Реферат на тему: «История физики»

Развитие физики

Физика относится к числу естественных наук, задачей которых является изучение природы в целях её подчинения человеку.

В древности слово «фи ика») означало природоведение. Впо­следствии природоведение расчленилось на ряд наук: физику, химию, астрономию, геологию, биологию, ботанику и т. д.

Среди этих наук физика занимает в известной мере особое поло­жение, так как предметом её изучения служат все основные, наиболее общие, простейшие формы движения материи.

Накопление знаний о явлениях природы происходило уже в глу­бокой древности. Даже первобытные люди, замечая черты сходства и различия в явлениях окружающего мира, приобретали из своей практики некоторые знания о природе. В дальнейшем систематизиро­вание накопленных знаний привело к возникновению науки.

Расширение и уточнение знаний о явлениях природы производи­лось людьми вследствие практических потребностей посредством на­блюдений, а на более высокой стадии развития науки - посредством экспериментов (наблюдение - это изучение явления в естественной обстановке, эксперимент - воспроизведение явления в искусственной обстановке в целях обнаружения особенностей данного явления в за­висимости от созданных условий).

Для объяснения явлений создавались гипотезы. Выводы из на­блюдений, экспериментов и гипотез проверялись при многообразном взаимодействии науки и практики; практика указывала способы уточ­нения научного опыта (наблюдений и экспериментов), исправляла гипотезы, обогащала науку. Наука в свою очередь обогащала прак­тику.

По мере того как расширялось применение научных знаний к пра­ктике, возникала потребность в использовании этих знаний для пред­сказания явлений, для расчёта следствий того или иного действия. Это привело к необходимости взамен разрозненных гипотез создать обобщающие и обоснованные теории.

Впервые потребность в теории возникла при возведении построек и сооружений и привела к развитию механики, в первую очередь учения о равновесии. В древнем Египте и Греции разрабатывались статика твёрдых тел и гидростатика. Потребность в определении времени для земледельческих работ и необходимость определения направления при мореходстве дали толчок к развитию астрономии. Целый ряд отделов знания был обоснован и систематизирован древ­негреческим мыслителем Аристотелем. Его «Физика» (в 8 книгах) на долгое время определила общее физическое мировоззрение.

Знания о природе по мере их накопления использовались господ­ствующими классами в своих интересах; в глубокой древности наука находилась в руках служителей культа (жрецов) и была тесно свя­зана с религией. Лишь в древней Греции наукой начали заниматься представители других привилегированных слоев общества. Лучшие представители античной натурфилософии, т. е. философии природы (Левкипп, Демокрит, Лукреций), положили начало материалистиче­скому пониманию природы и, несмотря на крайнюю недостаточность фактического материала, пришли к представлению об атомном строе­нии материи.

Распад античного общества временно приостановил развитие науки. В эпоху средних веков христианская церковь, опиравшаяся на господствующие классы феодального строя, чрезвычайными жестокостями, инквизицией, казнями подчинила философию целям богословия. Физика Аристотеля догматической трактовкой её, исключавшей воз­можность прогресса, была приспособлена церковью для укрепления авторитета священного писания. В это время, главным образом у ара­бов, создавших обширные государства и ведших оживлённую тор­говлю с отдалёнными странами, сохранились и получили некоторое развитие элементы наук, воспринятые от греков и римлян, в особен­ности по механике, астрономии, математике, географии.

В XV-XVI вв. на основе развёртывания европейской торговли и промышленности начались быстрый рост и оформление сначала меха­ники и астрономии, а в дальнейшем и наук, составляющих основу промышленной техники, - физики и химии. Работы Коперника, Кеп­лера, Галилея и их последователей сделали науку мощным орудием борьбы буржуазии с оплотом отживавшего феодального строя - ре­лигией. В борьбе с церковью был выдвинут научный принцип: вся­кое подлинное знание основано на опыте (на совокупности наблюде­ний и экспериментов), а не на авторитете того или иного учения.

