Свидетельствуют о том, что на нашей планете уже много сотен миллионов лет назад сформировались как жесткие и малоподвижные глыбы - платформы и щиты, так и подвижные горные пояса, которые часто называют геосинклинальными. К ним относятся и огромные , обрамляющие моря и целые . В XX в. эти научные представления были дополнены новыми данными, среди которых в первую очередь следует назвать открытие срединно-океанических хребтов, и океанических котловин.

Наиболее устойчивыми участками земной коры являются платформы. Площадь их составляет многие тысячи и даже миллионы квадратных километров. Когда-то они были подвижными, но со временем превратились в жесткие массивы. Платформы, как правило, состоят из двух этажей. Нижний этаж построен из древних кристаллических пород, верхний - из более молодых. Породы нижнего этажа называют фундаментом платформы. Выступы такого фундамента можно наблюдать в , на , в и . Благодаря своей массивности и жесткости эти выступы получили название - шиты. Это самые древние участки : возраст многих достигает 3 - 4 млрд. лет. За это время в породах произошли необратимые изменения , перекристаллизация, уплотнения и другие метаморфозы.

Верхний этаж платформ образуют огромные толщи осадочных пород, накопившихся в течение сотен миллионов лет. В этих толщах наблюдаются пологие складки, разрывы, валы и купола. Следами особенно крупных поднятий и опусканий являются антеклизы и синеклизы. по своей форме напоминает гигантский холм площадью 60 - 100 тыс. км2. Высота такого холма небольшая - около 300 - 500 м.

Окраины антеклизы ступенями спускаются к окружающим их (от греч. syn - вместе и enklisis - наклонение). На окраинах синеклиз и антеклиз часто встречаются отдельные валы и купола - мелкие тектонические формы. Для платформ, прежде всего, характерны ритмические колебания, что приводило к последовательной смене поднятий и опусканий. В процессе этих движений возникали прогибы, небольшие складки, тектонические трещины.

Строение осадочного чехла на платформах осложняют тектонические структуры, появление которых объяснить непросто. Например, под северной частью дна и под Прикаспийской низменностью скрыт огромный замкнутый со всех сторон бассейн глубиной более 22 км. В поперечнике этот бассейн достигает 2000 км. Его заполняют глины, известняки, каменная соль и другие породы. Верхние 5 - 8 км осадков относят к палеозойскому возрасту. По геофизическим данным, в центре этой впадины отсутствует гранито-гнейсовый слой и толща осадочных пород залегает непосредственно на гранулито-базальтовом слое. Такое строение больше характерно для впадин с океаническим типом земной коры, поэтому Прикаспийскую впадину считают реликтом древнейших докембрийских океанов.

Полной противоположностью платформам являются орогенические пояса - горные пояса, возникшие на месте прежних геосинклиналей. Они, так же как и платформы, принадлежат к длительно развивающимся тектоническим структурам, но скорости движения земной коры в них оказались значительно большими, а силы сжатия и растяжения создали на поверхности Земли крупные горные хребты и впадины. Тектонические напряжения в орогенических поясах то усиливались, то резко уменьшались, а потому можно проследить и фазы роста горных сооружений, и фазы их разрушения.

Боковое сжатие блоков земной коры в прошлом нередко приводило к разделению блоков на тектонические пластины, каждая из которых имела толщину 5-10 км. Тектонические пластины коробились и часто надвигались одна на другую. В результате древние породы оказывались надвинутыми на более молодые породы. Крупные надвиги, измеряемые десятками километров, ученые называют шарьяжами. Их особенно много в , и , но шарьяжи встречаются и на платформах, где смещение пластин земной коры приводило к образованию складок и валов, например в Жигулевских горах.

Дно морей и океанов долго оставалось малоисследованной областью Земли. Только в первой половине XX в. были открыты срединно-океанические хребты, которые впоследствии были обнаружены во всех океанах планеты. Они имели разную структуру и возраст. Результаты глубоководного бурения тоже способствовали изучению структуры срединно-океанических хребтов. Осевые зоны срединно-океанических хребтов вместе с рифтовыми впадинами бывают смещены на сотни и тысячи километров. Эти смещения наиболее часто происходят по крупным разломам (так называемым трансформным разломам), которые образовались в разные геологические эпохи.

Платформа (от франц.plat - плоский иforme - форма) - крупная (несколько тыс. км в поперечнике), относительно устойчивая часть земной коры, характеризующаяся очень низкой степенью сейсмичности.

Платформа имеет двухэтажное строение (рис. 2). Нижний этаж -фундамент - это древняя геосинклинальная область - образован метаморфизованными породами, верхний -чехол - морскими осадочными отложениями небольшой мощности, что свидетельствует о небольшой амплитуде колебательных движений.

Рис. 2. Строение платформы

Возраст платформ различен и определяется по времени становления фундамента. Наиболее древними являются платформы, фундамент которых образован смятыми в складки кристаллическими породами докембрия. Таких платформ на Земле десять (рис. 3).

Поверхность докембрийского кристаллического фундамента очень неровная. В одних местах он выходит на поверхность илизалегает вблизи нее, образуящиты, в других -антеклизы (от греч.anti - против иklisis - наклонение) исинеклизы (от греч. syn - вместе,klisis - наклонение). Однако эти неровности перекрыты осадочными отложениями со спокойным, близким к горизонтальному залеганием. Осадочные породы могут быть собраны в пологие валы, куполовидные поднятия, ступенеобразные изгибы, а иногда наблюдаются и разрывные нарушения с вертикальным смешением пластов. Нарушения в залегании осадочных пород обусловлены неодинаковой скоростью и разными знаками колебательных движений блоков кристаллического фундамента.

