Древнегреческий мыслитель Евклид стал первым математиком Александрийской школы и автором одного из наиболее древних теоретических математических трактатов. О биографии этого ученого известно намного меньше, чем о его работах. Так, в известном труде «Начала» Евклид изложил стереометрию, планиметрию, аспекты теории чисел, создал базу для последующего развития математики.

Биография Евклида предположительно началась в 325 году до нашей эры (это примерная дата, точный год рождения неизвестен) в Александрии. Некоторые исследователи предполагают, что будущий математик появился на свет в Тире, а большую часть взрослой жизни провел в Дамаске. Вероятно, Евклид происходил из богатой семьи, так как он учился в афинской школе (на то время такое образование было доступно только состоятельным гражданам).

Ученым удалось установить, что автор «Начал» был моложе известных последователей Платона, живших и творивших в период с 427 по 347 века до нашей эры, однако старше , родившегося в 287 году и скончавшегося в 212 году до нашей эры. Евклид разбирался в философской концепции Платона и разделял ее основные положения.

Приведенная выше информация о личности и жизненном пути Евклида почерпнута исследователями из комментариев Прокла, написанных им к первой книге «Начала». Также известны высказывания Стобея и Паппа о личности древнегреческого мыслителя. Стобей якобы рассказывал, что в ответ на вопрос ученика о выгоде от науки Евклид приказал рабу выдать ему несколько монет. Папп же отмечал, что ученый умел быть любезным и мягким с любым человеком, который мог хоть в какой-то степени быть полезным для развития математических наук.


Сохранившиеся данные о Евклиде настолько малочисленны и сомнительны, что бытовала версия о присвоении псевдонима «Евклид» целым коллективам ученых из древней Александрии. Евклида Александрийского путают с греческим философом Евклидом из Мегар, учеником , жившим в 400 столетии до нашей эры. В средние века Евклида из Мегар даже считали автором «Начал».

Математика

Немалую часть свободного времени Евклид проводил в Александрийской библиотеке – храме знаний, основанном Птолемеем. В стенах этого учреждения древнегреческий ученый занялся объединением арифметических законов, геометрических принципов и теории иррациональных чисел в геометрию. Результаты своих трудов Евклид описал в книге «Начала» - сочинении, принесшем большой вклад в развитие математики.


Книга Евклида "Начала"

Книга состоит из пятнадцати томов:

  • В книге I автор рассказывает о свойствах параллелограммов и треугольников, завершая изложение применением теоремы Пифагора при расчете параметров прямоугольных треугольников.
  • Книга под номером II описывает принципы и закономерности геометрической алгебры и восходит к багажу знаний, накопленных пифагорейцами.
  • В книгах III и IV Евклид рассматривает геометрию окружностей, описанных и вписанных многоугольников. В ходе создания этих томов автор мог обратиться к использованию работ Гиппократа Хиосского.
  • В V книге древнегреческий математик рассмотрел общую теорию пропорций, разработанную Евдоксом Книдским.
  • В материалах VI книги автор прилагает общую теорию пропорций Евдокса Книдского к теории подобных фигур.
  • Книги под номерами VII-IX описывают теорию чисел. При написании этих томов математик вновь обратился к материалам, созданным и собранным пифагорейцами – представителями учения, в котором центральную роль занимает число. В этих произведениях автор говорит о геометрических прогрессиях и пропорциях, доказывает бесконечность множества простых чисел, изучает четные совершенные числа, вводит понятие НОД (наибольшего общего делителя). Алгоритм нахождения такого делителя в настоящее время называется алгоритмом Евклида. Есть предположение, что VIII книгу написал не сам Евклид, а Архит Тарентский.

Знаменитый труд Евклида "Начала"
  • Том под номером X – это наиболее сложный и объемный труд в составе «Начал», который содержит в себе классификацию иррациональностей. Авторство этой книги также доподлинно неизвестно: ее мог написать как сам Евклид, так и Теэтет Афинский.
  • На страницах XI книги математик рассказывает об основах стереометрии.
  • Книга XII содержит доказательства теорем об объемах конусов и пирамид, отношениях площадей кругов. Для построения этих доказательств используется метод исчерпывания. Большинство исследователей сходятся в том, что эту книгу также написал не Евклид. Вероятным автором является Евдокс Книдский.