В XVII в. крупная буржуазия стремилась к компромиссу с остат­ками господствующих классов феодального строя. Соответственно представители науки были вынуждены изыскивать компромисс с ре­лигией. Ньютон наряду с гениальными научными работами написал толкование на церковную книгу - апокалипсис. Декарт в своих фило­софских произведениях старался доказать бытие бога. Учёные поддерживали ложную идею о первом толчке, в котором якобы нужда­лась вселенная, чтобы придти в движение.

Развитие механики наложило свой отпечаток на научную теорию того времени. Учёные пытались рассматривать мир как механизм и стремились объяснить все явления путём сведения их к механическим перемещениям.

В этот период развития естествознания огромное применение по­лучило понятие силы. При каждом вновь открытом явлении приду­мывалась сила, которая объявлялась причиной явления. До сих пор в физике сохранились следы этого в обозначениях: живая сила, сила тока, электродвижущая сила и т. д.

Научные теории этого периода, рассматривавшие мир как неиз­менно движущуюся машину, отрицали развитие материи, переходы движения из одной формы в другую. Несмотря на успехи в расши­рении экспериментального материала, наука оставалась на позиции механистического мировоззрения.

В XVIII в. Ломонос ов правильно предугадал картину молекулярно-кинетического строения тел и высказал впервые единый закон веч­ности материи и её движения словами: «... все встречающиеся в природе изменения происходят так, что если к чему-либо нечто прибавилось, то это отнимается у чего-то другого... Так как это всеобщий закон природы, то он распространяется и на правила дви­жения: тело, которое своим толчком возбуждает другое к движению, столько же теряет от своего движения, сколько сообщает другому, им двинутому».

В те же годы теория Канта и Лапласа о развитии солнечной системы из туманности устранила идею о необходимости первого толчка.

В XIX в. на основе колоссального роста производительных сил в период расцвета промышленного капитализма прогресс науки чрез­вычайно ускорился. Потребность в мощном и универсальном двига­теле для индустрии и транспорта вызвала изобретение паровой ма­шины, а её появление побудило учёных к изучению тепловых про­цессов, что привело к развитию термодинамики и молекулярно-кинетической теории. В свою очередь на основе термодинамики оказалось возможным конструировать более мощные и экономичные типы дви­гателей (паровые турбины, двигатели внутреннего сгорания). Мы видим на этом примере, как практика побуждает к развитию научную теорию, а теория в дальнейшем занимает ведущую роль по отно­шению к практике.

Другим примером сложного взаимодействия теории и практики является развитие теории электричества и электротехники. Отрывоч­ные сведения об электрических явлениях имелись уже давно. Но только после того, как была открыта электрическая природа молнии, а затем был открыт гальванический ток, физика концентрирует своё внимание на изучении электричества. Фарадей, Максвелл, Ленц и др. разработали физические основы современной электротехники. Про­мышленность быстро использовала научные открытия и широким раз­витием техники открыла небывалые возможности для научного экспе­римента. Исследование молекулярного строения тел вскрыло электри­ческую природу молекулярных и атомных взаимодействий, что в свою очередь привело в наши дни к открытию атомной формы движения материи, раскрывающей необозримые перспективы для новой тех­ники.

Ряд открытий - закон сохранения и превращения энергии, теория электромагнитных волн, открытие электронов и радиоактивности - окончательно ниспроверг учение о неизменности природы. Механицизм потерпел крушение.

Правильно оценить, понять суть новых научных открытий оказалось возможным только с позиций созданной Марксом и Энгель­сом философии диалектич еского материализма.

«Диалектический материализм есть мировоззрение марксистско-ленинской партии. Оно называется диалектическим материализмом потому, что его подход к явлениям природы, его метод изучения явлений природы, его метод познания этих явлений является диале­ктическим, а его истолкование явлений природы, его понимание явлений природы, его теория-материалистической».

Явления природы при диалектическом подходе к ним нужно рас­сматривать в их взаимосвязи, взаимообусловленности, взаимозависи­мости и в их развитии, учитывая при этом, что количественные изме­нения приводят к коренным качественным превращениям, что разви­тие явлений порождается борьбой скрытых в них противоречий.