Рис. 3. До кембрийские платформы: I - Северо-Американская; II - Восточно-Европейская; III - Сибирская; IV - Южно-Американская; V - Африкано-Аравийская; VI - Индийская; VII - Восточно-Китайская; VIII - Южно-Китайская; IX - Австралийская; X - Антарктическая

Фундамент более молодых платформ образован в периодыбайкальской ,каледонской или герцинской складчатости. Области мезозойской складчатости не принято называть платформами, хотя они и являются таковыми на сравнительно раннем этапе развития.

В рельефе платформам соответствуют равнины. Однако некоторые платформы испытали серьезную перестройку, выразившуюся в общем поднятии, глубоких разломах и крупных вертикальных перемещениях глыб относительно друг друга. Так возникли складчато-глыбовые горы, примером которых могут служить горы Тянь-Шань, где возрождение горного рельефа произошло во время альпийского орогенеза.

На протяжении всей геологической истории в континентальной земной коре происходило наращивание площади платформ и сокращение геосинклинальных зон.

Внешние (экзогенные) процессы обусловлены поступающей на Землю энергией солнечного излучения. Экзогенные процессы сглаживают неровности, выравнивают поверхности, заполняют понижения. Они проявляются на земной поверхности и как разрушительные, и как созидательные.


Разрушительные процессы - это разрушение горных пород, происходящее из-за перепада температур, действия ветра, размывания потоками воды, движущимися ледниками.Созидательные процессы проявляются в накоплении переносимых водой и ветром частиц в понижениях суши, на дне водоемов.

Самым сложным внешним фактором является выветривание.

Выветривание - совокупность естественных процессов, приводящих к разрушению горных пород.

Выветривание условно подразделяется на физическое и химическое.

Основными причинамифизического выветривания являются колебания температуры, связанные с суточными и сезонными изменениями. В результате перепалов температур образуются трещины. Вода, попадающая в них, замерзая и оттаивая, расширяет трещины. Так происходит выравнивание выступов горных пород, появляются осыпи.

Важнейшим факторомхимического выветривания также является вода и растворенные в ней химические соединения. При этом значительную роль играют климатические условия и живые организмы, продукты жизнедеятельности которых влияют на состав и растворяющие свойства воды. Большой разрушительной силой обладает и корневая система растений.

Процесс выветривания приводит к образованию рыхлых продуктов разрушения горных пород, которые называютсякорой выветривания. Именно на ней постепенно образуется почва.

Из-за выветривания поверхность Земли все время обновляется, стираются следы прошлого. В то же время внешние процессы создают формы рельефа, обусловленные деятельностью рек, ледников, ветра. Все они образуют специфические формы рельефа - речные долины, овраги, ледниковые формы и т. д.

Литосфера- внешняя сфера «твердой» оболочки Земли. Верхняя часть ее называется земной корой. Средняя плотность земной коры составляет 2,8 г/см 3 . Она отделяется от верхней мантии границей резкого изменения скорости распространения сейсмических волн с 6 до 8 км/с. На материках это происходит на глубине 35 – 70 км; в пределах океанов - 5 - 15 км. Эта граница получила название границы Мохоровичича(по имени открывшего её югославского ученого Андрея Мохоровичича).

Земная кора различна по составу, строению и мощности на континентах и в океане (рис. 3.1).

Рис. 3.1. Схема строения литосферы: 1 – вода океана; 2 – осадочный слой; 3 - гранитный слой; 4 – базальтовый слой; 5 - верхняя мантия; 6 – межблоковые разломы

Континентальная (материковая) кора имеет мощность 30-40 км, достигая 70-75 км под Гималаями и Андами. В строении континенталь­ной коры различают три слоя:

· осадочный слой, состоящий из осадочных пород мощностью до 20 км и плотностью 1,8 – 2,5 г/см 3 ;

· «гранитный», образованный гранитоидами - светлоокрашенными горными породами мощностью 10 - 40 км и плотностью 2,5 – 2,8 г/см 3 . Скорость распространения волн в этом слое 5,5 – 6,2 км/с;

· «базальтовый», скорость распространения сейсмических волн в этом слое 6,1-7,4 км/с, что характерно для базальта, отсюда название слоя - базальтовый. Мощность базальтового слоя 15-30 км. Граница между гранитным и базальтовым слоем называется границей Конрада.

Океаническая кора обычно не содержит «гранитного» слоя, а мощность осадочного слоя, представленного глубоководными осадками, не превышает 600 – 700 м. Нижний «базальтовый» слой распространен повсеместно и имеет мощность 4,1-5,8 км.

Сплошность земной коры прерывается большим количеством вертикальных и наклонных нарушений, разбивающих её на блоки. Некоторые нарушения уходят в мантию, образуя коромантийные блоки.

Структурными элементами земной коры являются литосферные плиты (платформы), геосинклинали (подвижные пояса) и океанические плиты.

Платформы (массивы, глыбы) занимают огромные пространства на Земле. К ним относятся Русская платформа, Австралийская, Северо-Африканская и др. Платформы чаще всего имеют двухэтажное строение. Их основанием (фундаментом) являются складчатые осадочные породы либо метаморфические и магматические породы. На фундаменте располагаются породы осадочного происхождения в относительно горизонтальном залегании, которые называются осадочным чехлом платформы. Для платформ, как наиболее жестких частей земной коры, характерны сравнительно спокойные колебательные движения вертикаль­ного характера.

Платформы являются центральной частью более обширных структур­ных образований - литосферных плит с континентальной корой, на которых располагаются современные материки.

океанические плиты - это обширные области дна океанов, которые являются слоем океанической коры базальтового состава, с незначительным по мощности осадочным чехлом. В них через рифтовые зоны, или зоны спрединга (англ. spreading, от spread- растягивать, расширять) поступают вещество и тепло из верхней мантии, постоянно наращивая океаническую кору.

