). При действительных значениях основания х и показателя а обычно рассматривают лишь действительные значения С. ф. x a . Они существуют, во всяком случае, для всех х > 0; если а - рациональное число с нечётным знаменателем, то они существуют также для всех х 0; если же знаменатель рационального числа а чётный, либо если и иррационально, то x a не имеет действительного значения ни при каком х 0. При х = 0 степенная функция x a равна нулю для всех а > 0 и не определена при а 0; 0° определённого смысла не имеет. С. ф. (в области действительных значений) однозначна, за исключением тех случаев, когда а - рациональное число, изображаемое несократимой дробью с чётным знаменателем: в этих случаях она двузначна, причём её значения для одного и того же значения аргумента х > 0 равны по абсолютной величине, но противоположны по знаку. Обычно тогда рассматривается только неотрицательное, или арифметическое, значение С. ф. Для х > 0 С. ф. - возрастающая, если а > 0, и убывающая, если а х = 0, в случае 0 а x a )" = ax a-1 . Далее,

Функции вида у = cx a , где с - постоянный коэффициент, играют важную роль в математике и её приложениях; при а = 1 эти функции выражают прямую пропорциональность (их графики - прямые, проходящие через начало координат, см. рис. 1 ), при а = -1 - обратную пропорциональность (графики - равносторонние гиперболы с центром в начале координат, имеющие оси координат своими асимптотами, см. рис. 2 ). Многие законы физики математически выражаются при помощи функций вида у = cx a (см. рис. 3 ); например, у = cx 2 выражает закон равноускоренного или равнозамедленного движения (у - путь, х - время, 2c - ускорение; начальные путь и скорость равны нулю).

В комплексной области С. ф. z a определяется для всех z ≠ 0 формулой:

где k = 0, ± 1, ± 2,.... Если а - целое, то С. ф. z a однозначна:

Если а - рациональное (а = p/q, где р и q взаимно просты), то С. ф. z a принимает q различных значений:

где ε k = - корни степени q из единицы: k = 0, 1, …, q - 1. Если а - иррациональное, то С. ф. z a - бесконечнозначна: множитель ε α2κ πι принимает для разных k различные значения. При комплексных значениях а С. ф. z a определяется той же формулой (*). Например,

так что, в частности, k = 0, ± 1, ± 2,....

Под главным значением (z a ) 0 С. ф. понимается её значение при k = 0, если -πz ≤ π (или 0 ≤ argz z a)= |z a |e ia arg z , (i ) 0 =e -π/2 и т.д.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Степенная функция" в других словарях:

    Функция вида y = axn, где a и n любые действительные числа … Большой Энциклопедический словарь

    Степенная функция функция, где (показатель степени) некоторое вещественное число … Википедия

    Ф ция вида у = ахn, где а и п действит. числа, С. ф. охватывает большое число закономерностей в природе. На рис. изображены графики С. ф. для п = 1, 2, 3, 1/2 и а = 1. К ст. Степенная функция … Большой энциклопедический политехнический словарь

    Функция вида у=axn, где а и n любые действительные числа. На рисунке изображены графики степенной функции для n = 1, 2, 3, 1/2 и а = 1. * * * СТЕПЕННАЯ ФУНКЦИЯ СТЕПЕННАЯ ФУНКЦИЯ, функция вида y = axn, где a и n любые действительные числа … Энциклопедический словарь

    степенная функция - laipsninė funkcija statusas T sritis automatika atitikmenys: angl. power function vok. Potenzfunktion, f rus. степенная функция, f pranc. fonction puissance, f … Automatikos terminų žodynas

    Функция у = х a, где а постоянное число. Если а целое число, то С. ф. частный случай рациональной функции. При комплексных значениях хи аС. ф. неоднозначна, если а нецелое число. При фиксированных действительных. и а число х а является степенью … Математическая энциклопедия

    Функция вида у = ахn, где а и п любые действительные числа. На рис. изображены графики С. ф. для n= 1, 2, 3, 1/2 и a=1 … Естествознание. Энциклопедический словарь

    функция спроса - Функция, которая показывает, как меняется объем продаж конкретного продукта в зависимости от его цены при равных маркетинговых усилиях по его продвижению на рынок. функция спроса Функция, отражающая… … Справочник технического переводчика

    Функция спроса - функция, отражающая зависимость объема спроса на отдельные товары и услуги (потребительские блага) от комплекса факторов, влияющих на него. Более узкая трактовка: Ф.с.выражает взаимозависимость между спросом на товар и ценой… … Экономико-математический словарь