  • Материалы XIII книги содержат информацию о построении пяти правильных многогранников («платоновых тел»). Некоторую часть приведенных в томе построений мог разработать Теэтет Афинский.
  • Книги XIV и XV, по общепризнанному мнению, также принадлежат другим авторам. Так, предпоследний том «Начал» написал Гипсикл (также живший в Александрии, но позже Евклида), а последний – Исидор Милетский (строивший храм святой Софии в Константинополе в начале шестого века до нашей эры).

До появления «Начал» Евклида труды с таким же названием, суть которых заключалась в последовательном изложении ключевых фактов теоретической арифметики и геометрии, были составлены Леонтом, Гиппократом Хиосским, Февдием. Все они практически исчезли из обихода после появления работы Евклида.

На протяжении двух тысяч лет пятнадцать томов «Начал» выступали в роли базового учебного пособия по геометрии. Работа переведена на арабский язык, затем – на английский. «Начала» перепечатывались сотни раз, и указанные в них базовых математических выкладок остаются актуальными по сей день.


Книга Евклида "Начала"

Значительная часть материалов, которые автор включил в труд – не собственные открытия, а известные ранее теории. Суть работы Евклида заключалась в переработке материала, его систематизации и сведении разрозненных данных воедино. Некоторые книги Евклид начинал списком определений, в первой книге имеется также перечень аксиом и постулатов.

Постулаты Евклида делятся на две группы: общие понятия, включающие в себя общепризнанные научные утверждения, и геометрические аксиомы. Так, в первой группе встречаются такие утверждения:

«Если две величины порознь равны одной и той же третьей, то они равны между собой».
«Целое больше суммы частей».

Во второй группе находятся, например, следующие утверждения:

«От всякой точки до всякой точки можно провести прямую».
«Все прямые углы равны между собой».

«Начала» - не единственная книга, написанная Евклидом. Также он написал ряд работ по катоптрике (новой отрасли оптики, в немалой степени утверждавшей математическую функцию зеркал). Несколько работ ученый посвятил изучению конических сечений. Математик также разрабатывал предположения и гипотезы, касающиеся траектории движения тел и законов механики. Он стал автором ключевых инструментов, которыми оперирует геометрия – так называемых «евклидовых построений». Многие работы этого древнегреческого мыслителя не дошли до наших дней.

Философия

В древние времена философия была тесно сплетена со многими другими отраслями научных знаний. Так, геометрия, астрономия, арифметика и музыка считались математическими науками, понимание которых необходимо для качественного изучения философии. Евклид развивал учение Платона о четырех элементах, которым приводятся в соответствие четыре правильных многогранника:

  • стихию огня олицетворяет тетраэдр;
  • воздушной стихии соответствует октаэдр;
  • стихия земли ассоциируется с кубом;
  • водная стихия связывается с икосаэдром.

В этом контексте «Начала» можно рассматривать как своеобразное учение о построении «платоновых тел», то есть пяти правильных многогранников. Учение содержит все необходимые предпосылки, доказательства и связки. Доказательство возможности построения таких тел завершается утверждением того факта, что никаких других правильных тел, за исключением данных пяти, не существует.

Практически каждая теорема Евклида в «Началах» соответствует также показателям учения о доказательстве . Так, автор последовательно выводит следствия из причин, формируя цепочку логических доказательств. При этом он доказывает даже утверждения общего характера, что также соответствует учению Аристотеля.

Личная жизнь

До нас дошла лишь некоторая информация о работе Евклида в науке, о его личной жизни же неизвестно практически ничего. Существует легенда, что царь Птолемей, решивший изучить геометрию, был раздосадован ее сложностью. Тогда он обратился к Евклиду и попросил его указать на более легкий путь к знаниям, на что мыслитель ответил: «К геометрии нет царской дороги». Выражение впоследствии стало крылатым.


Есть доказательства того, что при Александрийской библиотеке этот древнегреческий ученый основал частную математическую школу. В ней учились такие же энтузиасты науки, как и сам Евклид. Даже на закате своей жизни Евклид помогал ученикам в написании работ, создании собственных теорий и разработке соответствующих доказательств.