На современном уровне знаний утвердились представления о развитии Земного шара в последние 4 млрд лет путем его расширения. Глобальные тектонические процессы сопровождались постепенным увеличением радиуса Земли и её поверхности за счет постоянного прироста площади океанических плит. Действующее со стороны расширяющихся океанов горизонтальное давление на континенты не является уравновешенным. При преобладающем давлении с какой-либо стороны происходит перемещение литосферных плит, «дрейф» материков по верхней мантии Земли.

перемещаясь по верхней мантии Земли, континентальные плиты надвигаются на океанические, которые, являясь более тяжелыми, погружаются, переплавляются и уходят в глубины Земли (рис. 3.1).

Между континентальными и океаническими плитами находятся глубокие прогибы, которые называются геосинклиналями (от греч.Ge - земля + Syn - вместе + Klino – наклоняюсь). Геосинклиналь - обширная, обычно линейно вытянутая, дугообразная в плане тектоническая структура, отличающаяся повышенной подвижностью, большой мощностью осадочных отложений, которые легко проницаемы для внедряющейся

в них магмы.

В начале своего развития они представляют собой морские бассейны, дно которых испытывает прогибание. В них сносится обломочный материал, накапливаются многокилометровые толщи осадков. Примером геосинклиналей такой стадии развития являются Японское и Средиземное моря.



Рис. 3.2. Положение и динамика основных структурных элементов земной коры. 1 – гранитный слой континентальной коры; 2 – базальтовый слой; 3 – осадочный слой; 4 - направление горизонтальных сдвигов от океанических рифтов; 5 – вынос глубинных базальтовых расплавов и тепла через рифтовые зоны

Со временем, в результате горизонтального движения и давления плит, геосинклинальные осадки, зажатые между плитами, сминаются в складки и, являясь более легким материа­лом по сравнению с расплавом океанической коры, как бы выталкиваются («всплывают») из-под воды в виде горных сооружений. Так возникли складчатые горные хребты Альп, Карпат, Крыма, Кавказа, Памира и т. д. Для районов геосинклиналей типичны интенсивные и разнообразные тектонические движения. Это вызывает изменение первоначального положения пород. Горизонтальное залегание пород сменяется смятием, перемещением, разрывами. Районам геосинклиналей свойственны повышенная сейсмичность (землетрясения). К ним приурочено большинство современных вулканических поясов.

Тепловой режим земной коры

Развитие земной коры происходило последние 4 млрд лет за счет поступающей энергии Солнца и внутреннего тепла Земли. Примерное количество поступающей солнечной энергии на поверхность Земли – 1,72*10 17 Вт. Конвективный перенос тепла из внутренних сфер Земли к её поверхности оценивается в 3,05*10 13 Вт. Соотношение поступающей энергии на поверхность Земли от Солнца и из недр планеты составляет 140:1, что обусловливает сложный характер изменений температуры в толщах горных пород.

В верхней части земной коры выделяют три температурные зоны: I - сезонных колебаний, II-постоянной температуры и III-нарастания температур (рис. 3.3). Изменение температур в зоне I определяется климатическими условиями местности – сезонной прогреваемостью и промерзанием почвогрунтов.

Рис. 3.3. Схема распределения температур в земной коре

Общая мощность зоны I достигает 12-15 м. По мере углубления в недра Земли влияние суточных и сезонных колебаний температур уменьшается и на глубине примерно 15-40 м находится зона постоянной температуры, равная среднегодовой для данной местности. В северном полушарии она равна +15,5°С, а в южном - +13,6°С.

В пределах зоны III температура с глубиной возрастает. Величина нарастания температуры на каждые 100 м глубины называется геотермическим градиентом,а разность глубин, при которой температура повышается на один градус, называется геотермической ступенью. Средняя величина этой ступени составляет 33 м. В районах вулканической деятельности, где в недрах земли располагаются участки расплавленной магмы, величина геотермической ступени уменьшается до 5-7 м.

О температуре глубоких зон земной коры и верхней мантии можно судить по температуре лав вулканов. Она примерно равна +1 500°С.

За счет энергии Солнца происходят основные геодинамические процессы на поверхности Земли. Их принято называть экзогенными. Источниками внутреннего или эндогенного тепла, является энергия, постоянно возникающая за счет гравитационного уплотнения ядра и распада радиоактивных элементов, находящихся в земной коре и мантии. За счет эндогенного тепла в земной коре происходят такие процессы, как горообразование, тектонические деформации и подвижки, землетрясения. Возникают и существуют очаги и зоны расплавленных магм, вулканические пояса и геотермальные системы.

Совокупность долговременных в геологическом масштабе времени эндогенных и экзогенных процессов в земной коре привело к формированию современного облика и состава земной поверхности, в том числе современной конфигурации континентов и морей, их структурного и вещественного строения.

Вещество земной коры

Вещество земной коры представлено различными горными породами (гранитами, песчаниками, песками, глинами и др.), которые, в свою очередь, состоят из минералов.

Минералы - это природные соединения, имеющие определенный химический состав и внутреннее строение, образующиеся в недрах земной коры и на ее поверхности. Они представляют собой хорошо ограненные кристаллы или зерна с элементами огранки, обладающие определенными физическими свойствами.

3.3.1. Происхождение минералов

В земной коре содержится более I7 000 видов и разновидностей минералов, но лишь около 100 из них имеют широкое распространение и слагают главнейшие горные породы. Эти минералы называют породообразующими, а остальные - второстепенными.

Все многообразные процессы их образования можно разделить на три группы: эндогенные, экзогенные и метаморфические.

Эндогенные процессы протекают в недрах Земли. Минералы рожда­ются по мере кристаллизации магмы - силикатного огненно-жидкого расплава, при высоких температурах и давлениях. Эти минералы плотные, с большой твердостью, стойкие к воде, кислотам, щелочам (кварц, силикаты и др.).

