Вопрос 2.Фенол, его строение, свойства и применение.

Ответ. Фенолы – органические вещества, производные ароматических углеводородов, в которых гидроксильные группы (одна или несколько) связаны с бензольным кольцом.

Простейший представитель этой группы веществ – фенол, или карболовая кислота С 6 Н 5 ОН. В молекуле фенола π-электроны бензольного кольца оттягивают на себя неподеленные пары электронов атома кислорода гидроксильное группы, вследствие чего увеличивается подвижность атома водорода этой группы.

Физические свойства

Твердое бесцветное кристаллическое вещество, с резким характерным запахом, при хранении окисляется на воздухе и приобретает розовый цвет, плохо растворим в холодной воде, но хорошо растворяется в горячей воде. Температура плавления – 43 °C, кипения – 182 °C. Сильный антисептик, очень ядовит.

Химические свойства

Химические свойства обусловлены взаимным влиянием гидроксильной группы и бензольного кольца.

Реакции по бензольному кольцу

1. Бромирование:

C 6 H 5 OH + 3Br 2 = C 6 H 2 Br 3 OH + 3HBr.

2 , 4 ,6-трибромфенол (белый осадок)

2. Взаимодействие с азотной кислотой:

C 6 H 5 OH + 3HNO 3 = C 6 H 2 (NO 2) 3 OH + 3H 2 O.

2,4,6-тринитрофенол (пикриновая кислота)

Эти реакции проходят в обычных условиях (без нагревания и катализаторов), тогда как для нитрования бензола требуется температура и катализаторы.

Реакции по гидроксигруппе

1. Как и спирты, взаимодействует с активными металлами:

2C 6 H 5 OH + 2Na = 2C 6 H 5 ONa + H 2 .

фенолят натрия

2. В отличие от спиртов взаимодействует со щелочами:

C 6 H 5 OH + NaOH = C 6 H 5 ONa + H 2 O.

Феноляты легко разлагаются слабыми кислотами:

а) C 6 H 5 ONa + H 2 O + CO 2 = C 6 H 5 OH + NaHCO 3 ;

б) C 6 H 5 ONa + CH 3 I + CO 2 = C 6 H 5 OСH 3 + NaI.

метилфениловый эфир

3. Взаимодействие с галогенопроизводными:

C 6 H 5 OH + C 6 H 5 I = C 6 H 5 OC 2 H 5 + HI

этилфениловый эфир

4. Взаимодействие со спиртами:

C 6 H 5 OH + HOC 2 H 5 = C 6 H 5 OC 2 H 5 + H 2 O.

5. Качественная реакция:

3C 6 H 5 OH + FeCl 3 = (C 6 H 5 O) 3 Fe↓+ 3HCl.

фенолят железа (III)

Фенолят железа (III) имеет коричнево-фиолетовый цвет с запахом туши (краски).

6. Ацелирование:

C 6 H 5 OH + CH 3 COOH = C 6 H 5 OCOCH 3 + H 2 O.

7. Сополиконденсация:

C 6 H 5 OH + СH 2 O + … → - n. –.

метаналь –Н 2 О фенолоформальдегидная смола

Получение

1. Из каменноугольной смолы.

2. Получение из хлорпроизводных:

C 6 H 5 Cl + NaOH = C 6 H 5 ONa + HCl,

2C 6 H 5 ONa + H 2 SO 4 = 2C 6 H 5 OH + Na 2 SO 4 .

3. Кумольный способ:

C 6 H 6 + CH 2 CHCH 3 C 6 H 5 CH(CH 3) 2 ,

C 6 H 5 CH(CH 3) 2 + O 2 С 6 H 5 C(CH 3) 2 OOH C 6 H 5 OH +CH 3 COCH 3.

фенол ацетон

Применение

1. Как антисептик используется в качестве дезинфицирующего средства.

2. В производстве пластмасс (фенолформальдегидная смола).

3. В производстве взрывчатых веществ (тринитрофенол).

4. В производстве фотореактивов (проявители для черно- белой бумаги).

5. В производстве лекарств.

6. В производстве красок (гуашь).

7. В производстве синтетических материалов.

Вопрос 3.Через 200г 40-% раствора КОН пропустили 1,12л СО 2 . Определите тип и массу образовавшейся соли.

Ответ.

Дано: Найти : тип и массу соли.

V(CO 2)= 1,12 л.


Решение

m(KOH безводн)= 200*0,4=80г.

х 1 г 1,12 л x 2 г

2KOH + CO 2 = K 2 CO 3 +H 2 O.

v: 2 моль 1 моль 1 моль

M: 56 г/моль – 138 г/моль

m: 112 г -- 138 г

x 1 = m(KOH) = (1,12* 112)/22,4=5,6 г,

x 2 =m(K 2 CO 3)=138*1,12/22,4=6,9 г.

Поскольку КОН взят в избытке, то образовалась средняя соль К 2 СО 3 , а не кислая КНСО 3 .

Ответ: m(K 2 CO 3)= 6,9 г.

БИЛЕТ №3

Вопрос 1 .Теория строения органических соединений. Значение теории для развития науки.

Ответ. В 1861 г. Русский учёный Александр Михайлович Бутлеров сформулировал основные положения теории строения органических веществ.

1.Молекулы органических соединений состоят из атомов, связанных между собой в определённой последовательности согласно их валентности (C-IV,H-I, O-II, N-III, S-II).

2.Физические и химические свойства вещества зависят не только от природы атомов и их количественного соотношения в молекуле, но и от порядка соединения атомов, то есть от строение молекулы.

3. Химические свойства вещества можно определить, зная его строение молекулы. И наоборот, строение молекулы вещества можно установить опытным путём, изучая химические превращения вещества.

4.В молекулах имеет место взаимное влияние атомов или групп атомов друг на друга:

CH 3 - CH 3 (t кип =88,6 0 С), CH 3 - CH 2 – CH 3 (t кип, = 42,1 0 С)

этан пропан

На основе своей теории Бутлеров предсказал существование изомеров соединений, например двух изомеров бутана (бутана и изобутана):

CH 3 -CH 2 - CH 2 -CH 3 (t кип. =0,5 0 C),

CH 3 -CH(CH 3)- CH 3 (t кип = -11,7 0 С).

2-метилпропан или изобутан

Изомеры – вещества, имеющий одинаковый состав молекулы, но различное химическое строение и по этому обладающие различными свойствами.

Зависимость свойств веществ от их структур- одна из идей, лежащих в основе теории строения органических веществ А.М. Бутлерова.

