
Пределы:
; ; ;
Частные значения:
при x = -1, y(-1) = (-1) n = 1
при x = 1, y(1) = 1 n = 1
Обратная функция:

Показатель p положительный, меньше единицы, 0 < p < 1

График степенной функции с рациональным показателем (0 < p < 1 ) при различных значениях показателя степени , где m = 3, 5, 7, ... - нечетное.

Нечетный числитель, n = 1, 3, 5, ...

< p < 1 , где n = 1, 3, 5, ... - нечетное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: -∞ < x < +∞
Множество значений: -∞ < y < +∞
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно возрастает
Экстремумы: нет
Выпуклость:
при x < 0 : выпукла вниз
при x > 0 : выпукла вверх
Точки перегибов: x = 0, y = 0
Точки пересечения с осями координат: x = 0, y = 0
Знак:
при x < 0, y < 0
при x > 0, y > 0
Пределы:
;
Частные значения:
при x = -1, y(-1) = -1
при x = 0, y(0) = 0
при x = 1, y(1) = 1
Обратная функция:

Четный числитель, n = 2, 4, 6, ...

Представлены свойства степенной функции y = x p с рациональным показателем , находящимся в пределах 0 < p < 1 , где n = 2, 4, 6, ... - четное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: -∞ < x < +∞
Множество значений: 0 ≤ y < +∞
Четность: четная, y(-x) = y(x)
Монотонность:
при x < 0 : монотонно убывает
при x > 0 : монотонно возрастает
Экстремумы: минимум при x = 0, y = 0
Выпуклость: выпукла вверх при x ≠ 0
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Знак: при x ≠ 0, y > 0
Пределы:
;
Частные значения:
при x = -1, y(-1) = 1
при x = 0, y(0) = 0
при x = 1, y(1) = 1
Обратная функция:

Показатель p больше единицы, p > 1

График степенной функции с рациональным показателем (p > 1 ) при различных значениях показателя степени , где m = 3, 5, 7, ... - нечетное.

Нечетный числитель, n = 5, 7, 9, ...

Свойства степенной функции y = x p с рациональным показателем, большим единицы: . Где n = 5, 7, 9, ... - нечетное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: -∞ < x < ∞
Множество значений: -∞ < y < ∞
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно возрастает
Экстремумы: нет
Выпуклость:
при -∞ < x < 0 выпукла вверх
при 0 < x < ∞ выпукла вниз
Точки перегибов: x = 0, y = 0
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
;
Частные значения:
при x = -1, y(-1) = -1
при x = 0, y(0) = 0
при x = 1, y(1) = 1
Обратная функция:

Четный числитель, n = 4, 6, 8, ...

Свойства степенной функции y = x p с рациональным показателем, большим единицы: . Где n = 4, 6, 8, ... - четное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: -∞ < x < ∞
Множество значений: 0 ≤ y < ∞
Четность: четная, y(-x) = y(x)
Монотонность:
при x < 0 монотонно убывает
при x > 0 монотонно возрастает
Экстремумы: минимум при x = 0, y = 0
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
;
Частные значения:
при x = -1, y(-1) = 1
при x = 0, y(0) = 0
при x = 1, y(1) = 1
Обратная функция:

Знаменатель дробного показателя - четный

Пусть знаменатель дробного показателя степени четный: m = 2, 4, 6, ... . В этом случае, степенная функция x p не определена для отрицательных значений аргумента. Ее свойства совпадают со свойствами степенной функции с иррациональным показателем (см. следующий раздел).

Степенная функция с иррациональным показателем

Рассмотрим степенную функцию y = x p с иррациональным показателем степени p . Свойства таких функций отличаются от рассмотренных выше тем, что они не определены для отрицательных значений аргумента x . Для положительных значений аргумента, свойства зависят только от величины показателя степени p и не зависят от того, является ли p целым, рациональным или иррациональным.

y = x p при различных значениях показателя p .