Экзогенные процессы свойственны поверхности земной коры, где имеют место сложные явления взаимодействия литосферы с гидросферой, атмосферой и биосферой. В этих процессах минералы образуются на суше, а также путем выпадения их из водных растворов (озер, морей и др.). Экзогенные минералы в большинстве случаев имеют низкую твердость и активно взаимодействуют с водой или растворяются в ней.

Метаморфические процессы - это перерождение ранее образовавших­ся минералов (эндогенных и экзогенных) под воздействием высоких температур, давлений, а также магматических газов и воды.

Контрольные вопросы и задания

  • 1. Что такое относительное и абсолютное летоисчисление?
  • 2. На чем базируется стратиграфический метод?
  • 3. На чем основан литолого-петрографический метод?
  • 4. В чем заключается палеонтологический метод?
  • 5. Расскажите о стратиграфической шкале.
  • 6. Какие методы определения абсолютного возраста существуют? Расскажите о них.
  • 7. Расскажите о геохронологической шкале.

ТЕКТОНИЧЕСКИЕ ДВИЖЕНИЯ И ТЕКТОНИЧЕСКИЕ СТРУКТУРЫ ЗЕМНОЙ КОРЫ

Тектонические движения многообразны. Одни приводят к формированию крупных поднятий и прогибов, другие выражаются в смятии слоев в складки, третьи являются причиной образования разломов и разрывов. Выделяются два основных вида тектонических движений: вертикальные и горизонтальные .

Вертикальные движения земной коры приводят к ее выгибанию (относительному поднятию) и прогибанию на больших территориях. Особенностью вертикальных колебательных движений земной коры является их непрерывное и повсеместное проявление на протяжении всей геологической истории.

В современном распределении континентов и океанов, в процессах горообразования, вулканизма главное значение имеют горизонтальные движения, которые приводят к смятию слоев в складки. Участок коры, смятый в складки, не может вернуться к первоначальному состоянию. Дальнейшее преобразование структурной формы может происходить только в направлении большего усложнения складчатой структуры.

Тектонические движения вызываются накоплением тепла в недрах Земли в результате радиоактивного распада неустойчивых элементов, что приводит к нарушению равновесия масс горных пород.

Земля - третья от Солнца планета Солнечной системы. Благодаря своим уникальным, быть может, единственным во Вселенной природным условиям она стала местом, где возникла и получила развитие органическая жизнь.

Площадь поверхности Земли 510,2 млн км 2 , из которых примерно 70,8% приходится на Мировой океан. Его средняя глубина около 3,8 км, максимальная (Мариинская впадина в Тихом океане) равна 11 022 км, объем воды 1370 млн км 2 , средняя соленость 35 г/л. Суша составляет соответственно 29,2% и образует шесть материков и острова. Она поднимается над уровнем моря в среднем на 875 м. Горы занимают свыше 1/3 поверхности суши .

Тектонические структуры земной коры - это обособленные участки, отличающиеся от смежных участков определенными особенностями строения, истории геологического развития и состава слагающих их пород. Движения земной коры и более глубоких оболочек, приводящие к образованию и изменению различных тектонических структур, называют тектоническими.

Самыми крупными тектоническими структурами земной коры являются материки и океаны (рис. 1.1) . Коренные различия между ними заключаются в отсутствии под океанами гранитного слоя, в уменьшении толщины базальтового слоя и неглубоком залегании поверхности Мохоровичича под океанами по сравнению с континентами. Выделяют материковую (континентальную), океаническую и переходную кору.

К числу основных структурных элементов континентов относятся континентальные платформы и подвижные пояса.

Океан Материк Океан

Рис. 1.1. Строение земной коры под материками и океанами : 7 - осадочный слой; 2 - гранитный слой; 3 - базальтовый слой

Континенты характеризуются определенными чертами:

  • 1) увеличенная мощность земной коры, в составе которой присутствует гранитно-метаморфический слой;
  • 2) верхняя мантия имеет неоднородную астеносферу, она обеднена базальтами и более холодная;
  • 3) присутствует как основной, так и кислый магматизм;
  • 4) континентальная литосфера сформировалась за счет геосин-клинальных процессов, которые и привели к образованию мощного гранитно-метаморфического слоя.

Материки не заканчиваются у кромки океана, а продолжаются под океаническими водами.

Понятие о платформах зародилось в конце XIX в. в противопоставление подвижным поясам земной коры, к тому времени получившим название «геосинклинали». Термин «платформа» появился впервые в 1904 г. во француском переводе капитального труда австрийского геолога Э. Зюсса «Лик Земли». В 1921 г. для стабильных частей континентов австралийский тектонист Л. Кобер предложил термин «кратоген» (от греч. кратос - крепкий, устойчий), который немецкий ученый Г. Штилле сократил до названия «кратон».

Платформы представляют крупные и относительно устойчивые в тектоническом отношении участки земной коры, имеющие в поперечнике тысячи километров. Их характеризуют определенные черты: возраст формирования, место расположения и наличие двух структурных этажей.

Выделяют платформы двух видов: континентальные и океанические.

Континентальные платформы занимают огромные площади в миллионы квадратных километров и сложены континентальной корой мощностью до 30-45 км. Литосфера в их пределах достигает мощности 150-200 км, а по некоторым данным - до 400 км.

Платформы характеризуются выравненным низменным или плоскогорным рельефом, небольшой скоростью тектонических движений, слабой сейсмичностью, отсутствием или редкими проявлениями вулканической деятельности, пониженным тепловым потоком. Это наиболее устойчивые и спокойные области континентов. Часть территории платформ покрыта водами морей (таких, как Балтийское, Белое, Азовское). Они отличаются возрастом формирования, местом расположения и наличием двух структурных этажей.