Значение теории А.М.Бутлерова

1.ответила на основные «Противоречия» органической химии:

а) Многообразие соединений углерода

б) кажущееся несоответствие валентности и органических веществах:

в) различные физические и химические свойства соединений, имеющих одинаковую молекулярную формулу (С 6 Н 12 O 6 – глюкоза и фруктоза).

2. Позволила предсказать существование новых органических веществ, и также указать пути их получения.

3. Дала возможность предвидеть различные случаи изомерии, предугадывать возможные направления реакций.

Вопрос 2.Виды Химической связи в органических и органических соединениях.

Ответ: Основная движущая сила, проводящая к образованию химической связи,- стремление атомов к завершению внешнего энергетического уровня.

Ионная связь – химическая связь, осуществляемая за счёт электростатического притяжения между ионами. Образование ионных связей возможно только между атомами, значения электроотрицательности которых очень сильно различаются.

К ионным соединениями относят галогениды и оксиды щелочных и щелочно-земельных металлов (NAI, KF,CACI 2 ,K 2 O,LI 2 O).

Ионы могут состоять и из нескольких атомов, связи между которыми не ионные:

NаOH = Nа + + OH - ,

Nа 2 SO 4 = 2Nа + + SO 4 2- .

Следует отметить, что свойства ионов существенно отличаются от свойств соответствующих им атомов и молекул простых веществ: Na- металл бурно реагирующий с водой, ион Na + растворяется в ней; H 2 - растворяется в ней; H 2 - газ без цвета, вкуса и запаха, ион H + придает раствору кислый вкус, изменяет цвет лакмуса (на красный).

Свойства ионных соединений

1.Соединения с ионной связью являются электролитами. Электрический ток проводят только растворы и расплавы.

2. Большая хрупкость кристаллических веществ.

Ковалентная связь- химическая связь, осуществляемая за счет образования общих (связывающих) электронных пар.

Ковалентная неполярная связь- связь, образующаяся между атомами, проявляющими одинаковую электроотрицательность. При ковалентной неполярной связи электронная плотность общей пары электронов распределяется в пространстве симметрично относительно ядер общих атомов (H 2 ,I 2, O 2 ,N 2).

Ковалентная полярная связь- ковалентная связь между атомами с различной (но не сильно отличающейся друг от друга) электроотрицательностью (H 2 S, H 2 O,NH 3).

По донорно-акцепторному механизму образуется:NH + 4 , H 3 , O + , SO 3 , NO 2 . В случае возникновения иона NH + 4 атом азота-донор, предоставляющий в общее пользование не поделённую электронную пару, а ион водорода – акцептор, принимающий эту пару и предоставляющий для этого свою орбиталь. При этом образуется донорно-акцепторная (координационная) связь. Атом акцептора приобретает большой отрицательный заряд, а атом донора- положительный.

У Соединений с ковалентной полярной связью температуры кипения и плавления выше, чем к веществ с ковалентной неполярной связью.

В молекулах органический соединений связь атомов ковалентная полярная.

В таких молекулах происходит гибридизация (смешение орбиталей и выравнивание их по формуле и энергии) валентных (внешних) орбиталей атомов углерода.

Гибридные орбитали перекрываются, и образуются прочные химические связи.

Металлические связи- связь, осуществляемая относительно свободными электронами между ионами металлов в кристаллической решетке. Атомы металлов легко отдают электроны, превращаясь в положительно заряженные ионы. Оторвавшиеся электроны свободно перемещаются между положительными ионами металлов, т.е. они обобществлены ионами металлов, т.е. они обобществлены и передвигаются по всему куску металла, в целом электронейтрального.

Свойства металлов.

1. Электропроводимость. Обусловлено наличием свободных электронов, способных создавать электрический ток.

2. Теплопроводность. Обусловлена тем же.

3. Ковкость и пластичность. Ионы и атомы металлов в металлической решетке непосредственно не связаны друг с другом, и отдельные слои металла могут свободно перемещаться один относительно другого.

Водородная связь- может быть межмолекулярной и внутримолекулярной.

Межмолекулярная водородная связь образуется между атомами водорода одной молекулы и атомами сильноэлектроотрицательного элемента (F,O,N)другой молекулы. Такая связь определяет аномально высокие температуры кипения и плавления некоторых соединений (HF,H 2 O). При испарении этих веществ происходит разрыв водородных связей, что требует затрат дополнительной энергии.

Причина водородной связи: при отдаче единственного электрона «своему» атому электроотрицательного элемента водород приобретает относительно сильный положительный заряд, который затем взаимодействует с неподеленной электронной парой «чужого» атома электроотрицательного элемента.

Внутримолекулярная водородная связь осуществляется внутри молекулы. Эта связь определяет структуру нуклеиновых кислот (двойная спираль) и вторичную (спиралевидную) структуру белка.

Водородная связь гораздо слабее ионной или ковалентной, но сильнее, чем межмолекулярное взаимодействие.

Вопрос 3. Решить задачу. 20г нитробензола подвергли реакции восстановления. Найти массу образовавшегося анилина, если выход реакции составляет 50%.

Ответ.

Дано: Найти: m(C 6 H 6 NH 2).

m(C 6 H 6 NO 2) = 20г,

Решение

(C 6 H 6 NO 2) + 3H 2 = C 6 H 6 NH 2 +2H 2 0.

v: 1 моль 1 моль

M: 123г/моль 93 г /моль

х= m теор (C 6 H 6 NH 2) =20*93/123=15г,

m практ = 15*0,5=7,5 г.

Ответ: 7,5 г.

Билет № 4

Свойства Металл Li, K, Rb, Ba, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Ni, Sn, Pb, (H), Cu, Hg, Ag, Pt, Au
Восстановительная способность (отдавать электроны) Возрастает
Взаимодействие с кислородом воздуха Быстро окисляются при обычной температуре Медленно окисляются при обычной температуре или при нагревании Не окисляются
Взаимодействие с водой Выделяется Н 2 и образуется гидроксид При нагревании выделяется водород и образуется гидроксид Не вытесняют водород из воды
Взаимодействие с кислотами Вытесняют водород из разбавленных кислот Не вытеснят водород из разбавленных кислот
Окислительная способность (присоединять электроны) Возрастает

Вопрос 1.Общие свойства металлов. Особенности строение атомов .

Ответ . Атомы металлов сравнительно легко отдают валентные электроны и превращаются при этом в положительно заряженные ионы. Поэтому металлы являются восстановителями. В этом и состоит главная и наиболее общая химическая свойства металлов. Соединениях металлы проявляют только положительные степень окисления. Восстановительная способность разных металлов не одинакова и возрастает в электрохимическом ряду напряжений металлов от Au и до Li.

Физические свойства

1.Электропроводность. Обусловлена наличием в металлах свободных электронов, образующих электрический ток(направленное движение электронов).