Диалектический подход к явлениям природы обеспечивает неиска­жённое, правильное отражение действительности в нашем сознании. Это решающее, абсолютное преимущество диалектического метода над всеми другими подходами к изучению явлений природы объ­ясняется тем, что основные черты, характеризующие диалектический метод, не придуманы произвольно, не навязывают нашему познанию искусственных, не свойственных ему мёртвых схем, но, напротив, точно воспроизводят самые общие, не имеющие исключений законы диалектики природы.

Все науки, в частности физика, наглядно, каждым фактом под­тверждают, что:

во-первых, любое явление происходит в органической, неразрыв­ной связи с окружающими явлениями; желая обособить явление, разорвать его связь с окружающими явлениями, мы неизбежно иска­жаем явление;

во-вторых, всё существующее подвержено закономерному и неис­черпаемому изменению, развитию, присущему самой природе вещей;





















1 из 20

Презентация на тему: Из истории развития науки “Физика”

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

Физика (от др..греч. «природа») - область естествознания, наука, изучающая наиболее общие и фундаментальные закономерности, определяющие структуру и эволюцию материального мира. Термин «физика» впервые появился в сочинениях одного из величайших мыслителей древности - Аристотеля, жившего в IV веке до нашей эры. Первоначально термины «физика» и «философия» были синонимичны, В XVI века физика выделилась в отдельное научное направление.В русский язык слово «физика» было введено Михаилом Васильевичем Ломоносовым,

№ слайда 3

Описание слайда:

История развития науки физика начинается с работ Великих ученых философов Древнего мира и продолжается до наших дней.1. Ранняя физика 1.1 Античная физика 1.2 Средневековая Европа 2 Зарождение теоретической физики2.1 XVII век. Метафизика Декарта и механика Ньютона. 2.2 XVIII век. Механика, теплород, электричество. 3 XIX век 3.1 Волновая теория света 3.2 Возникновение электродинамики 3.3 Теория электромагнитного поля 3.4 Термодинамика, газы, молекулярная теория 3.5 Открытие электрона, радиоактивность 4 XX век 4.1 Теория относительности 4.2 Первые теории строения атома 4.3 Квантовая теория 5 Начало XXI века

№ слайда 4

Описание слайда:

Великие ученые философы Древнего мира Сократ 469 г. до н. 399 г. до н. э., Древнегреческий философ. Проповедовал на улицах и площадях, ставя оей целью борьбу с софистами и воспитание молодежи. Был казнен (принял яд) за введение новых божеств и за развращение молодежи в новом духе. Сократ не оставил после себя сочинений. Важнейшими источниками сведений о его жизни и учении являются сочинения в трудах его учеников Ксенофонта и Платона. Платон 428(427)-348(347) до н.э.Древнегреческий философ. Родился в аристократической семье в АфинахВ 407 году познакомился с Сократом и стал одним из восторженных его учеников. После смерти его уехал в Южную Италию и Сицилию, где общался с пифагорейцами. В Афинах Платон основал свою школу - Академию платоновскую. Автор знаменитого сочинения “Апология Сократа” Аристотель Стагирит 384-322 до н.э. Величайший философ Древней Греции. Учился у Платона в Афинах, но не стал его последователем. Был учителем Александра Македонского. Создал понятийный аппарат, который до сих пор пронизывает философский лексикон и самый стиль научного мышления

№ слайда 5

Описание слайда:

Античная физика Демокрит Первую формулировку закона сохранения материи предложил Эмпедокл в V веке до н. э.:Ничто не может произойти из ничего, и никак не может то, что есть, уничтожиться.Позже аналогичный тезис высказывали Демокрит, Аристотель и другие.Физика - наука о движении, которое возможно благодаря онтологическому различию между силой и энергией. АристотельТермин «Физика» возник как название одного из сочинений Аристотеля. Предметом этой науки, по мнению автора, было выяснение первопричин явлений

№ слайда 6

Описание слайда:

Аристотель (384-322 до н. э.) Древнегреческий философ и учёный. Ученик Платона. основатель Перипатетической школы. С 343 до н. э. - воспитатель Александра Македонского. этика, политика, метафизика науки о жизни, логика, экономика. Физика - наука о движении, которое возможно благодаря онтологическому различию между силой и энергией.