Океанические платформы на дне океанов (океанические котловины) имеют стандартную океаническую земную кору и слабый осадочный чехол. В строении платформы различают два структурных этажа: первый (нижний) - консолидированный складчатый фундамент и второй (верхний) - осадочный чехол.

Фундамент представлен образованиями геосинклинального пояса, области или системы, сильнодислоцированными, метамор-физованными, пронизанными многочисленными интрузивными телами. Принято выделять фундамент кристаллический и складчатый. Кристаллический фундамент сложен гранитами, гнейсами, слюдяными сланцами, т.е. преимущественно интрузивными магматическими и глубокометаморфизованными породами. Складчатый фундамент сложен в основном эффузивными магматическими образованиями и сильнометаморфизованными породами: глинистыми сланцами, филлитами, роговиками и др., в значительной степени дислоцированными.

По времени формирования складчатого фундамента различают два основных типа платформ: древние и молодые.

Древние платформы занимают около 40% площади континентов. К их числу относятся Северо-Американская, Восточно-Европейская, Сибирская, Южно-Американская (Бразильская), Африканская (Африкано-Аравийская), Австралийская, Антарктическая и др. Они, как правило, ограничены краевыми швами - крупными глубинными разломами и окаймлены складчатыми поясами.

Фундамент древних платформ сформировался в условиях геосинклинального тектонического режима. В нем преобладают мета-морфизованные (от зеленосланцевой до гранулитовой фации метаморфизма), интенсивно дислоцированные архейские и раннепротерозойские образования; значительно меньше распространены позднепротерозойские. Главную роль среди них играют гнейсы и кристаллические сланцы, широко распространены гранитоиды. В связи с этим такой вид фундамента называют гранитогнейсовым или просто кристаллическим.

Значительные площади фундамента древних платформ перекрыты неметаморфизованными отложениями платформенного чехла мощностью 3-5 км, а в некоторых случаях - 15-18 км и более. Состав отложений разнообразен, но чаще всего преобладают осадочные породы морского и континентального происхождения, образующие выдержанные на большой площади пласты и толщи. Весьма характерны карбонатные породы - известняки, писчий мел, доломиты, мергели, широко распространены пески, глины, песчаники, аргиллиты, реже встречаются конгломераты, эвапо-риты, угленосные отложения, фосфориты. Кроме того, в состав чехла могут входить покровы континентальных базальтов (плато-базальты) и изредка - кислые вулканиты. Для многих платформ типичны покровно-ледниковые отложения.

Осадочный чехол древних платформ возник в условиях платформенного тектонического режима и представлен породами, отложившимися в верхнем протерозое, палеозое, мезозое и кайнозое. На долю древних платформ приходится около 40% площади современных материков Земли.

Молодые платформы занимают значительно меньшую площадь континентов (около 5%) и располагаются либо по периферии древних платформ, как Восточно- и Западно-Европейские, Восточно-Австралийская и Патагонская, либо между ними, например Западно-Сибирская платформа между древними Восточно-Европейской и Сибирской. Рельеф молодых платформ - равнины и низменности - аналогичен таковому древних платформ. Они отличаются большой дислопированностью чехла, меньшей степенью метаморфизма пород фундамента и значительной унаследованно-стью структур чехла от структур фундамента.

Фундамент молодых платформ составляют испытавшие денудацию складчатые пояса, закончившие свое развитие в позднем силуре - среднем девоне (каледонские), в поздней перми - среднем триасе (герцинские) или в ранней - средней юре (киммерийские). Они сложены в основном фанерозойскими осадочно-вулканогенными породами, испытавшими складчатые деформации и слабый (зеленосланцевая фация) или даже только начальный метаморфизм.

Платформенный чехол молодых платформ представлен осадочными породами палеогенового, неогенового и четвертичного периодов практически без следов метаморфизма. Осадочные породы имеют малую толщину (2-3 км, реже - более), покрывают поверхность складчатого фундамента, зачастую с резким угловым несогласием. Несогласие отражает геологическую историю платформы: складчато-глыбовый фундамент сформировался в орогенный этап развития геосинклинальной системы, затем происходило опускание территории и на поверхности «орогена» накапливались породы чехла. Осадочные и вулканогенные образования чехла залегают с углами 1-3° и очень редко - больше. Местами строение чехла осложнено грабенами и грабенообразными прогибами - авлакогенами (от греч. - бороздой рожденные).

Платформы в большей части граничат со складчатыми системами через передовые прогибы. В некоторых территориях наблюдается надвиг складчатых структур орогенов на передовые прогибы. Наиболее крупными структурами континентальных платформ, ко-

торые выделяются по положению фундамента, являются щиты и плиты (рис. 1.2).

Синеклиза

Антеклиза


Складчатое основание

Рис. 1.2. Схема строения платформы

Щиты характерны для древних платформ. Это крупные в тысячу и более километров в поперечнике площади выхода на поверхность платформенного фундамента. В течение большей части истории геологического развития они испытывают устойчивое воз-дымание (и, следовательно, денудацию), лишь изредка и ненадолго покрываясь мелким морем.

Примерами таких структур служат Алданский, Анабарский, Балтийский, Канадский, Украинский щиты. Менее крупные выходы на поверхность фундамента, длительное время перекрывавшиеся осадками, называют кристаллическими массивами (например, Воронежский массив); они обычно образуют ядра анте-клиз.

Плиты - части платформ с развитым осадочным или вулканогенно-осадочным чехлом, обладающие тенденцией к опусканию. По площади они не уступают щитам или даже превосходят их. Фундамент молодых платформ целиком или почти целиком перекрыт чехлом, и по этой причине их часто называют просто плитами. Помимо щитов и плит в структуре платформ нередко выделяются зоны перикратонных опускании - окраинные перикратонные прогибы. Такие зоны наиболее отчетливо выражены между щитами и подвижными поясами (Ангаро-Ленская зона Сибирской платформы, зона Великих равнин между Канадским щитом и Скалистыми горами).