2.Теплопроводность.

3.Ковкость и пластичность.

Металлы c ρ <5 г /см 3 – легкие, c ρ > 5 г/см 3 – тяжелые.

Легкоплавкие металлы: c t пл < 1000 0 C ,тугоплавкие – c t пл >1000 0 C.

Схемы взаимодействия металлов с серной кислотой.

Разбавленная H 2 SO 4 растворяет металлы расположенные в ряду стандартных электродных потенциалов (ряд активности металлов)до водорода:

M + H 2 SO 4 (разб.) → соль + H 2

(M = (Li →Fe) в ряду активности металлов).

При этом образуются соответствующая соль и вода.

С Ni разбавленная H 2 SO 4 реагирует очень медленно, с Ca, Mn, и Pb кислота не реагирует. При действии кислоты на поверхности свинца образуется пленка PbSO 4 , защищающая его от дальнейшего взаимодействия с кислотой.

Концентрированная H 2 SO 4 при обычной температуре со многими металлами не взаимодействует. Однако при нагревании концентрированная кислота реагирует почти со всеми металлами (кроме Pt ,Au и некоторых других). При этом кислота восстанавливается до H 2 S,или SO 2:

M + H 2 SO 4 (конц.) → соль + H 2 O + H 2 S (S ,SO 2).

Водород в этих реакциях не выделяется, а образуется вода.

Схемы взаимодействия металлов с азотной кислотой.

При взаимодействии металлов с HNO 3 водород не выделяется; он окисляется, образуя воду. В зависимости от активности металла кислота может восстанавливаться до соединений.

5 +4 +2 +1 0 -3 -3

HNO 3 →NO 2 → NO→ N 2 O→N 2 →NH 3 (NH 4 NO 3).

При этом образуется также и соль азотной кислоты.

Разбавленная HNO 3 реагирует со многими металлами (исключение: Ca ,Cr ,Pb, Au) чаще всего с образованием NH 3 ,NH 4 NO 3 ,N 2 или NO:

M + HNO 3 (разб.) → соль + H 2 O + NH 3 (NH 4 NO 3 , N 2 ,NO).

Концентрированная HNO 3 взаимодействует в основном с тяжелыми металлами с образованием N 2 O или NO 2:

M + HNO 3 (конц.) → соль + H 2 O + N 2 O(NO 2­).

При обычной температуре эта кислота (сильный окислитель) не реагирует с Al ,Cr, Fe и Ni. Она легко переводит их в пассивное состояние (на поверхности металла образуется плотная защитная оксидная пленка, препятствующая контакту металла со средой.)

Вопрос 2. Крахмал и целлюлоза. Сравнить их строение и свойства. Их применение.

Ответ. Строение крахмала: структурное звено – остаток молекулы

α-глюкозы. Строение целлюлозы: структурное звено-остаток молекулы β-глюкозы.

Физические свойства

Крахмал-белый хрустящий порошок,нерастворимый в холодной воде. В горячей воде образует коллоидный раствор-клейстер.

Целлюлоза-твердое волокнистое вещество,нерастворимое в воде и органических растворителях.

Химические свойства

1. Крахмал целлюлоза подвергаются гидролизу:

(C 6 H 10 O 5) n + nH 2 O=nC 6 H 12 O 6 .

При гидролизе крахмала образуется альфа-глюкоза, при гидролизе целлюлоза бета-глюкоза.

2. Крахмал с йодом дает синие окрашивание(в отличие от целлюлозы).

3. Крахмал переваривается в пищеварительной системой человека,а целлюлоза не переваривается.

4. Для целлюлозы характерна реакция этерификации:

[(C 6 H 7 O 2)(OH) 3 ] n +3nHONO 2 (конц.) [(C 6 H 7 O 2)(ONO 2) 3 ] n +3nH 2 O.

тринитроцеллюлоза

5. Молекулы крахмала имеют как линейную, так и разветвленную структуру. Молекулы же целлюлоза имеет линейное (то есть не разветвленное) строение, благодаря чему целлюлоза легко образует волокна.Это основное различие крахмала и целлюлозы.

6.Горение крахмала и целлюлозы:

(C 6 H 10 O 5) n +O 2 =CO 2 +H 2 O+Q.

Без доступа воздуха происходит термическое разложение. Образуются CH 3 O, CH 3 COOH, (CH 3) 2 CO и др.

Применение

1. Путем гидролиза превращают в потоку и глюкозу.

2. Как ценный и питательный продукт(основной углевод пищи человека-хлеба,крупы,картофеля).

3. В производстве клейстера.

4. В производстве красок (загуститель)

5. В медицине (для приготовления мазей, присыпок).

6. Для накрахмаливания белья.

Целлюлоза:

1. В производстве ацетатного волокна,оргстекла, негорючей пленки(целлофан).

2. При изготовлении бездымного пороха(тринитроцеллюлоза).

3. В производстве целлулоида и колодита (динитроцеллюлоза).

Вопрос 3. К 500 грамм 10% раствора NACL прибавили 200 грамм 5% раствора того же вещества, потом еще 700 грамм воды. Найдите процентную концентрации полученного раствора.


Ответ. Найти:m 1 (NаCl)= 500г

Дано:

ω 1 (NаCl)=10%

m 2 (NаCl)=200г

Решение

m 1 (NaCl, безв.)=500 *10\100 = 50 г,

m 2 (NaCl, безв.)=200*5\100=10 г,

m (р-ра)=500+200+700=1400г,

m общ (NaCl)=50+10=60г,

ω 3 (NaCl)=60\1400 * 100 % = 4,3 %

Ответ: ω 3 (NaCl)=4,3 %

БИЛЕТ № 5

Вопрос 1. Ацетилен. Его строение, свойства, получение и применение.

Ответ. Ацетилен относится к классу алкинов.

Ацетеленовые углеводороды, или алкины, -непредельные (ненасыщенные) углеводороды с общей формулой , в молекулах которых между атомами углерода есть тройная связь.

Электронное строение

Углерод в молекуле ацетилена находится в состоянии sp – гибридизации. Атомы углерода в этой молекуле образуют тройную связь, состоящую из двух -связей и одной σ-связи.

Молекулярная формула: .

Графическая формула: H-C≡ C-H

Физические свойства

Газ, легче воздуха, малорастворим в воде, в чистом виде почти без запаха, бесцветный, = - 83,6 . (В ряду алкинов с увеличением молекулярной массы алкина температуры кипения и плавления увеличиваются.)