Точных данных о внешности ученого нет. Его портреты и скульптуры – это плод воображения их создателей, придуманный образ, передававшийся из поколения в поколение.

Смерть

Предположительно, Евклид скончался в 260-тых годах до нашей эры. Точные причины смерти не известны. Наследие ученого пережило его на две тысячи лет и вдохновляло многих великих людей спустя столетия после его кончины.

Существует мнение, что политический деятель любил цитировать высказывания Евклида в своих речах и имел при себе несколько томов «Начал».


Ученые последующих лет базировали труды на работах Евклида. Так, русский математик Николай Лобачевский использовал материалы древнегреческого мыслителя для разработки гиперболической геометрии, или геометрии Лобачевского. Формат математики, который создал Евклид, ныне известен как «евклидова геометрия». Ученый также создал прибор для определения высоты тона струны и изучал интервальные соотношения, поспособствовав созданию клавишных музыкальных инструментов.

Библиография

  • «Начала»
  • «Данные»
  • «О делении»
  • «Явления»
  • «Оптика»
  • «Поризмы»
  • «Конические сечения»
  • «Поверхностные места»
  • «Псевдария»
  • «Катоптрика»
  • «Деление канона»

Евклид (ок. 300 г. до н. э.) - древнегреческий математик, который является автором первого трактата по математике, дошедшего до нашего времени.

Жизненный путь и научные достижения

Биографических сведений об Евклиде не много. Достоверно известно только то, что его научная деятельность протекала в 3 в. до н. э в Александрии.

Евклид был первым математиком Александрийской школы. Главный труд ученого известный под названием «Начала» посвящен стереометрии, планиметрии и вопросам теории чисел. Фактически Евклид создал фундамент для развития математики. Также сохранилось его сочинение «О делении фигур», 4 книги о «Конических сечениях» и «Поризмы». Кроме того, Евклид писал об оптике, астрономии и музыке.

«Начала» Евклида в течение 2-х тысячелетий были базовым учебником по геометрии. Работая над этим учебником, Евклид обработал и свел воедино материал своих предшественников. Данный учебник состоит из 13 книг. Отличительной чертой учебника является наличие списка постулатов и аксиом. Рассмотрим содержание «Начал»:

  • 1-я книга – свойства параллелограммов и треугольников (здесь была и теорема Пифагора);
  • 3-я и 4-я книги – геометрия окружностей, описанных и вписанных многоугольников;
  • 5-я книга – теория пропорций;
  • 6-я книга – теория подобных фигур;
  • 7-я и 9-я книги – теория чисел, теоремы о геометрических прогрессиях и о пропорциях;
  • 10-я книга – классификация иррациональностей;
  • 11-я книга – основы стереометрии;
  • 12-я книга – теоремы об объёмах пирамид и конусов и об отношениях площадей кругов;
  • 13-я книга – особенности построения правильных многогранников.

«Начала» стали общей основой для трактатов Архимеда и других античных авторов. Предложения, доказанные в них, являются общеизвестными. Кроме того, этот учебник сыграл не малую роль в развитии математики Нового времени.

Папп сообщает, что древнегреческий математик был мягок и всегда любезен с теми, кто мог поспособствовать развитию математики.

Стобей рассказывает, что однажды ученик спросил у Евклида: «Какую выгоду я получу от науки?». В ответ Евклид позвал раба и приказал: «Дай этому человеку 3 обола, раз ему хочется извлекать прибыль из учебы».

По философским взглядам первый теоретик математики был платоником.

В жизни Евклида произошел один забавный случай. Однажды царь Птолемей захотел изучать геометрию, и спросил у Евклида, существует ли более быстрый путь, чем тот, что описан в «Началах». На это ученый ответил: «В геометрии нет царских дорог».

К концу 16 в. «Начала» Евклида перевели даже на китайский язык.


называется относительной частотой (или частостью) события А в рассматриваемой серии опытов.

Относительная частота события обладает следующими свойствами :

1. Частость любого события заключена между нулем и единицей, т.е.

2. Частость невозможного события равна нулю, т.е.

3. Частость достоверного события равна 1, т.е.