№ слайда 7

Описание слайда:

Архимед Архимед прославился многими механическими конструкциями. Рычаг был известен и до Архимеда, но лишь Архимед изложил его полную теорию и успешно её применял на практике. Плутарх сообщает, что Архимед построил в порту Сиракуз немало блочно-рычажных механизмов для облегчения подъёма и транспортировки тяжёлых грузов. Изобретённый им архимедов винт (шнек) для вычерпывания воды до сих пор применяется в Египте.

№ слайда 8

Описание слайда:

Средневековая ЕвропаВ XVI века физика выделилась в отдельное научное направление.В русский язык слово «физика» было введено Михаилом Васильевичем Ломоносовым.XVI век: Николай Коперник предложил гелиоцентрическую систему мира,Сомон Стевин в книгах «Десятая» (1585), «Начала статики» и другихввёл в обиход десятичные дроби, сформулировал (независимо от Галилея) закон давления на наклонную плоскость, правило параллелограмма сил, продвинул гидростатикуи навигацию. Любопытно, что формулу равновесия на наклонной плоскости он вывел из невозможности вечного движения (которое считал аксиомой).

№ слайда 9

Описание слайда:

В « Естественной и моральной Истории Индий » (1590) Хосе де Авоста впервые появилась теория о четырёх линиях без магнитного склонения.Он описал использование компаса, угол отклонения, различия между Магнитным и Северным полюсом; хотя отклонения были известны ещё в 15 веке, он описал колебание отклонений от одной точки до другой; он идентифицировал места с нулевым отклонением: например, на Азорских островах. После открытия Ньютоном отливов и приливов, Акоста объяснил их природу, периодичность и взаимосвязь с фазами Луны.

№ слайда 10

Описание слайда:

Галилео ГАЛИЛЕЙ Итальянский ученыйВ Падуе Галилей опубликовал только описание пропорционального циркуля, позволяющего быстро производить различные расчёты и построения.В 1608 году в Голландии изобретена зрительная труба. В 1609 году, на основании дошедших до него сведений об изобретённой в Голландии зрительной трубе, Галилей строит свой первый телескоп, дающий приблизительно трехкратное увеличение. Работа телескопа демонстрировалась с башни св. Марка в Венеции и произвела громадное впечатление. Вскоре Галилей построил телескоп с 32-кратным увеличением.

№ слайда 11

Описание слайда:

Галилео Галилей, первый проводит исследование небесных объектов. Открывает четыре спутника Юпитера, фазы Венеры, звёзды в составе Млечного пути и многое другое. Решительно поддерживает теорию Коперника, но столь же решительно отвергает теорию Кеплера о движении планет по эллипсам. Галилей Формулирует основы теоретической механики - принцип относительности, закон инерции, квадратичный закон падения, даже принцип виртуальных перемещений, Изобретает термометр (без шкалы).Иоганн Кеплер в 1609 году издал книгу «Новая астрономия» с двумя законами движения планет; третий закон он сформулировал в более поздней в книге «Мировая гармония» (1619). Заодно он формулирует (более чётко, чем Галилей) закон инерции: всякое тело, на которое не действуют иные тела, находится в покое или совершает прямолинейное движение.

№ слайда 12

Описание слайда:

№ слайда 13

Описание слайда:

Ньютон Исаак 4 января 1643 - 31 марта 1727 Английский физик и математик, создатель теоретических основ механики и астрономии. Он открыл закон всемирного тяготения, разработал (наряду с Г. Лейбницем) дифференциальное и интегральное исчисления. был автором важнейших экспериментальных работ по оптике.Аксиоматика Ньютона состояла из трёх законов, 1. Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние. 2. Изменение количества движения пропорционально приложенной силе и происходит по направлению той прямой, по которой эта сила действует.3. Действию всегда есть равное и противоположное противодействие иначе взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны.Ньютона по праву считают создателем "классической физики".