Химические свойства

1. Горение:

2. Присоединение:

а) водорода:

б) галогена:

C 2 H 2 + 2Cl 2 = C 2 H 2 Cl 4 ;

1,1,2,2-тетрохлорэтан

в) галогеноводорода:

HC≡CH + HCl = CHCl

винилхлорид

CH 2 =CHCl + HCl = CH 3 -CHCl 2

1,1-дихлорэтан

(по правилу Марковникова);

г) воды(реакция Кучерова):

HC=CH + H 2 O = CH 2 =CH-OH CH 3 -CHO

виниловый спирт уксусный альдегид

3. Замещение:

HC≡CH + 2AgNO 3 + 2NH 4 = AgC≡CAg↓+ 2NH 4 NO 3 + 2H 2 O.

ацетиленид серебра

4. Окисление:

HC≡CH + + H 2 O → HOOC-COOH ( -KMnO 4).

щавельная кислота

5. Тримеризация:

3HC≡CH t, кат

6. Димеризация:

HC≡CH + HC≡CH КАТ. HC≡C - HC=CH 2

винилацетилен

Получение

1. Дегидрирование алканов (крекинг жидких нефтяных фракций):

C 2 H 6 = C 2 H 2 + 2H 2 .

2. Из природного газа (термический крекинг метана):

2CH 4 C 2 H 2 + 3H 2

3. Карбидный способ:

CaC 2 + 2H 2 O = Ca(OH) 2 + C 2 H 2

Применение

1.В производстве винилхлорида, ацетальдегида, винилацетата, хлоропрена, уксусной кислоты и других органических веществ.

2.В синтезе каучука и поливинилхлоридных смол.

3.В производстве поливинилхлорида (кожзаменитель).

4.В производстве лаков, лекарств.

5.При изготовлении взрывчатых веществ (ацетилениды).

Одноатомные фенолы - прозрачные жидкости или кристаллические вещества, часто окрашенные в розово-красный цвет благодаря их окислению. Это яды, и в случае попадания на кожу они вызывают ожоги. Они убивают множество микроорганизмов, то есть имеют дезинфицирующие и антисептические свойства. Растворимость фенолов в воде мала, их температуры кипения относительно большие вследствие существования межмолекулярных водородных связей.

Физические свойства

Фенолы - малорастворимы в воде, но хорошо растворяются в спирте, эфире, бензоле, с водой образуют кристаллогидраты, перегоняются с водяным паром. На воздухе сам фенол легко окисляется и темнеет. Введение в пара- положение молекулы фенола таких заместителей, как галоиды, нитрогруппы и др. значительно повышает температуру кипения и температуру плавления соединений:

Рисунок 1.

Фенолы - полярные вещества с дипольным моментом $\mu$ = 1,5-1,6 $D$. Значение $EI$ 8,5-8,6 эВ свидетельствует о больших донорных свойствах фенолов по сравнению с такими аренами, как бензол (9,25 эВ), толуол (8,82 эВ), этилбензол (8,76 эВ). Это связано со взаимодействием гидроксильной группы с $\pi$-связями бензольного ядра благодаря положительному $M$-эффекту $OH$-группы, преобладает ее негативный $I$ -эффект.

Спектральные характеристики фенолов

Максимум поглощения в УФ-части спектра для фенола смещен в сторону более длинных волн примерно на 15 нм по сравнению с бензолом (батохромное смещение) благодаря участию $\pi$-электронов кислорода в сопряжении с бензольным ядром и проявляется при 275 нм с тонкой структурой.

В ИК-спектрах для фенолов, как и для спиртов, характерны интенсивные полосы $v_{OH}$ в области 3200-3600 см$^{-1}$ и 3600-3615 см$^{-1}$ для сильно разведенных растворов, но для $v_{c\_D}$ фенолов прослеживается полоса около 1230 см$^{-1}$ в отличие от 1220-1125 см$^{-1}$ для спиртов.

В ПМР-спектрах сигнал протона $OH$-группы фенолов проявляется в широком диапазоне (4,0-12,0 м.ч.) по сравнению со спиртами в зависимости от природы и концентрации растворителя, температуры, наличия меж- или внутримолекулярных водородных связей. Часто сигнал протона $OH$-группы регистрируют при 8,5-9,5 м.ч. в диметилсульфоксиде или при 4,0-7,5 м.ч, в $CCl_4$.

В масс-спектре фенола основным направлением фрагментации является элиминирования частиц $HCO$ и $CO$:

Рисунок 2.

Если в молекуле фенола присутствуют алкильные радикалы, первичным процессом будет бензильное расщепление.

Химические свойства фенолов

В отличие от спиртов, для которых характерны реакции с расщеплением как $O-H$-связи (кислотно-основные свойства, образование эфиров, окисления и т.д.), так и $C-O$-связи (реакции нуклеофильного замещения, дегидратации, перегруппировки), фенолам более характерны реакции первого типа. Кроме того, им свойственны реакции электрофильного замещения в бензольном ядре, активированном электронодонорной гидроксильной группой.

Химические свойства фенолов обусловлены наличием взаимного влияния гидроксильной группы и бензольного ядра.

Гидроксильная группа имеет $-I-$ и + $M$-эффект. Последний значительно превышает $-I$ эффект, обусловливающий $n-\pi$-сопряжение свободных электронов кислорода с $\pi$-орбиталью бензольного ядра. Вследствие $n-\pi$-сопряжения уменьшается длина связи $C - O$, величина дипольного момента и положения полос поглощения связей в ИК-спектрах по сравнению с этиловым спиртом:

Некоторые характеристики фенола и этанола:

Рисунок 3.

$n-\pi$-Сопряжение приводит к уменьшению электронной плотности на атоме кислорода, поэтому полярность связи $O - H$ у фенолов растет. В связи с этим кислотные свойства фенолов выражены сильнее, чем у спиртов. Большая кислотность фенолов по сравнению со спиртами объясняется также возможностью делокализации заряда в фенолят-анион, что влечет стабилизацию системы:

Рисунок 4.

На различии кислотности фенола и спиртов указывает константа диссоциации. Для сравнения: Кд = $1,3 \cdot 10^{-10}$ для фенола и Кд = $10^{-18}$ для этилового спирта.

Поэтому фенолы, в отличие от спиртов, образуют феноляты не толькос щелочными металлами, но и через взаимодействие со щелочами:

Рисунок 5.

Реакция фенола с щелочными металлами проходит довольно бурно и может сопровождаться взрывом.

Но фенол является слабой кислотой, слабее даже угольной кислоты ($K = 4,7 \cdot 10^{-7}$). Поэтому угольная кислота вытесняет фенол из раствора фенолята. Эти реакции используют для разделения фенолов, спиртов или карбоновых кислот. Электронакцепторные группы в молекуле фенола значительно усиливают, а донорные - ослабляют кислотные свойства фенольного гидроксила.