Зоны перикратонных опусканий характеризуются пологим моноклинальным или ступенчато-моноклинальным погружением фундамента в сторону подвижных поясов. Эти зоны представляют внутренние части пассивных континентальных окраин (отвечают внутреннему шельфу) и отличаются повышенной мощностью (до 10-12 км) морских осадков по сравнению с плитами.

В пределах древних и молодых платформ выделяют более мелкие структурные элементы - антеклизы, синеклизы и авлакогены. Эти структуры сложены породами платформенного чехла, но их морфология во многом определяется строением поверхности фундамента.

Антеклизы представляют собой пологие поднятия в сотни километров в поперечнике, имеющие форму сводов с утоненным (мощностью не более 1-2 км) чехлом и приподнятым фундаментом. Разрез чехла обычно изобилует перерывами в осадконакоплении и сложен мелководными или континентальными отложениями. Иногда в центре антеклиз имеются относительно небольшие выходы фундамента (Воронежская антеклиза Русской плиты, Оленек-ская антеклиза в Сибири и др.). В некоторых случаях антеклизы являются как бы многовершинными; эти вершины именуются сводами (Татарский и Токмовский своды Волго-Уральской антеклизы).

Синеклизы - это обширные, пологие, почти плоские прогибы, под которыми фундамент опущен, а мощность чехла достигает 3-5 км и более (Московская, Тунгусская и другие синеклизы). Они отличаются более полным и глубоководным разрезом осадочного чехла. Подобно тому как антеклизы могут распадаться на несколько сводов, синеклизы могут состоять из нескольких впадин, разделенных сводами или седлами. Несколько таких впадин различают в пределах Тунгусской синеклизы. Обычно синеклизы граничат с антеклизами или со щитами. Встречаются они в пределах самих щитов. Углы наклона слоев в пределах синеклиз и антеклиз, как правило, не превышают Г.

Одна из главных причин, вызывающих осложнения в осадочном чехле платформ, - это глубинные разломы. Крылья разломов испытывают разнонаправленные перемещения, которые сказываются на перекрывающих их осадочных образованиях - возникают условия для формирования плит, антеклиз, синеклиз и других структур.

Хребты представляют собой вытянутые аналоги щитов, на поверхность выходят как кристаллические, так и дислоцированные породы складчатого фундамента.

Хребты небольших размеров выделяются в виде кряжей (Тиман-ский и др.). Массивы (выступы) - крутые платформенные структуры, перекрытые маломощным осадочным чехлом. К положительным структурам чехла относят гряды, своды, валы и зоны поднятий. Гряды - линейные структуры значительных размеров горстового типа, перекрытые маломощным чехлом; своды - крупные округлые структуры чехла мощностью около 2 км; валы - значительные по размерам, вытянутые структуры осадочного чехла, объединяющие несколько блоковых структур, меньших по протяженности - Окско-Цнинский вал и др.; зона поднятий объединяет несколько линейных горстовидных поднятий в чехле платформы.

Авлакогены - линейные грабен-прогибы, протягивающиеся на многие сотни километров при ширине в десятки, иногда более сотни, километров и выполненные мощными толщами осадков, а нередко и вулканитов, среди которых особенно характерны базальты повышенной щелочности. Среди осадков типичны соленосные и угленосные формации. Развитие авлакогенов сопровождается опусканием фундамента и одновременным формированием платформенного чехла. Глубина залегания фундамента нередко достигает 10-12 км, а кора и литосфера в целом утонены, что объясняется подъемом разуплотненной мантии.

Такое глубинное строение характерно для континентальных рифтов. Их древней и погребенной разновидностью - палеорифтами - авлакогены и являются. Примерами авлакогенов могут служить Тиманская, Пачелмская и Днепрово-Донецкая структуры. Авлакогены чаще всего формировались в рифте и слагали нижний структурный подъярус платформенного чехла. В верхней части чехла авлакогены могут быть выражены развитием над ними сине-клизов или зонами складчатости с образованием валов. Валы представляют собой пологие линейные поднятия протяженностью в несколько десятков километров; как правило, они состоят из более мелких антиклинальных структур.

В осевой части широких авлакогенов нередко наблюдаются гор-стовые поднятия, как, например, Сунтарский горст в Вилюйском авлакогене. В пределах авлакогенов и глубоких синеклиз с мощными соленосными толщами широко распространены соляные ди-апиры - купола и валы (например, в Днепрово-Донецком авлакогене и Прикаспийской синеклизе).

К отрицательным структурам осадочного чехла платформ, помимо отмеченных синеклиз и авлакогенов, относят перикратонные опускания, впадины, прогибы и др. Перикратонные опускания - широкие зоны длиной до 1000 км, имеющие глубокопогруженный фундамент, с большими мощностями осадочного чехла. Перикратонные опускания располагаются по краям платформы.

Впадины представляют собой крупные изометрические платформенные структуры. Вытянутые аналоги впадин - прогибы.

Среди структур меньших размеров различают моноклинали, флексурно-разрывные зоны, уступы и др.

Краткий разбор современных структур земной коры показывает, что каждая глобальная структура носит сугубо индивидуальные черты развития и становления. Механизм перехода от геосинкли-нального пояса области к горноскладчатым областям и платформам до конца не раскрыт. Традиционно развитие материков рассматривалось с позиции континентальной геологии. Новые данные исследований океанов показали, что ключ к разгадке появления материков и океанов лежит на дне океана. Но было бы очень просто объяснить появление орогенов и возникновение океанов только одним перемещением литосферных плит.

Подвижные пояса. Среди подвижных поясов континентов различают складчатые пояса и континентальные орогены.