№ слайда 14

Описание слайда:

Во второй половине XVII века интерес к науке в основных странах Европы резко возрос. Возникают первые Академии наук и первые научные журналы 1600: первое экспериментальное исследование электрических и магнитных явлений проводит врач английской королевы Уильям Гильберт. Он выдвигает гипотезу, что Земля является магнитом. Именно он предложил сам термин «электричество». 1637: Рене Декарт издал «Рассуждение о методе» с приложениями «Геометрия», «Диоптрика», «Метеоры». Считал пространство материальным, а причиной движения - вихри материи, возникающие, чтобы заполнить пустоту (которую считал невозможной и поэтому не признавал атомов), или от вращения тел. В «Диоптрике» Декарт впервые дал правильный закон преломления света. Создаёт аналитическую геометрию и вводит почти современную математическую символику.

№ слайда 15

Описание слайда:

XVIII век. Механика, теплород, электричество. В XVIII веке ускоренными темпами развивались механика, небесная механика, учение о теплоте. Начинается исследование электрических и магнитных явлений. Создание аналитической механики (Эйлер, Лагранж) завершило превращение теоретической механики в раздел математического анализа. Утверждается общее мнение, что все физические процессы - проявления механического движения вещества.Ещё Гюйгенс решительно высказывался за необходимость такого представления о природе явлений:“Истинная философия должна видеть в явлениях механических первопричину всех явлений; по моему мнению, иное представление и невозможно, если мы только не желаем потерять надежду что-либо понимать в философии “ («Трактат о свете»).

№ слайда 16

Описание слайда:

Физика - это наука о материи, ее свойствах и движении. Она является одной из наиболее древних научных дисциплин, и первые дошедшие до нас работы восходят к временам Древней Греции. Анри Беккерель 26.2.1786 - 2.10.1853Написал цикл статей о температуре Земли, нетеплового излучения света. Андре-Мари АМПЕР26.2.1786 - 2.10.1853 Амперу принадлежит заслуга введения в науку терминов "электростатика", "электродинамика ", А. ВОЛЬТА 1745- - 1827Исследования в области электричества, Фарадей Майкл1791-1867Английский физик, основоположник учения об эл.-магнитном поле, ЛОРЕНЦ Хендрик Антон- 1928Нидерландский физик, инженер Член Петербургской. АН (1910) и почетный член АН СССР, (1925). Создал классическую электронную теорию, с помощью которой бъяснил многие электрические и оптические явления,

№ слайда 17

Описание слайда:

может собственных ПлатоновИ быстрых разумом НевтоновРоссийская земля рождать Он был естествоиспытателем, философом, поэтом, основоположником русского литературного языка, историком, географом, политическим деятелем. Всем своим самобытным энциклопедизмом,простиравшимся от поэзии и изобразительного искусства до великих физико-химических открытий, М. В. Ломоносов, как никто другой, доказывал единство всех проявлений человеческого духа, искусства и науки, абстрактной мысли иконкретной техники.

№ слайда 18

Описание слайда:

ЛЕБЕДЕВ Петр Николаевич (24.02.1866-1.03.1912) Выдающийся русский ученый, основатель первой в России научной школы физиков. Впервые получил и исследовал миллиметровые электромагнитные волны (1895). Открыл и исследовал давление света на твердые тела (1899) и газы (1907), количественно подтвердив электромагнитную теорию света. Идеи П.Н. Лебедева нашли свое развитие в трудах его многочисленных учеников.Петр Николаевич Лебедев родился 8 марта 1866 года в Москве, в купеческой семье. С сентября 1884 по март 1887 года Лебедев посещал Московское высшее техническое училище, однако деятельность инженера его не привлекала. Он отправился в 1887 году в Страсбург, в одну из лучших физических школ Европы, школу Августа Кундта.