Кроме того фенолу характерен ряд реакций различной направленности:

  1. образование простых и сложных эфиров;
  2. реакции алкилирования и ацилирования;
  3. реакции окисления
  4. реакции электрофильного замещения в ароматическом кольце, в том числе реакции:

    • галогенирования,
    • сульфирования,
    • нитрозирование,
    • формилирования,
    • конденсации с альдегидами и кетонами,
    • карбоксилирования.

Данный урок проводится по учебнику под редакцией Г. Е. Рудзитиса «Органическая химия» в 10 классе в разделе: «Спирты и фенолы». Урок проводится с использованием традиционных методов обучения, демонстрационных опытов, а также современных мультимедийных форм обучения. Это позволяет более наглядно и доходчивее излагать материал; провести быструю оценку усвоения учащимися изученного на уроке (тест). Использование современных аудио/видео способов обучения расширяют возможности более прочного и осознанного усвоения учебного материала учащимися.

Образовательные задачи:

  1. изучить состав, строение, свойства фенола и его соединений
  2. на примере фенола конкретизировать знания учащихся об особенностях строения веществ, принадлежащих к классу фенолы, рассмотреть зависимость взаимного влияния атомов в молекуле фенола на его свойства
  3. познакомить учащихся с физическими и химическими свойствами фенола и некоторых его соединений, изучить качественные реакции на фенолы
  4. рассмотреть нахождение в природе, применение фенола и его соединений, их биологическую роль

Развивающие задачи:

  1. совершенствовать умение учащихся прогнозировать свойства вещества на основе его строения
  2. продолжать развивать умение наблюдать, анализировать, делать выводы при выполнении химического эксперимента

Воспитательные задачи:

  1. продолжить формирование химической картины мира через химическую картину природы (познаваемость, управление химическими процессами)
  2. расширить представление учащихся о влиянии фенолсодержащих промышленных отходов и строительных материалов на окружающую среду и здоровье человека
  3. рассмотреть биологическую роль фенола и его соединений на организм человека (положительную и отрицательную)

Тип урока: урок - изучения новых знаний.

Методы обучения: словесный, наглядный, практический (химический эксперимент – ученический и демонстрационный)

Средства обучения: Компьютер, проектор, школьный химический эксперимент (демонстрационный и ученический), опорные конспекты, видеоролики.

Оборудование и реактивы: Демонстрационный эксперимент: растворы С 6 Н 5 ОН, NaOH, FeCl 3 , бромная вода, Na, пробирки, резиновые пробки.

План урока

1. Организационный момент

2. Актуализация знаний

3. Изучение новых знаний

  • Определение фенолов Соединения, в которых ароматический радикал фенил С6Н5- непосредственно связан с гидроксильной группой, отличаются по свойствам от ароматических спиртов, настолько, что их выделяют в отдельный класс органических соединений, называемый фенолами .
  • классификация и изомерия фенолов В зависимости от числа ОН-групп различают одноатомные фенолы (например, вышеприведенные фенол и крезолы) и многоатомные . Среди многоатомных фенолов наиболее распространены двухатомные:

Как видно из приведенных примеров, фенолам свойственна структурная изомерия (изомерия положения гидроксигруппы).

  • Физические свойства фенола (Приложение№2)

Следствием полярности связи О–Н и наличия неподеленных пар электронов на атоме кислорода является способность гидроксисоединений к образованию водородных связей

Это объясняет, почему у фенола довольно высокие температуры плавления (+43) и кипения (+182). Образование водородных связей с молекулами воды способствует растворимости гидроксисоединений в воде:

Способность растворяться в воде уменьшается с увеличением углеводородного радикала и от многоатомных гидроксисоединений к одноатомным. Метанол, этанол, пропанол, изопропанол, этиленгликоль и глицерин смешиваются с водой в любых соотношениях. Растворимость фенола в воде ограничена.

  • Строение молекулы фенола
  • Химические свойства фенола (проводится демонстрационный эксперимент)
  • а) Рассмотрим реакции фенола по ОН- группе:

Кислотные свойства у фенола выражены сильнее, чем у спирта С 2 Н 5 ОН. Фенол – слабая кислота (карболовая).

  • б) Реакции фенола по бензольному кольцу:

Какой вывод о взаимном влиянии атомов в молекуле фенола можно сделать?
Фенильная группа C6H5 – и гидроксил –ОН взаимно влияют друг на друга.

  • в) Качественная реакция на фенолы (видеоролик)

С 6 Н 5 ОН + FeCl 3 -> фиолетовое окрашивание

  • Получение фенола (приложение№1)
  • Физиологическое действие фенола и его применение

Фенол - ядовит!!! При попадании на кожу вызывает ожоги, при этом он всасывается через кожу и вызывает отравление. Раствор фенола используют в качестве дезинфицирующего средства (карболовая кислота). Двухатомные фенолы – пирокатехин, резорцин, а также гидрохинон (пара- дигидроксибензол) применяют как антисептики (антибактериальные обеззараживающие вещества), вводят в состав дубителей для кожи и меха, как стабилизаторы смазочных масел и резины, а также для обработки фотоматериалов и как реагенты в аналитической химии.

В виде отдельных соединений фенолы используются ограниченно, зато их различные производные применяют широко. Фенолы служат исходными соединениями для получения разнообразных полимерных продуктов – фенолоальдегидных смол, полиамидов, полиэпоксидов. На основе фенолов получают многочисленные лекарственные препараты, например, аспирин, салол, фенолфталеин, кроме того, красители, парфюмерные продукты, пластификаторы для полимеров и средства защиты растений.

Биологическая роль соединений фенола:

4. Закрепление изученного материала

Приложение №2 (видеоролик)

Приложение №3 (Flash анимация)

Гидроксибензол

Химические свойства

Что такое Фенол? Гидроксибензол, что это такое? Согласно Википедии – это один из простейших представителей своего класса ароматических соединений. Фенолы – это органические ароматические соединения, в молекулах которых к гидроксильной группе присоединены атомы углерода из ароматического кольца. Общая формула Фенолов: С6Н6n(ОН)n . Согласно стандартной номенклатуре, органические вещества этого ряда различают по числу ароматических ядер и ОН- групп. Различают одноатомные аренолы и гомологи, двухатомные арендиолы, терхатомные арентриолы и многоатомные формулы. Также Фенолам свойственно иметь ряд пространственных изомеров. Например, 1,2-дигидроксибензол (пирокатехин ), 1,4-дигидроксибензол (гидрохинон ) являются изомерами.

Спирты и Фенолы отличаются друг от друга наличием ароматического кольца. Этанол является гомологом метанола. В отличие от Фенола, метанол взаимодействует с альдегидами и вступает в реакции этерификации. Утверждение, что гомологами являются метанол и Фенол неверно.