    У = 1 + x + х2 + х3 + ... определена для вещественных или комплексных значений х, модуликоторых меньше единицы. Ф. вида y = p0xn + p1xn 1 + p2xn 2 + ... +рn 1x + pn, где коэффициенты, р0, р1, р2, ..., рn данные числа наз.целою функцией n ой… … Энциклопедия Брокгауза и Ефрона

Книги

  • Комплект таблиц. Алгебра и начала анализа. 11 класс. 15 таблиц + методика , . Таблицы отпечатаны на плотном полиграфическом картоне размером 680 х 980 мм. В комплект входит брошюра с методическими рекомендациями для учителя. Учебный альбом из 15 листов.…

Функции у = ах, у = ax 2 , у = а/х - являются частными видами степенной функции при n = 1, n = 2, n = -1 .

В случае если n дробное число p / q с четным знаменателем q и нечетным числителем р , то величина может иметь два знака , а у графика появляется еще одна часть внизу оси абсцисс х , причем она симметрична верхней части.

Видим график двузначной функции у = ±2х 1/2 , т. е. представленный параболой с горизонтальной осью.

Графики функций у = х n при n = -0,1; -1/3; -1/2; -1; -2; -3; -10 . Эти графики проходят через точку (1; 1).

Когда n = -1 получаем гиперболу . При n < - 1 график степенной функции располагается сначала выше гиперболы, т.е. между х = 0 и х = 1 , а потом ниже (при х > 1 ). Если n > -1 график проходит наоборот. Отрицательные значений х и дробные значения n аналогичны для положительных n .

Все графики неограниченно приближаются как к оси абсцисс х, так и к оси ординат у , не соприкасаясь с ними. Вследствие сходства с гиперболой эти графики называют гиперболами n -го порядка.

1. Степенная функция, ее свойства и график;

2. Преобразования:

Параллельный перенос;

Симметрия относительно осей координат;

Симметрия относительно начала координат;

Симметрия относительно прямой y = x;

Растяжение и сжатие вдоль осей координат.

3. Показательная функция, ее свойства и график, аналогичные преобразования;

4. Логарифмическая функция , ее свойства и график;

5. Тригонометрическая функция, ее свойства и график, аналогичные преобразования (y = sin x; y = cos x; y = tg x);

Функция: y = x\n - ее свойства и график.

Степенная функция, ее свойства и график

y = x, y = x 2 , y = x 3 , y = 1/x и т. д. Все эти функции являются частными случаями степенной функции, т. е. функции y = x p , где p - заданное действительное число.
Свойства и график степенной функции существенно зависит от свойств степени с действительным показателем, и в частности от того, при каких значениях x и p имеет смысл степень x p . Перейдем к подобному рассмотрению различных случаев в зависимости от
показателя степени p.

  1. Показатель p = 2n - четное натуральное число.

y = x 2n , где n - натуральное число, обладает следующими свойствами:

  • область определения - все действительные числа, т. е. множество R;
  • множество значений - неотрицательные числа, т. е. y больше или равно 0;
  • функция y = x 2n четная, так как x 2n = (-x) 2n
  • функция является убывающей на промежутке x < 0 и возрастающей на промежутке x > 0.

График функции y = x 2n имеет такой же вид, как например график функции y = x 4 .

2. Показатель p = 2n - 1 - нечетное натуральное число

В этом случае степенная функция y = x 2n-1 , где натуральное число, обладает следующими свойствами:

  • область определения - множество R;
  • множество значений - множество R;
  • функция y = x 2n-1 нечетная, так как (-x) 2n-1 = x 2n-1 ;
  • функция является возрастающей на всей действительной оси.

График функции y = x 2n-1 y = x 3 .

3. Показатель p = -2n , где n - натуральное число.

В этом случае степенная функция y = x -2n = 1/x 2n обладает следующими свойствами:

  • множество значений - положительные числа y>0;
  • функция y = 1/x 2n четная, так как 1/(-x) 2n = 1/x 2n ;
  • функция является возрастающей на промежутке x0.

График функции y = 1/x 2n имеет такой же вид, как, например, график функции y = 1/x 2 .

4. Показатель p = -(2n-1) , где n - натуральное число.
В этом случае степенная функция y = x -(2n-1) обладает следующими свойствами:

  • область определения - множество R, кроме x = 0;
  • множество значений - множество R, кроме y = 0;
  • функция y = x -(2n-1) нечетная, так как (-x) -(2n-1) = -x -(2n-1) ;
  • функция является убывающей на промежутках x < 0 и x > 0 .