№ слайда 19

Описание слайда:

А.С. Попов1859 – 1905 грусский ученый-физик и электротехник А.Н. Лодыгин.(1847-1923) русский электротехник Л.Б.Ландау 22.01. 19081.04. 1968Исследования магнитных свойств свободных электронов Черенков Павел Алексеевич 28 июля 1904 г. – 6 января 1990 г. выдающийся русский ученый, первый отечественный физик, награжденный Нобелевской премией.

№ слайда 20

Описание слайда:

Всю историю физики можно условно разделить на три основных этапа:

· древний и средневековый,

· классической физики,

· современной физики .

Первый этап развития физики иногда называют донаучным. Однако такое название нельзя считать полностью оправданным: фундаментальные зерна физики и естествознания в целом были посеяны еще в глубокой древности. Это самый длительный этап. Он охватывает период от времен Аристотеля до начала XVII в., поэтому и называется древним и средневековым этапом .

Начало второго этапа – этапа классической физики – связывают с одним из основателей точного естествознания – итальянским ученым Галилео Галилеем и основоположником классической физики, английским математиком, механиком, астрономом и физиком Исааком Ньютоном. Второй этап продолжался до конца XIX в.

К началу XX столетия появились экспериментальные результаты, которые трудно было объяснить в рамках классических представлений. В этой связи был предложен совершенно новый подход – квантовый, основанный на дискретной концепции. Квантовый подход впервые ввел в 1900 г. немецкий физик Макс Планк (1858–1947), вошедший в историю развития физики как один из основоположников квантовой теории. Его трудами открывается третий этап развития физики – этап современной физики , включающий не только квантовые, но и классические представления.

Дадим краткую характеристику каждого из этапов. Принято считать, что первый этап открывает геоцентрическая система мировых сфер, разработанная Аристотелем. Учение о геоцентрической системе мира начиналось с геоцентрической системы кольцевых мироустроений еще гораздо раньше – в VI в. до н. э. Ее предложил Анаксимандр (ок. 610 – после 547 до н. э.), древнегреческий философ, представитель Милетской школы. Данное учение было развито Евдоксом Книдским (ок. 406 – ок. 355 до н. э.), древнегреческим математиком и астрономом. Геоцентрическая система Аристотеля родилась, таким образом, на подготовленной его предшественниками идейной почве.

Переход от эгоцентризма – отношения к миру, которое характеризуется сосредоточенностью на своем индивидуальном «я», к геоцентризму – первый и, пожалуй, самый трудный шаг на пути зарождения ростков естествознания. Непосредственно видимая полусфера неба, ограниченная местным горизонтом, была дополнена аналогичной невидимой полусферой до полной небесной сферы. Мир стал как бы более завершенным – специфическим, но оставаясь ограниченным небесной сферой. Соответственно и сама Земля, противопоставленная остальной (небесной) сферической Вселенной как постоянно занимающая в ней особое, центральное положение и абсолютно неподвижная, стала считаться сферической. Пришлось признать не только возможность существования антиподов – обитателей диаметрально противоположных частей земного шара, но и принципиальную равноправность всех земных обитателей мира. Такие представления, носившие в основном умозрительный характер, подтверждались гораздо позднее – в эпоху первых кругосветных путешествий и великих географических открытий, т. е. на рубеже XV и XVI вв., когда само геоцентрическое учение Аристотеля с канонической системой идеальных равномерно вращающихся небесных сфер, сочлененных друг с другом своими осями вращения, с принципиально различной физикой или механикой для земных и небесных тел уже доживало свои последние годы.

Почти полторы тысячи лет отделяет завершенную геоцентрическую систему греческого астронома Клавдия Птоломея (ок.90 – ок. 160) от достаточно совершенной гелиоцентрической системы (рис. 3.1) польского математика и астронома Николая Коперника (1473–1543). Вершиной гелиоцентрической системы можно считать законы движения планет, открытые немецким астрономом Иоганном Кеплером (1571–1630), одним из творцов астрономии нового времени.