Степенная функция с отрицательным показателем p < 0

Область определения: x > 0
Множество значений: y > 0
Монотонность: монотонно убывает
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Пределы: ;
Частное значение: При x = 1, y(1) = 1 p = 1

Степенная функция с положительным показателем p > 0

Показатель меньше единицы 0 < p < 1

Область определения: x ≥ 0
Множество значений: y ≥ 0
Монотонность: монотонно возрастает
Выпуклость: выпукла вверх
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
Частные значения: При x = 0, y(0) = 0 p = 0 .
При x = 1, y(1) = 1 p = 1

Показатель больше единицы p > 1

Область определения: x ≥ 0
Множество значений: y ≥ 0
Монотонность: монотонно возрастает
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
Частные значения: При x = 0, y(0) = 0 p = 0 .
При x = 1, y(1) = 1 p = 1

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Функции у = ах, у = ax 2 , у = а/х - являются частными видами степенной функции при n = 1, n = 2, n = -1 .

В случае если n дробное число p / q с четным знаменателем q и нечетным числителем р , то величина может иметь два знака , а у графика появляется еще одна часть внизу оси абсцисс х , причем она симметрична верхней части.

Видим график двузначной функции у = ±2х 1/2 , т. е. представленный параболой с горизонтальной осью.

Графики функций у = х n при n = -0,1; -1/3; -1/2; -1; -2; -3; -10 . Эти графики проходят через точку (1; 1).

Когда n = -1 получаем гиперболу . При n < - 1 график степенной функции располагается сначала выше гиперболы, т.е. между х = 0 и х = 1 , а потом ниже (при х > 1 ). Если n > -1 график проходит наоборот. Отрицательные значений х и дробные значения n аналогичны для положительных n .

Все графики неограниченно приближаются как к оси абсцисс х, так и к оси ординат у , не соприкасаясь с ними. Вследствие сходства с гиперболой эти графики называют гиперболами n -го порядка.

Напомним свойства и графики степенных функций с целым отрицательным показателем.

При четных n, :

Пример функции:

Все графики таких функций проходят через две фиксированные точки: (1;1), (-1;1). Особенность функций данного вида - их четность, графики симметричны относительно оси ОУ.

Рис. 1. График функции

При нечетных n, :

Пример функции:

Все графики таких функций проходят через две фиксированные точки: (1;1), (-1;-1). Особенность функций данного вида - их нечетность, графики симметричны относительно начала координат.

Рис. 2. График функции

Напомним основное определение.

Степенью неотрицательного числа а с рациональным положительным показателем называется число .

Степенью положительного числа а с рациональным отрицательным показателем называется число .

Для выполняется равенство:

Например: ; - выражение не существует по определению степени с отрицательным рациональным показателем; существует, т. к. показатель степени целый,

Перейдем к рассмотрению степенных функций с рациональным отрицательным показателем.

Например:

Для построения графика данной функции можно составить таблицу. Мы поступим иначе: сначала построим и изучим график знаменателя - он нам известен (рисунок 3).

Рис. 3. График функции

График функции знаменателя проходит через фиксированную точку (1;1). При построении графика исходной функции данная точка остается, при корень также стремится к нулю, функция стремится к бесконечности. И, наоборот, при стремлении х к бесконечности функция стремится к нулю (рисунок 4).

Рис. 4. График функции

Рассмотрим еще одну функцию из семейства изучаемых функций.

Важно, что по определению

Рассмотрим график функции, стоящей в знаменателе: , график данной функции нам известен, она возрастает на своей области определения и проходит через точку (1;1) (рисунок 5).

Рис. 5. График функции

При построении графика исходной функции точка (1;1) остается, при корень также стремится к нулю, функция стремится к бесконечности. И, наоборот, при стремлении х к бесконечности функция стремится к нулю (рисунок 6).

Рис. 6. График функции

Рассмотренные примеры помогают понять, каким образом проходит график и каковы свойства изучаемой функции - функции с отрицательным рациональным показателем.

Графики функций данного семейства проходят через точку (1;1), функция убывает на всей области определения.

Область определения функции:

Функция не ограничена сверху, но ограничена снизу. Функция не имеет ни наибольшего, ни наименьшего значения.

Функция непрерывна, принимает все положительные значения от нуля до плюс бесконечности.

Функция выпукла вниз (рисунок 15.7)

На кривой взяты точки А и В, через них проведен отрезок, вся кривая находится ниже отрезка, данное условие выполняется для произвольных двух точек на кривой, следовательно функция выпукла вниз. Рис. 7.

Рис. 7. Выпуклость функции

Важно понять, что функции данного семейства ограничены снизу нулем, но наименьшего значения не имеют.

Пример 1 - найти максимум и минимум функции на интервале }