4. Частость суммы двух несовместных событий равна сумме частоты
этих событий, т.е. если , то

Частость обладает еще одним фундаментальным свойством, называемым свойством статистической устойчивости : с увеличением числа опытов (т.е. n ) она принимает значения, близкие к некоторому постоянному числу (говорят: частость стабилизируется, приближаясь к некоторому числу, частость колеблется около некоторого числа, или ее значения группируются около некоторого числа).

Так, например, в опыте (К. Пирсон) бросание монеты – относительная частота появления герба при 12000 и 24000 бросаниях оказалась равной 0,5015 и 0,5005 соответственно, т.е. частость приближается к числу . Частость рождения мальчика, как показывают наблюдения, колеблется около числа 0,515.

Отметим, что теория вероятностей изучает только те массовые случайные явления с неопределенным исходом, для которых предполагается наличие устойчивости относительной частоты.

Статистическое определение вероятности

Для математического изучения случайного события необходимо ввести какую-либо количественную оценку события. Понятно, что одни события имеют больше шансов («более вероятны») наступить, чем другие. Такой оценкой является вероятность события , т.е. число, выражающее степень возможности его появления в рассматриваемом опыте. Математических определений вероятности существует несколько, все они дополняют и обобщают друг друга.

Рассмотрим опыт, который можно повторять любое число раз (говорят: «проводятся повторные испытания»), в котором наблюдается некоторое событие А .



Статистической вероятностью события А называется число, около которого колеблется относительная частота события Апри достаточно большом числе испытаний (опытов).

Вероятность события А обозначается символом Р (А ). Согласно данному определению:

. (1.2)

Математическим обоснованием близости относительной частоты и вероятности Р (А ) некоторого события А служит теорема Я. Бернулли.

Вероятности Р (А ) приписываются свойства 1-4 относительной частоты:

1. Статистическая вероятность любого события заключена между нулем и единицей, т.е.

2. Статистическая вероятность невозможного события равна нулю, т.е.

3. Статистическая вероятность достоверного события равна 1, т.е.

4. Статистическая вероятность суммы двух несовместных событий равна сумме частоты этих событий, т.е. если , то

Статистический способ определения вероятности, опирающийся на реальный опыт, достаточно полно выявляет содержание этого понятия. Недостатком статистического определения является неоднозначность статистической вероятности; так в примере с бросанием монеты в качестве вероятности можно принять не только число 0,5, но и 0,49 или 0,51 и т.д. Для надежного определения вероятности нужно проделать большое число испытаний, что не всегда просто или дешево.

Классическое определение вероятности

Существует простой способ определения вероятности события, основанный на равновозможности любого из конечного числа исходов опыта. Пусть проводится опыт с n исходами, которые можно представить в виде полной группы несовместных равновозможных событий. Такие исходы называются случаями, шансами, элементарными событиями , опыт - классическим . Про такой опыт говорят, что он сводится к схеме случаев или схеме урн (т.к. вероятностную задачу для такого опыта можно заменить эквивалентной ей задачей с урнами, содержащими шары разных цветов).

Случай w, который приводит к наступлению события А , называется благоприятным (или благоприятствующим) ему, т.е. случай w влечет событие A : .

Вероятностью события А называется отношение числа m случаев, благоприятствующих этому событию, к общему числу n случаев, т.е.

. (1.3)

Наряду с обозначением Р (А ) для вероятности события А используется обозначение р , т.е. р=Р (А ).

Из классического определения вероятности вытекают следующие свойства :

1. Вероятность любого события заключена между нулем и единицей, т.е.

2. Вероятность невозможного события равна нулю, т.е.

3. Вероятность достоверного события равна 1, т.е.

4. Вероятность суммы несовместных событий равна сумме частоты этих событий, т.е. если , то

Пример 1.3. В урне находятся 12 белых и 8 черных шаров. Какова вероятность того, что наудачу вынутый шар будет белым?

Решение :

Пусть А – событие, состоящее в том, что вынут белый шар. Ясно, что – число всех равновозможных случаев. Число случаев, благоприятствующих событию А , равно 12, т.е. . Следовательно, по формуле (1.3) имеем: , т.е. .

Геометрическое определение вероятностей

Геометрическое определение вероятности применяется в случае, когда исходы опыта равновозможны, а ПЭС есть бесконечное несчетное множество. Рассмотрим на плоскости некоторую область Ω, имеющую площадь , и внутри области Ω, область D с площадью S D (см. рис. 6).