Его подробно рассмотреть структурную формулу Фенола, то можно отметить, что молекула представляет собой диполь. При этом бензольное кольцо – отрицательный конец, а группа ОН – положительный. Наличие гидроксильной группы обуславливает повышение электронной плотности в кольце. Неподеленная пара электронов кислорода вступает в сопряжение с пи-системой кольца, а для атома кислорода характерна sp2 гибридизация. Атомы и атомные группы в молекуле обладают сильным взаимным влиянием друг на друга, и это отражается на физических и химических свойствах веществ.

Физические свойства. Химическое соединение имеет вид бесцветных игольчатых кристаллов, которые розовеют на воздухе, так как подвержены окислению. У вещества специфический химический запах, оно умеренно растворимо в воде, спиртах, щелочи, ацетоне и бензоле. Молярная масса = 94,1 грамм на моль. Плотность = 1,07 г на литр. Кристаллы плавятся при 40-41 градусах Цельсия.

С чем взаимодействует Фенол? Химические свойства Фенола. В связи с тем, что молекула соединения содержится, как ароматическое кольцо, так и гидроксильную группу, то оно проявляет некоторые свойства спиртов и ароматических углеводородов.

С чем реагирует группа ОН ? Вещество не проявляет сильных кислотных свойств. Но является более активным окислителем, чем спирты, в отличие от этанола взаимодействует с щелочами образуя соли-феноляты. Реакция с гидроксидом натрия : С6Н5ОН + NaOH → C6H5ONa + H2O . Вещество вступает в реакцию с натрием (металлическим): 2C6H5OH + 2Na → 2C6H5ONa + H2 .

Фенол не реагирует с карбоновыми кислотами. Эфиры получают при взаимодействии солей фенолятов с галогенангидридами или ангидридами кислот. Для химического соединения не характерны реакции образования простых эфиров. Эфиры образуют феноляты при действии на них галогеналканов или галогенпроизводных аренов. Гидроксибензол реагирует с цинковой пылью, при этом происходит замещение гидроксильной группы на Н , уравнение реакции выглядит следующим образом: C6H5OH + Zn → C6H6 + ZnO .

Химическое взаимодействие по ароматическому кольцу. Для вещества характерны реакции электрофильного замещения, алкилирования, галогенирования, ацилирования, нитрования и сульфирования. Особое значение имеет реакций синтеза салициловой кислоты: C6H5OH + CO2 → C6H4OH(COONa) , протекает в присутствии катализатора гидроксида натрия . Затем при воздействии образуется .

Реакция взаимодействия с бромной водой является качественной реакцией на Фенол. C6H5OH + 3Br2 → C6H2Br2OH + 3HBr . При бромировании образуется твердое белое вещество — 2,4,6-трибромфенол . Еще одна качественная реакция – с хлоридом железа 3 . Уравнение реакции выглядит следующим образом: 6C6H5OH + FeCl3 → (Fe(C6H5OH)6)Cl3 .

Реакция нитрования Фенола: C6H5OH + 3HNO3 → C6H2(NO2)3OH + 3 H2O . Для вещества также характерна реакция присоединения (гидрирования) в присутствии металлических катализаторов, платины, оксида алюминия, хрома и так далее. В результате образуются циклогексанол и циклогексанон .

Химическое соединение подвергается окислению. Устойчивость вещества значительно ниже, чем у бензола. В зависимости от условий реакции и природы окислителя образуются разные продукты реакции. Под действием перекиси водорода в присутствии железа образуется двухатомный Фенол; при действии диоксида марганца , хромовой смеси в подкисленной среде – пара-хинон.

Фенол реагирует с кислородом, реакция горения: С6Н5ОН +7О2 → 6СО2 + 3Н2О . Также особое значение для промышленности имеет реакция поликонденсации с формальдегидом (например, метаналем ). Вещество вступает в реакцию поликонденсации до тех пор, пока не израсходуется полностью один из реагентов и не образуются огромные макромолекулы. В результате образуются твердые полимеры, фенолформальдегидные или формальдегидные смолы . Фенол не взаимодействует с метаном.

Получение. На данный момент существуют и активно применяются несколько методов синтеза гидроксибензола. Кумольный способ получения Фенола является наиболее распространенным из них. Таким способом синтезируют порядка 95% всего объема производства вещества. При этом некаталитическому окислению воздухом подвергается кумол и образуется гидропероксид кумола . Полученное соединение разлагается под действием серной кислоты на ацетон и Фенол. Дополнительным побочным продуктом реакции является альфа-метилстирол .

Также соединение можно получить при окислении толуола , промежуточным продуктом реакции будет являться бензойная кислота . Таким образом, синтезируют около 5% вещества. Все остальное сырье для различных нужд выделяют из каменноугольной смолы.

Как получить из бензола? Фенол можно получить с помощью реакции прямого окисления бензола NO2 () с дальнейшим кислотным разложением гидропероксида втор-бутилбензола . Как из хлорбензола получить Фенол? Существует два варианта получения из хлорбензола данного химического соединения. Первый – реакция взаимодействия со щелочью, например, с гидроксидом натрия . В результате образуется Фенол и поваренная соль. Второй – реакция с водяным паром. Уравнение реакции выглядит следующим образом: C6H5-Cl + H2O → C6H5-OH + HCl .

Получение бензола из Фенола. Для этого сначала требуется обработать бензол хлором (в присутствии катализатора), а затем прибавить к полученному соединению щелочь (например, NaOH ). В итоге образуется Фенол и .

Превращение метан — ацетилен — бензол — хлорбензол можно осуществить следующим образом. Сначала проводится реакция разложения метана при высокой температуре 1500 градусов Цельсия до ацетилена (С2Н2 ) и водорода. Затем ацетилен при особых условиях и высокой температуре переводят в бензол . К бензолу прибавляют хлор в присутствии катализатора FeCl3 , получают хлорбензол и соляную кислоту: C6H6 + Cl2 → C6H5Cl + HCl .

Одним из структурных производных Фенола является аминокислота , которая имеет важное биологическое значение. Данную аминокислоту можно рассмотреть в виде пара-замещенного Фенола или альфа-замещенного пара-крезола . Крезолы – достаточно распространены в природе на ряду с полифенолами. Также свободную форму вещества можно обнаружить в некоторых микроорганизмах в равновесном состоянии с тирозином .