Складчатые пояса - линейные планетарные структуры протяженностью в тысячи километров и шириной, как правило, более 1000 км, занимают окраинно-континентальное или межконтинентальное положение, разделяя континентальные платформы (Тихоокеанский, Урало-Охотский, Средиземноморский, Северо-Атлантический, Арктический пояса). Прежде их называли геосинкли-нальными или геосинклинально-орогенными, складчатыми геосинклинальными поясами, а в современной литературе - просто складчатыми или орогенными, имея в виду первичный (эпигеосин-клинальный) орогенез, непосредственно сменяющий режим преобладающих погружений и накопления морских осадков.

Континентальные орогены получили название горно-складчатых или складчатых областей, которые, в свою очередь, подразделяются на эпиконтинентальные и эпиплатформенные. Эпиконтинен-талъные орогены проявились на завершающем этапе развития гео-синклинальной системы при значительном внедрении кислых батолитов и повышенной сейсмичности. Примером являются горноскладчатые области альпийского тектономагматического цикла: Альпы, Кавказ, Карпаты, Гималаи, Памир, Южно-Американские Анды и др. Эпиплатформенные орогены отличаются наличием высокой сейсмической активности, восходящими движениями, сильной расчлененностью рельефа и глыбовым строением самого орогена. Примером таких орогенов могут быть Тибет, Тянь-Шань, Монголо-Охотский пояс.

Основными структурами континентальных орогенов являются антиклинории и синклинории.

Антиклинории - крупные (протяженностью сотни километров) и сложные складчатые структуры в целом антиклинального строения. В ядре антиклинориев располагаются более древние по-

роды, чем на крыльях структуры. Несколько антиклинориев образуют мегантиклинорий, например Большого Кавказа.

Синклинории - крупные и сложные складчатые структуры в целом синклинального строения. Ядро синклинориев сложено более молодыми образованиями, чем крылья. Совокупность синклинориев составляет мегасинклинорий, например Афгано-Таджикская депрессия. В пределах горно-складчатой области выделяют структуры, меньшие по размеру, чем вышеописанные - древние глыбы, краевые прогибы, краевые массивы и наложенные впадины.

Переходные области - это переходные зоны между континентами и океанами, которые имеют особое значение в «тектонической жизни» земной коры и литосферы. Здесь накапливается основная масса осадков и вулканитов, они подвергаются, сразу или через некоторое время, наиболее интенсивным деформациям, континентальная кора замещается субокеанической или океанской, а океанская преобразуется в континентальную.

С практической точки зрения - это области основных зон неф-тегазонакопления. Переходные области обычно именуют континентальными окраинами , хотя они в такой же мере являются окраинами океанов, занимая 20% их площади. Их подразделяют на два типа: пассивные и активные . Главная особенность пассивных окраин - их внутриплитное положение и низкая сейсмическая и вулканическая активность. Они характерны для молодых океанов - Северного Ледовитого, Индийского и Атлантического. Образовались они в позднемезозойско-кайнозойское время и продолжают развиваться.

Активные окраины прослеживаются от окраинных морей к ложу океана и включают в себя островные дуги, глубоководные котловины и глубоководные желоба. Эти структуры представляют геосинкли-нальные пояса и области, которые являются зонами современной тектонической активности. В переходной зоне располагаются также крупнейшие сверхглубинные разломы , уходящие корнями в недра Земли на глубины 400-700 км.

Типичный пример современной активной окраины - тихоокеанская окраина Южной Америки.

Дно океана (ложе) характеризуется рядом геофизических признаков: относительно повышенным тепловым потоком; специфическим зебровидным магнитным полем; повышенным значением гравитационного поля.

В океане выделяют следующие геоморфоструктуры: подводные материковые окраины (окраины моря), ложе океана (котловины, хребты и возвышенности), срединно-океанические хребты и переходные зоны (рис. 1.3).


Рис. 1.3.

ООО

  • 7 - шельф; 2 - материковый склон; 3 - материковое подножие; 4 - морские котловины; 5 - островные дуги; 6 - глубоководные желоба; 7 - абиссальные равнины; 8 - океанические валы и возвышенности; 9 - срединно-океанические хребты; 70 - крупні нейшие разломы

Обычно материки окружены окраинными морями, дно которых является продолжением материков и представлено материковым шельфом, материковым склоном и материковым подножием, развивающимися в едином (пассивном) тектоническом режиме. В шельфе различают также ее осушенную часть (прибрежные равнины). Состав океанической коры имеет трехслойное строение:

  • 1) осадочный слой;
  • 2) базальтовый слой (с включениями остатков планктонных организмов, состоящих из карбонатной и кремнистой основы);
  • 3) так называемый дайковый пояс, выраженный серией небольших магматических интрузий основного состава, плотно пригнанных друг к другу.

Граница между континентом и океаном проводится по линии выклинивания гранитно-метаморфического слоя, что почти соответствует изобате 2-2,5 км. В качестве микроконтинентальных структур исследователи рассматривают и некоторые участки океана, имеющие кору континентального типа, например, о. Мадагаскар и Новозеландское плато.

Контрольные вопросы и задания

  • 1. Назовите основные виды тектонических движений
  • 2. Какие главные структурные элементы выделяют на Земле?
  • 3. Как устроены платформы и как они различаются по возрасту?
  • 4. Какие структуры выделяют в чехле платформы?
  • 5. Дайте определение понятию «плита».
  • 6. Дайте определение понятию «щит».
  • 7. Дайте определение понятию «свод».
  • 8. Охарактеризуйте переходные области.
  • 9. Какие структуры выделяют в океане?

Тектонические движения земной коры

То, что поверхность Земли никогда не бывает в состоянии покоя, было известно уже древним грекам и жителям Скандинавского полуострова. Они догадывались, что Земля испытывает поднятия и опускания. Доказательством этого являлись древние приморские поселения, оказавшиеся через несколько веков вдали от моря. Причина этого – тектонические движения, которые располагаются в глубинах Земли.