В области Ω случайно выбирается точка X . Этот выбор можно интерпретировать как бросание точки X в область Ω. При этом попадание точки в область Ω - достоверное событие, в D - случайное. Предполагается, что все точки области Ω равноправны (все элементарные события равновозможны), т.е. что брошенная точка может попасть в любую точку области Ω и вероятность попасть в область D пропорциональна площади этой области и не зависит от ее расположения и формы. Пусть событие , т.е. брошенная точка попадет в область D .

Классическое определение вероятности

Вероятность - одно из основных понятий теории вероятностей. Существует несколько определений этого понятия. Вероятность есть число, характеризующее степень возможности появление того или иного события.

Каждый из возможных результатов испытания называется элементарным исходом (элементарным событием). Обозначения: …,

Те элементарные исходы, в которых интересующее нас событие наступает, назовем благоприятствующими.

Пример: В урне 10 одинаковых шаров, из которых 4 – черные, 6- белые. Событие - из урны извлекается белый шар. Число благоприятствующих исходов, в которых из урны будут извлекаться белые шары, равно 4-м.

Отношение числа благоприятствующих событию элементарных исходов к их общему числу называют вероятностью события; обозначение В нашем примере

Вероятностью события называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу,

где число элементарных исходов, благоприятствующих событию ; число всех возможных элементарных исходов испытания.

Свойства вероятности:

1. Вероятность достоверного события равна единице, т.е.

2. Вероятность невозможного события равно нулю, т. е.

3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей, т. е.

или

С учетом свойств 1 и 2, вероятность любого события удовлетворяет неравенству

4 . Основные формулы комбинаторики

Комбинаторика изучает количество комбинаций, подчиненных определенным условиям, которые можно составить из заданного конечного множества элементов произвольной природы. При непосредственном вычислении вероятностей часто используют формулы комбинаторики. Приведем наиболее употребительные из них.

Перестановками называют комбинации, состоящие из одних и тех же различных элементов и отличающиеся только порядком их расположения.

Число всех возможных перестановок

где Принято, что

Пример. Число трехзначных чисел, когда каждая цифра входит в изображение трехзначного числа только один раз, равно

Размещениями называют комбинации, составленные из различных элементов по элементов, которые отличаются либо составом элементов, либо их порядком. Число всех возможных размещений

Пример. Число сигналов из 6 флажков различного цвета, взятых по 2:

Сочетаниями называют комбинации, составленные из различных элементов по элементов, которые отличаются хотя бы одним элементом. Число сочетаний

Пример. Число способов выбора двух деталей из ящика, содержащего 10 деталей:



Числа размещений, перестановок и сочетаний связаны равенством

При решении задач комбинаторики используют следующие правила:

Правило суммы . Если некоторый объект может быть выбран из совокупности объектов способами, а другой объект может быть выбран способами, то выбрать либо , либо можно способами.

Правило произведения . Если объект можно выбрать из совокупности объектов способами и после каждого такого выбора объект можно выбрать способами, то пара объектов в указанном порядке может быть выбрана способами.

Относительная частота также является основным понятием теории вероятностей.

Относительной частотой события называют отношение числа испытаний, в которых событие появилось, к общему числу фактически произведенных испытаний и определяется формулой

,

где число появлений события в испытаниях, общее число испытаний.

Сопоставляя определения вероятности и относительной частоты, заключаем, что определение вероятности не требует проведения испытаний, а определение относительной частоты предполагает фактическое проведение испытаний.

Длительные наблюдения показывают, что при проведении опытов в одинаковых условиях, относительная частота обладает свойством устойчивости. Это свойство состоит в том, что в различных сериях опытов относительная частота испытаний от серии к серии изменяется мало, колеблясь около некоторого постоянного числа. Это постоянное число и есть вероятность появления события.

Классическое определение вероятности имеет некоторые недостатки:

1) число элементарных исходов испытания конечно, на практике это число может быть и бесконечным;

2) очень часто результат испытания невозможно представить в виде совокупности элементарных событий;

По этим причинам наряду с классическим определением вероятности используют статистическое определение: в качествестатистической вероятности события принимают относительную частоту.