График функции y = x -(2n-1) имеет такой же вид, как, например, график функции y = 1/x 3 .


Урок и презентация на тему: "Степенные функции. Свойства. Графики"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 11 класса
Интерактивное пособие для 9–11 классов "Тригонометрия"
Интерактивное пособие для 10–11 классов "Логарифмы"

Степенные функции, область определения.

Ребята, на прошлом уроке мы узнали, как работать с числами с рациональным показателем степени. На этом уроке мы рассмотрим степенные функции и ограничимся случаем, когда показатель степени рациональный.
Мы будем рассматривать функции вида: $y=x^{\frac{m}{n}}$.
Рассмотрим сначала функции, у которых показатель степени $\frac{m}{n}>1$.
Пусть нам дана конкретная функция $y=x^2*5$.
Согласно определению, которое мы дали на прошлом уроке: если $x≥0$, то есть область определения нашей функции - это луч ${x}$. Давайте схематично изобразим наш график функции.

Свойства функции $y=x^{\frac{m}{n}}$, $0 2. Не является ни четной, ни нечетной.
3. Возрастает на $$,
б) $(2,10)$,
в) на луче $$.
Решение.
Ребята, вы помните как мы находили наибольшее и наименьшее значение функции на отрезке в 10 классе?
Правильно, мы использовали производную. Давайте решим наш пример и повторим алгоритм поиска наименьшего и наибольшего значения.
1. Найдем производную заданной функции:
$y"=\frac{16}{5}*\frac{5}{2}x^{\frac{3}{2}}-x^3=8x^{\frac{3}{2}}-x^3=8\sqrt{x^3}-x^3$.
2. Производная существует на всей области определения исходной функции, тогда критических точек нет. Найдем стационарные точки:
$y"=8\sqrt{x^3}-x^3=0$.
$8*\sqrt{x^3}=x^3$.
$64x^3=x^6$.
$x^6-64x^3=0$.
$x^3(x^3-64)=0$.
$x_1=0$ и $x_2=\sqrt{64}=4$.
Заданному отрезку принадлежит только одно решение $x_2=4$.
Построим таблицу значений нашей функции на концах отрезка и в точке экстремума:
Ответ: $y_{наим.}=-862,65$ при $x=9$; $y_{наиб.}=38,4$ при $x=4$.

Пример. Решить уравнение: $x^{\frac{4}{3}}=24-x$.
Решение. График функции $y=x^{\frac{4}{3}}$ возрастает, а график функции $у=24-х$ убывает. Ребята, мы с вами знаем: если одна функция возрастает, а другая убывает, то они пересекаются только в одной точке, то есть у нас только одно решение.
Заметим:
$8^{\frac{4}{3}}=\sqrt{8^4}=(\sqrt{8})^4=2^4=16$.
$24-8=16$.
То есть при $х=8$ мы получили верное равенство $16=16$, это и есть решение нашего уравнения.
Ответ: $х=8$.

Пример.
Построить график функции: $y=(x-3)^\frac{3}{4}+2$.
Решение.
График нашей функции получается из графика функции $y=x^{\frac{3}{4}}$, смещением его на 3 единицы вправо и 2 единицы вверх.

Пример. Составить уравнение касательной к прямой $y=x^{-\frac{4}{5}}$ в точке $х=1$.
Решение. Уравнение касательной определяется известной нам формулой:
$y=f(a)+f"(a)(x-a)$.
В нашем случае $a=1$.
$f(a)=f(1)=1^{-\frac{4}{5}}=1$.
Найдем производную:
$y"=-\frac{4}{5}x^{-\frac{9}{5}}$.
Вычислим:
$f"(a)=-\frac{4}{5}*1^{-\frac{9}{5}}=-\frac{4}{5}$.
Найдем уравнение касательной:
$y=1-\frac{4}{5}(x-1)=-\frac{4}{5}x+1\frac{4}{5}$.
Ответ: $y=-\frac{4}{5}x+1\frac{4}{5}$.

Задачи для самостоятельного решения

1. Найти наибольшее и наименьшее значение функции: $y=x^\frac{4}{3}$ на отрезке:
а) $$.
б) $(4,50)$.
в) на луче $$.
3. Решить уравнение: $x^{\frac{1}{4}}=18-x$.
4. Построить график функции: $y=(x+1)^{\frac{3}{2}}-1$.
5. Составить уравнение касательной к прямой $y=x^{-\frac{3}{7}}$ в точке $х=1$.