Определение 1

Тектонические движения – это механические перемещения внутри земной коры, в результате которых она изменяет свое строение.

Типы тектонических движений впервые выделил в $1758$ г. М.В. Ломоносов . В своем труде «О слоях Земли » ($1763$) он дает им определение.

Замечание 1

В результате тектонических движений происходит деформация земной поверхности – изменяется её форма, нарушается залегание горных пород, происходят процессы горообразования, возникают землетрясения, вулканизм, глубинное рудообразование. Характер и интенсивность разрушения поверхности Земли, осадконакопление, распределение суши и моря тоже зависят от этих движений.

Распространение трансгрессий и регрессий океана, суммарная толщина осадочных отложений и распределение их фаций, обломочный материал, снесенный в депрессии, являются показателями тектонических движений геологического прошлого. Они имеют определенную периодичность, выражающуюся в изменениях знака и (или) скорости во времени.

Тектонические движения по скорости могут быть быстрые и медленные (вековые), протекающие постоянно. Землетрясения, например, относятся к быстрым тектоническим движениям. Происходит кратковременное, но значительное по силе воздействие на тектонические структуры. Медленные движения незначительны по величине силы, зато по времени растянуты на многие миллионы лет.

Типы тектонических движений рассматривают по признакам:

  • Направление движения;
  • Интенсивность воздействия;
  • Глубина и масштаб их проявления;
  • Время проявления.

Тектонические движения земной коры могут быть вертикальными и горизонтальными.

Тектонические структуры земной коры

Определение 2

Тектонические структуры – это огромные участки земной коры, ограниченные глубинными разломами, отличающиеся строением, составом и условиями образования.

Важнейшими тектоническими структурами являются платформы и геосинклинальные пояса

Определение 3

Платформы – это устойчивые и стабильные участки земной коры.

По возрасту платформы могут быть древние и молодые, получившие название плит. Древние занимают около $40\%$ суши, а площадь молодых платформ значительно меньше. Строение тех и других платформ двухслойное – кристаллический фундамент и осадочный чехол.

Специалисты в пределах плит различают:

  • Синеклизы – крупные пологие впадины фундамента;
  • Антеклизы – крупные и пологие поднятия фундамента;
  • Авлакогены – линейные прогибы, ограниченные сбросами.

Определение 4

Геосинклинальные пояса – представляют собой вытянутые участки земной коры с активно проявляющимися тектоническими процессами.

В пределах этих поясов выделяют:

  • Антиклинорий – сложный комплекс складок земной коры;
  • Синклинорий – сложная форма складчатых дислокаций слоев земной коры.

Помимо геосинклинальных поясов и платформ существуют и другие тектонические структуры – сквозные пояса, рифтовые пояса, глубинные разломы.

Типы тектонических движений

Современная геология выделяет два основных типа тектонических движений – эпейрогенические (колебательные) и орогенические (складчатые).

Эпейрогенические или медленные вековые поднятия и опускания земной коры не изменяют первичного залегания пластов. Они имеют колебательный характер и обратимы. Это значит, что поднятие может смениться опусканием.

Результатом этих движений является:

  • Изменение границ суши и моря;
  • Накопление осадков в море и разрушение прилегающей части суши.

Различают среди них следующие движения:

  • Современные со скоростью $1-2$ см в год;
  • Неотектонические со скоростью от $1$ см в год до $1$ мм в год;
  • Древние медленные вертикальные движения со скоростью $0,001$ мм в год.

Орогенические движения происходят в двух направлениях – горизонтальном и вертикальном. При горизонтальном движении горные породы сминаются в складки. При вертикальном движении область складкообразования поднимается, и возникают горные сооружения.

Замечание 2

Горизонтальные движения являются основными , потому что идет смещение крупных участков земной коры относительно друг друга. Конвекционные тепловые потоки в астеносфере и верхней мантии считаются факторами этих движений, а длительность и постоянство во времени – их особенностями . В результате горизонтальных движений образуются структуры первого порядка – материки, океаны, планетарные разломы. К образованиям второго порядка относятся платформы и геосинклинали.

Тектонические нарушения

Лавовые потоки и осадочные породы первоначально залегают в виде горизонтальных слоев, но встречаются такие слои редко. На стенках карьеров и высоких обрывов можно увидеть, что слои чаще всего наклонены или раздроблены – это тектонические нарушения . Они бывают складчатые и разрывные. Выделяются антиклинальные и синклинальные складки.

Определение 5

Антиклинали – это слои горных пород, выпуклостью обращенные вверх. Синклинали – это слои горных пород, выпуклостью обращенные вниз.

Помимо складчатых нарушений существуют разрывные тектонические нарушения, которые образуются тогда, когда крупные трещины раскалывают горную породу на блоки. Эти блоки перемещаются относительно друг друга вдоль трещин и образуют разрывные структуры. Возникают эти нарушения при интенсивном сдавливании или при растягивании горных пород. В процессе растяжения горных пород возникают взбросы или надвиги, а в месте разрыва происходит сокращение земной коры. Разрывные нарушения могут образовывать определенные структуры, а могут встречаться и поодиночке. Примерами таких нарушений являются горсты и грабены.

Определение 6

Горст – это поднятый блок горных пород между двумя сбросами. Грабен – это опущенный блок горных пород между двумя сбросами.

В сплошных слоях земной коры даже без перемещения блоков могут появиться трещины, что является результатом каких-либо напряжений при движении коры. В породах, где появляются трещины, возникают ослабленные зоны, поддающиеся выветриванию.

Трещины могут быть:

  • Трещины сокращения и уплотнения – идет обезвоживание пород;
  • Трещины остывания, характерные для магматических лав;
  • Трещины параллельные контактам интрузии.