Известно, что случайное событие вследствие испытания может произойти или не произойти. Но при этом для разных событий в одном и том же испытании существуют разные возможности. Давайте разберём пример. Если в урне сто тщательно перемешанных одинаковых шариков, причем среди них лишь десять черных, а остальные - белые, то при извлечении наугад одного шарика больше возможностей, что появится имеет именно белый. Возможность появления того или иного события в данном испытании имеет численную меру, которая называется вероятностью этого события и согласно теории вероятностей, можно посчитать, каков же шанс увидеть чёрный или белый шар.

Классическое определение вероятности

Предположим, что при проведении определенного испытания возможно появление $n$ элементарных равновозможных событий. Из этого количества число $m$ - это количество тех элементарных событий, которые благоприятствуют появлению определенного события $A$. Тогда вероятностью события $A$ называется отношение $P\left(A\right)=\frac{m}{n} $.

Пример № 1.

В урне 3 белых и 5 черных шариков, которые отличаются лишь цветом. Испытание заключается в том, что из урны наугад вынимают один шарик. Событием $A$ считаем "появление белого шарика". Вычислить вероятность события $A$.

При испытании можно извлечь любой из восьми шариков. Все эти события являются элементарными, поскольку они несовместны и образуют полную группу. Понятно также, что все эти события - равновозможны. Итак, для вычисления вероятности $P\left(A\right)$ можно применить классическое ее определение. Как решение имеем: $n=8$, $m=3$, а вероятность извлечь из шаров именно белый будет равна $P\left(A\right)=\frac{3}{8} $.

Из классического определения вероятности вытекают следующие ее свойства:

  • вероятность достоверного события $V$ всегда равна единице, то есть $P\left(V\right)=1$; это объясняется тем, что достоверному событию благоприятствуют все элементарные события, то есть $m=n$;
  • вероятность невозможного события $H$ всегда равна нулю, то есть $P\left(H\right)=0$; это объясняется тем, что невозможному событию не благоприятствует ни одно из элементарных, то есть $m=0$;
  • вероятность любого случайного события $A$ всегда удовлетворяет условию $0

Таким образом, в общем случае вероятность любого события удовлетворяет неравенству $0\le P\left(A\right)\le 1$.

Относительная частота и её устойчивость

Определение 1

Предположим, что выполняется довольно большое количество испытаний, в каждом из которых может произойти или не произойти определенное событие $A$. Такие испытания называют серией испытаний.

Предположим, что проведена серия из $n$ испытаний, в которых событие $A$ состоялось $m$ раз. Здесь число $m$ называют абсолютной частотой события $A$, а отношение $\frac{m}{n} $ называют относительной частотой события $A$. Например, из $n=20$ использованных во время пожара огнетушителей не сработали (событие $A$) $m=3$ огнетушителя. Здесь $m=3$ - абсолютная частота события $A$, а $\frac{m}{n} =\frac{3}{20} $ - относительная.

Практический опыт и здравый смысл подсказывают, что при малых $n$ значения относительной частоты не могут быть устойчивыми, но если количество испытаний увеличивать, то значения относительной частоты должны стабилизироваться.

Пример № 2.

Для участия в команде тренер отбирает пять мальчиков из десяти. Сколькими способами он может сформировать команду, если два определенных мальчика, образующих костяк команды, должны войти в команду?

В соответствии с условием задачи, двое мальчиков войдут в команду сразу. Следовательно, остается отобрать трех мальчиков из восьми. При этом важен только состав, так роли всех членов команды не различаются. Это значит, что мы имеем дело с сочетаниями.

Сочетаниями из $n$ элементов по $m$ называются комбинации, состоящие из $m$ элементов и отличающиеся друг от друга хотя бы одним элементом, но не порядком расположения элементов.

Количество сочетаний вычисляется по формуле $C_{n}^{m} =\frac{n!}{m!\cdot \left(n-m\right)!} $.

Таким образом, количество различных способов формирования команды в количестве трех мальчиков, выбирая их из восьми мальчиков - это число сочетаний из 8 элементов по 3:

$C_{8}^{3} =\frac{8!}{3!\cdot \left(8-3\right)!} =\frac{8!}{3!\cdot 5!} =\frac{6\cdot 7\cdot 8}{1\cdot 2\cdot 3} =56$

Пример № 3.