Гидроксибензол применяется:

  • при производстве бисфенола А , эпоксидной смолы и поликарбоната ;
  • для синтеза фенолформальдегидных смол, капрона, нейлона;
  • в нефтеперерабатывающей промышленности, при селективной очистке масел от ароматических соединений серы и смол;
  • при производстве антиоксидантов, поверхностно-активных веществ, крезолов , лек. препаратов, пестицидов и антисептических препаратов;
  • в медицине в качестве антисептического и обезболивающего средства для местного использования;
  • в качестве консерванта при изготовлении вакцин и копченых продуктов питания, в косметологии при проведении глубокого пилинга;
  • для дезинфекции животных в скотоводстве.

Класс опасности. Фенол – крайне токсичное, ядовитое, едкое вещество. При вдыхании летучего соединения нарушается работа центральной нервной системы, пары раздражают слизистую глаз, кожу, дыхательные пути и вызывают сильные химические ожоги. При попадании на кожу вещество быстро всасывается в кровоток и достигает тканей мозга, вызывая паралич дыхательного центра. Смертельная доза при приеме внутрь для взрослого составляет от 1 до 10 грамм.

Фармакологическое действие

Антисептическое, прижигающее.

Фармакодинамика и фармакокинетика

Средство проявляет бактерицидную активность по отношению в аэробным бактериям, их вегетативным формам и грибам. Практически не оказывает влияния на споры грибов. Вещество вступает во взаимодействие с белковыми молекулами микробов и приводит к их денатурации. Таким образом, нарушается коллоидное состояние клетки, значительно повышается ее проницаемость, нарушаются окислительно-восстановительные реакции.

В водном растворе является отличным дезинфицирующим средством. При использовании 1,25% раствора практически микроорганизмы погибают в течение 5-10 минут. Фенол, в определенной концентрации оказывает прижигающее и раздражающее действие на слизистую оболочку. Бактерицидный эффект от применения средства усиливается с ростом температуры и кислотности.

При попадании на поверхность кожи, даже если она не повреждена, лекарство быстро всасывается, проникает в системный кровоток. При системной абсорбции вещества наблюдается его токсическое действие, преимущественно на центральную нервную систему и дыхательный центр в головном мозге. Порядка 20% от принятой дозы подвергается окислению, вещество и продукты его метаболизма выводятся с помощью почек.

Показания к применению

Применение Фенола:

  • для дезинфекции инструментов и белья и дезинсекции;
  • в качестве консерванта в некоторых лек. средствах, вакцинах, свечах и сыворотках;
  • при поверхностных пиодермиях , фолликулите , фликтене , остиофолликулите , сикозе , стрептококковом импетиго ;
  • для лечения воспалительных заболеваний среднего уха, ротовой полости и глотки, пародонтита , генитальных остроконечных кондилом .

Противопоказания

Вещество не используют:

  • при распространенных поражениях слизистой оболочки или кожи;
  • для лечения детей;
  • во время кормления грудью и ;
  • при на Фенол.

Побочные действия

Иногда лекарственное средство может спровоцировать развитие аллергических реакций, зуд, раздражение в месте нанесения и чувство жжения.

Инструкция по применению (Способ и дозировка)

Консервацию лекарственных препаратов, сывороток и вакцин проводят с помощью 0,5% растворов Фенола.

Для наружного применения лекарство используют в виде мази. Препарат наносят тонким слоем на пораженные участки кожи несколько раз в сутки.

При лечении вещество используют в форме 5% раствора в . Препарат подогревают и закапывают по 10 капель в пораженное ухо на 10 минут. Затем необходимо удалить остатки лекарства с помощью ваты. Процедуру повторяют 2 раза в день в течение 4 суток.

Препараты Фенола для лечения ЛОР-заболеваний используют в соответствии с рекомендациями в инструкции. Продолжительность терапии – не более 5 дней.

Для ликвидации остроконечных кондилом их обрабатывают 60% раствором Фенола или 40% раствором трикрезола . Процедуру проводят один раз в 7 дней.

При дезинфекции белья применяют 1-2% растворы на основе мыла. С помощью мыльно-фенольного раствора обрабатывают помещение. При дезинсекции используются фенольно-скипидарные и керосиновые смеси.

Передозировка

При попадании вещества на кожу возникают жжение, покраснение кожи, анестезия пораженного участка. Поверхность обрабатывают растительным маслом или полиэтиленгликолем . Проводят симптоматическую терапию.

Симптомы отравления Фенолом при попадании внутрь. Наблюдаются сильные боли в животе, глотке, в ротовой полости, пострадавшего рвет бурой массой, бледность кожи, общая слабость и головокружение

Средством нельзя обрабатывать обширные участки кожи.

Перед использованием вещества для дезинфекции предметов быта, их необходимо механически очистить, так как средство абсорбируется органическими соединениями. После обработки вещи могут еще длительное время сохранять специфический запах.

Химическое соединение нельзя использовать для обработки помещений для хранения и готовки пищевой продукции. Оно не влияет на окраску и структуру ткани. Повреждает поверхности, покрытые лаком.

Детям

Средство нельзя использовать в педиатрической практике.

При беременности и лактации

Фенол не назначают во время кормления грудью и при беременности .

Препараты, в которых содержится (Аналоги)

Совпадения по коду АТХ 4-го уровня:

Фенол входит в состав следующих препаратов: Ферезол , Фенола раствор в глицерине , Фармасептик . В качестве консерванта содержится в препаратах: Экстракт Белладонны , Набор для кожной диагностики медикаментозной аллергии , и так далее.

Фенол – это химическое органическое вещество, углеводород. Другие названия – карболовая кислота, гидроксибензол. Он бывает природного и промышленного происхождения. Что такое фенол и каково его значение в жизни человека?

Происхождение вещества, химические и физические свойства

Химическая формула фенола – c6h5oh. По внешнему виду вещество напоминает кристаллы в виде иголок, прозрачные, с белым оттенком. На открытом воздухе при взаимодействии с кислородом окраска приобретает светло-розовый цвет. Для вещества характерен специфический запах. Фенол пахнет как краска гуашь.

Природные фенолы – это антиоксиданты, которые в разных количествах присутствуют во всех растениях. Они обуславливают цвет, аромат, защищают растения от вредных насекомых. Природный фенол полезен для организма человека. Он содержится в оливковом масле, зернах какао, фруктах, орехах. Но встречаются и ядовитые соединения, например, танин.

Химическая промышленность производит эти вещества путем синтеза. Они ядовиты и очень токсичны. Фенол опасен для человека, также промышленные масштабы его производства значительно загрязняют окружающую среду.

Физические свойства:

  • нормально растворяется фенол в воде, спирте, щелочи;
  • имеет низкую температуру плавления, при 40°C превращается в газ;
  • по своим свойствам во многом напоминает спирт;
  • обладает высокой кислотностью и растворимостью;
  • при комнатной температуре находятся в твердом состоянии;
  • запах фенола резкий.

