Урок на тему: "Метод подстановки при решении систем линейных уравнений"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 7 класса
Электронное пособие "Пятёрка за год. Экспресс-курс по геометрии. 7-9 классы"
1С: "Интерактивные задания на построение для 7-10 классов"

Что такое система уравнений?

Система уравнений - это два линейных уравнения, для которых существуют пара чисел, удовлетворяющая обоим уравнениям. Система уравнений записываются следующим образом:
$\begin{cases}a_1x + b_1y +c = 0\\a_2x +b_2y +c = 0\end{cases}$

Решить систему уравнений - значит найти такие числа х и у, при которой оба уравнения превращаются в верное равенство или установить, что решения для данной системы уравнений нет.

Установить эту пару чисел можно графически, если построить для каждого уравнения системы график. Решением системы будет точка пересечения этих графиков.

Этот метод не очень удобен, т.к. требует построение графиков.

Метод подстановки

Еще один способ решения системы линейных уравнений - метода подстановки.

Пример.
Найдите два числа, разность которых равна 12, а сумма - 36.

Решение.
Обозначим через х и у числа, которые необходимо найти и составим систему линейных уравнений.
$\begin{cases}x - y = 12\\x + y = 36\end{cases}$

Представим первое уравнение, как y = x - 12, а второе уравнение представим, как y = 36 - x.

Тогда систему уравнений можно записать, как $\begin{cases}y = x - 12\\y = 36 - x\end{cases}$
Соединим оба уравнения.
x - 12 = 36 - х
2x = 48
x = 24
Тогда, у = 12.

Ответ: x = 24, у = 12.

Мы получили пару чисел, которая является решением системы уравнения, без построения графика.

Запишем алгоритм решения системы уравнений с двумя переменными, используя метод подстановки :
1. В первом уравнении системы выразим у через х.
2. Во второе уравнение вместо у подставим выражение, которое мы получили на первом шаге.
3. Решаем второе уравнение и находим х.
4. Найденное значение х подставим в первое уравнение системы.
5. Записываем ответ в виде пары чисел (х, у).

Арифметическая и геометрическая прогрессии

Теоретические сведения

Теоретические сведения

Арифметическая прогрессия

Геометрическая прогрессия

Определение

Арифметической прогрессией a n называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом d (d - разность прогрессий)

Геометрической прогрессией b n называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и тоже число q (q - знаменатель прогрессии)

Рекуррентная формула

Для любого натурального n
a n + 1 = a n + d

Для любого натурального n
b n + 1 = b n ∙ q, b n ≠ 0

Формула n-ого члена

a n = a 1 + d (n – 1)

b n = b 1 ∙ q n - 1 , b n ≠ 0

Характеристическое свойство
Сумма n-первых членов

Примеры заданий с комментариями

Задание 1

В арифметической прогрессии (a n ) a 1 = -6, a 2

По формуле n-ого члена:

a 22 = a 1 + d (22 - 1) = a 1 + 21 d

По условию:

a 1 = -6, значит a 22 = -6 + 21 d .

Необходимо найти разность прогрессий:

d = a 2 – a 1 = -8 – (-6) = -2

a 22 = -6 + 21 ∙ (-2) = - 48.

Ответ : a 22 = -48.

Задание 2

Найдите пятый член геометрической прогрессии: -3; 6;....

1-й способ (с помощью формулы n -члена)

По формуле n-ого члена геометрической прогрессии:

b 5 = b 1 ∙ q 5 - 1 = b 1 ∙ q 4 .

Так как b 1 = -3,

2-й способ (с помощью рекуррентной формулы)

Так как знаменатель прогрессии равен -2 (q = -2), то:

b 3 = 6 ∙ (-2) = -12;

b 4 = -12 ∙ (-2) = 24;

b 5 = 24 ∙ (-2) = -48.

Ответ : b 5 = -48.

Задание 3

В арифметической прогрессии (a n ) a 74 = 34; a 76 = 156. Найдите семьдесят пятый член этой прогрессии.

Для арифметической прогрессии характеристическое свойство имеет вид .

Из этого следует:

.

Подставим данные в формулу:

Ответ : 95.

Задание 4

В арифметической прогрессии (a n ) a n = 3n - 4. Найдите сумму семнадцати первых членов.

Для нахождения суммы n-первых членов арифметической прогрессии используют две формулы:

.

Какую из них в данном случае удобнее применять?

По условию известна формула n-ого члена исходной прогрессии (a n ) a n = 3n - 4. Можно найти сразу и a 1 , и a 16 без нахождения d . Поэтому воспользуемся первой формулой.

Ответ : 368.

Задание 5

В арифметической прогрессии(a n ) a 1 = -6; a 2 = -8. Найдите двадцать второй член прогрессии.

По формуле n-ого члена:

a 22 = a 1 + d (22 – 1) = a 1 + 21d .

По условию, если a 1 = -6, то a 22 = -6 + 21d . Необходимо найти разность прогрессий:

d = a 2 – a 1 = -8 – (-6) = -2

a 22 = -6 + 21 ∙ (-2) = -48.

Ответ : a 22 = -48.

Задание 6

Записаны несколько последовательных членов геометрической прогрессии:

Найдите член прогрессии, обозначенный буквой x .

При решении воспользуемся формулой n-го члена b n = b 1 ∙ q n - 1 для геометрических прогрессий. Первый член прогрессии. Чтобы найти знаменатель прогрессии q необходимо взять любой из данных членов прогрессии и разделить на предыдущий. В нашем примере можно взять и разделить на. Получим, что q = 3. Вместо n в формулу подставим 3, так как необходимо найти третий член, заданной геометрической прогрессии.

Подставив найденные значения в формулу, получим:

.

Ответ : .

Задание 7

Из арифметических прогрессий, заданных формулой n-го члена, выберите ту, для которой выполняется условие a 27 > 9:

Так как заданное условие должно выполняться для 27-го члена прогрессии, подставим 27 вместо n в каждую из четырех прогрессий. В 4-й прогрессии получим:

.

Ответ : 4.

Задание 8

В арифметической прогрессии a 1 = 3, d = -1,5. Укажите наибольшее значение n , для которого выполняется неравенство a n > -6.