На полке в кабинете в случайном порядке расставлено 15 книг, причем 5 из них по алгебре. Преподаватель берет наудачу три книги. Найти вероятность того, что хотя бы одна из взятых книг окажется по алгебре.

Событие $A$ (хотя бы одна из взятых трех книг - книга по алгебре) и $\bar{A}$ (ни одна из взятых трех книг не является книгой по алгебре) - противоположные, поэтому Р(А) + Р($\bar{A}$) = 1. Отсюда Р(А) = 1-Р($\bar{A}$). Таким образом, искомая вероятность Р(А) = 1 - $C_{10}^{3} \, /C_{15}^{3} \, $= 1 - 24/91 = 67/91.

Пример № 4.

Из двадцати акционерных обществ четыре являются иностранными. Гражданин приобрел по одной акции шести акционерных обществ. Какова вероятность того, что среди купленных акций две окажутся акциями иностранных акционерных обществ?

Общее число комбинаций выбора акционерных обществ равно числу сочетаний из 20 по 6, то есть ${\rm C}_{{\rm 20}}^{{\rm 6}} $. Число благоприятствующих исходов определяется как произведение ${\rm C}_{{\rm 4}}^{{\rm 2}} \cdot {\rm C}_{{\rm 16}}^{{\rm 4}} $, где первый сомножитель указывает число комбинаций выбора иностранных акционерных обществ из четырех. Но с каждой такой комбинацией могут встретиться акционерные общества, не являющиеся иностранными. Число комбинаций таких акционерных обществ будет ${\rm C}_{{\rm 16}}^{{\rm 4}} $. Поэтому искомая вероятность запишется в виде ${\rm P}=\frac{{\rm C}_{{\rm 4}}^{{\rm 2}} \cdot {\rm C}_{{\rm 16}}^{{\rm 4}} }{{\rm C}_{{\rm 20}}^{{\rm 6}} } =0,28$.

Пример № 5.

В партии из 18 деталей находятся 4 нестандартных. Наугад выбирают 5 деталей. Найти вероятность того, что из этих 5 деталей две окажутся нестандартными.

Число всех равновозможных несовместных исходов $n$ равно числу сочетаний из 18 по 5, т.е. $n=C_{18}^{5} =8568$.

Подсчитаем число исходов $m$, благоприятствующих событию А. Среди 5 взятых наугад деталей должно быть 3 стандартных и 2 нестандартных. Число способов выборки двух нестандартных деталей из 4 имеющихся нестандартных равно числу сочетаний из 4 по 2: $C_{4}^{2} =6$.

Число способов выборки трех стандартных деталей из 14 имеющихся стандартных равно $C_{14}^{3} =364$.

Любая группа стандартных деталей может комбинироваться с любой группой нестандартных деталей, поэтому общее число комбинаций $m$ составляет $m=C_{4}^{2} \cdot C_{14}^{3} =6\cdot 364=2184$.

Искомая вероятность события А равна отношению числа исходов $m$, благоприятствующих событию, к числу $n$ всех равновозможных и несовместных событий $P(A)=\frac{2184}{8568} =0,255.$

Пример № 6.

В урне содержится 5 чёрных и 6 белых шаров. Случайным образом вынимают 4 шара. Найти вероятность того, что среди них имеется хотя бы один белый шар.

Пусть событие $ $ - среди вынутых шаров хотя бы один белый.

Рассмотрим противоположное событие $\bar{}$ - среди вынутых шаров нет ни одного белого. Значит все вынутые 4 шара чёрные.

Используем формулы комбинаторики.

Количество способов вынуть четыре шара из одиннадцати:

$n=!_{11}^{4} =\frac{11!}{4!\cdot (11-4)!} =330$

Количество способов вынуть четыре черных шара из одиннадцати:

$m=!_{5}^{4} =\frac{5!}{4!\cdot (5-4)!} =5$

Получаем: $\; (\bar{})=\frac{m}{n} =\frac{5}{330} =\frac{1}{66} $; $P(A)=1-\; (\bar{A})=1-\frac{1}{66} =\frac{65}{66} $.

Ответ: вероятность того, что среди четырёх вынутых шаров нет ни одного белого равна $\frac{65}{66} $.