Как применяют фенолы

Более 40% веществ используют в химической промышленности для получения других органических соединений, в основном смол. Также из него искусственные волокна – капрон, нейлон. Вещество применяют в нефтеперерабатывающей отрасли для очищения масел, которые применяют в буровых установках и других технологических объектах.

Фенол используют для производства лакокрасочной продукции, пластмасс, в составе химикатов и пестицидов. В ветеринарии веществом на фермах обрабатывают животных сельскохозяйственного значения для профилактики инфекций.

Применение фенола в фармацевтической промышленности значительное. Он входит в состав многих лекарственных препаратов:

  • антисептики;
  • обезболивающие;
  • антиагреганты (разжижают кровь);
  • как консервант для производства вакцин;
  • в косметологии в составе препаратов для химического пилинга.

В генной инженерии фенол применяют для очистки ДНК и его выделения из клетки.

Токсическое действие фенола

Фенол – это яд . По своей токсичности соединение относится ко 2-му классу опасности. Это значит, что оно высокоопасное для окружающей среды. Степень воздействия на живые организмы высокая. Вещество способно нанести серьезный ущерб экологической системе. Минимальный период восстановления после действия фенола составляет минимум 30 лет, при условии полной ликвидации источника загрязнения.

Синтетический фенол влияние на организм человека оказывает негативное. Токсическое действие соединения на органы и системы:

  1. При вдыхании паров или проглатывании поражаются слизистые оболочки пищеварительного тракта, верхних дыхательных путей, глаз.
  2. При попадании на кожу образуется ожог фенолом.
  3. При глубоком проникновении вызывает некроз тканей.
  4. Оказывает выраженное токсическое действие на внутренние органы. При поражении почек вызывает пиелонефрит, разрушает структуру эритроцитов, что приводит к кислородному голоданию. Способен вызвать аллергический дерматит.
  5. При вдыхании фенола в больших концентрациях нарушается работа мозговой деятельности, может привести к остановке дыхания.

Механизм токсичного действия фенолов заключается в изменении структуры клетки и, как следствие, ее функционирования. Наиболее восприимчивы к ядовитым веществам нейроны (нервные клетки).

Предельно допустимая концентрация (ПДК фенола):

  • максимально разовая доза в атмосфере для населенных мест составляет 0,01 мг/м³, которая держится в воздухе на протяжении получаса;
  • среднесуточная доза в атмосфере для населенных мест составляет 0,003 мг/м³;
  • смертельная доза при попадании внутрь организма составляет для взрослых от 1 до 10 г, для детей от 0,05 до 0,5 г.

Симптомы отравления фенолом

Вред фенола на живой организм давно доказан. При попадании на кожу или слизистые соединение быстро всасывается, преодолевает гематогенный барьер и с кровью разносится по всему телу.

Первым на воздействие яда реагирует головной мозг. Признаки отравления у человека:

  • Психика. Первоначально пациент испытывает легкое возбуждение, которое длится непродолжительно и сменяется раздражение. Затем наступает апатия, безразличие к происходящему вокруг, человек находится в угнетенном состоянии.
  • Нервная система. Нарастает общая слабость, вялость, упадок сил. Смазывается тактильная чувствительность, но реакция на свет и звуки обостряется. Пострадавший чувствует тошноту, которая не связана с работой пищеварительной системы. Появляется головокружение, головная боль становится более интенсивной. Тяжелое отравление может привести к судорогам и бессознательному состоянию.
  • Кожные покровы. Кожа становится бледной и холодной на ощупь, при тяжелом состоянии приобретает синий оттенок.
  • Органы дыхания. При попадании даже незначительных доз в организм у человека появляется одышка и учащенное дыхание. Из-за раздражения слизистой носа у пострадавшего беспрерывное чихание. При отравлении средней степени тяжести развивается кашель и спастические сокращения гортани. В тяжелых случаях возрастает угроза спазма трахеи и бронхов и, как следствие, удушье, приводящее к летальному исходу.

Обстоятельства, при которых может произойти отравление – нарушение правил техники безопасности при работе с особо опасными веществами, передозировке лекарственными препаратами, бытовом отравлении моющими и чистящими средствами, в результате несчастного случая.

Если в доме находится мебель низкого качества, детские игрушки, не соответствующие международным стандартам безопасности, стены покрашены краской, не предназначенной для этих целей, то исходящие пары фенола человек вдыхает постоянно. В этом случае развивается хроническое отравление. Его основной признак – синдром хронической усталости.

Принципы оказания первой помощи

Первое, что необходимо сделать, это прервать контакт человека с отравляющим источником.

Пострадавшего вынести из помещения на свежий воздух, расстегнуть пуговицы, замки, молнии, чтобы лучше обеспечить доступ кислорода.

Если раствор фенола попал на одежду, ее немедленно снять. Пораженную кожу и слизистую глаз многократно и тщательно промыть проточной водой.

При попадании фенола в ротовую полость ничего не проглатывать, а немедленно прополоскать рот в течение 10 минут. Если вещество успело попасть в желудок, можно выпить сорбент со стаканом воды:

  • активированный или белый уголь;
  • энтеросорб;
  • энтеросгель;
  • сорбекс;
  • карболен;
  • полисорб;
  • лактофильтрум.

Нельзя промывать желудок, так как эта процедура усилит степень ожога и увеличит площадь поражения слизистой.

Антидот фенола – раствор глюконата кальция для внутривенного введения. При отравлении любой степени тяжесть пострадавший доставляется в больницу для наблюдения и лечения.

Вывести фенол из организма в условиях стационара при тяжелых отравлениях можно такими методами:

  1. Гемосорбция – очищение крови специальным сорбентом, который связывает молекулы ядовитого вещества. Кровь очищается путем прогонки в специальном аппарате.
  2. Дезинтоксикационная терапия – внутривенное вливание растворов, которые разбавляют концентрацию вещества в крови и способствуют его естественному выведению из организма (через почки).
  3. Гемодиализ – показан в тяжелых случаях, когда есть потенциальная угроза жизни. Процедура проводится с помощью аппарата «искусственная почка», в котором кровь проходит через специальные мембраны и оставляет молекулы отравляющего вещества. В организм кровь возвращается чистая и насыщенная полезными микроэлементами.

Фенол – это синтетическое отравляющее вещество, опасное для человека. Даже соединение природного происхождения может нанести вред здоровью. Чтобы избежать отравления, необходимо с ответственностью относится к работе на производстве, где есть риск контакта с ядом. При покупках интересоваться составом продукции. Неприятный запах пластмассовых изделий должен насторожить. При употреблении лекарственных препаратов с содержанием фенола соблюдать предписанную дозировку.