Рис. 3.1. Система мира по Копернику (в центре Солнце)

Астрономические открытия Галилео Галилея и его физические эксперименты, а также общие динамические законы механики вместе с универсальным законом всемирного тяготения, сформулированные Исааком Ньютоном, положили начало классическому этапу развития физики .

Между названными этапами нет четких границ. Для физики и естествознания в целом характерно в большей степени поступательное развитие: законы Кеплера – венец гелиоцентрической системы с весьма длительной историей, начавшейся еще в древние времена; законам Ньютона предшествовали законы Кеплера и труды Галилея; Кеплер открыл законы движения планет в итоге логически и исторически естественного перехода от геоцентризма к гелиоцентризму, но не без эвристических идей аристотелевской механики.

Механика Аристотеля разделялась на земную и небесную, т. е. не обладала надлежащим принципиальным единством: аристотелевское взаимное противопоставление Земли и Неба сопровождалось принципиальной противоположностью относящихся к ним законов его механики, которая тем самым оказалась в целом внутренне противоречивой, несовершенной.

Галилей опроверг аристотелевское противопоставление Земли и Неба. Он предложил применять закон инерции Аристотеля, характеризующий равномерное движение небесных тел вокруг Земли, для земных тел при их свободном движении в горизонтальном направлении. Мысленно расчленяя всевозможные земные тела на отдельные части, он установил для них закон одинаково быстрого (или одинаково равномерно ускоренного) свободного падения независимо от их массы, когда свободное падение в вертикальном направлении к центру Земли происходит в идеальных условиях, без какого бы то ни было сопротивления, т. е. в пустоте. Этот закон находится в противоречии с канонизированным аристотелевским учением, в соответствии с которым «природа не терпит пустоты», и весомые тела падают в реальных условиях под действием присущей им силы тяжести на самом деле тем быстрее, чем больше их массы.

Кеплер и Галилей, отталкиваясь таким образом от первоначальных представлений, радикально пересмотрели всю механику. В результате перехода от геоцентризма к гелиоцентризму они пришли к своим кинематическим законам, которые предопределили принципиально единую для земных и небесных тел механику Ньютона со всеми сформулированными им классическими динамическими законами, включая универсальный закон всемирного тяготения. При этом из «Математических начал натуральной философии» – фундаментального труда Исаака Ньютона – можно заключить, что его динамические законы не только следуют из соответствующих кинетических законов Кеплера и Галилея, но и сами могут быть положены в основу всех трех кинематических законов Кеплера и обоих кинематических законов Галилея, а также всевозможных теоретически ожидаемых отклонений от них из-за сложного строения и взаимных гравитационных возмущений взаимодействующих тел.

Законы Кеплера послужили основой для открытия новых планет. Так, по результатам наблюдений отклонений в движении планеты Уран, сделанных в 1781 г. английским астрономом и оптиком Уильямом Гершелем (1738–1822), английский астроном и математик Джон Кауч Адамс (1819–1892) и французский астроном Урбен Жан Жозеф Леверье (1811–1877) независимо друг от друга и почти одновременно теоретически предсказали существование еще одной – заурановой планеты, которую обнаружил на небе в 1846 г. немецкий астроном Иоганн Галле (1812–1910). Эта планета носит название Нептун. Затем американский астроном Персиваль Ловелл (1855–1916) аналогично предсказал в 1905 г. существование еще одной заурановой планеты и организовал в созданной им обсерватории ее систематические поиски, в результате которых молодой американский любитель астрономии открыл в 1930 г. искомую новую планету – Плутон.

Стремительными темпами развивалась не только классическая механика Ньютона. Этап классической физики характеризуется также крупными достижениями и в других отраслях физики: термодинамике, молекулярной физике, оптике, электричестве, магнетизме и т. п. Ограничимся перечислением некоторых наиболее важных достижений. Были установлены опытные газовые законы. Предложено уравнение кинетической теории газов. Сформулирован принцип равномерного распределения энергии по степеням свободы, первое и второе начала термодинамики. Открыты законы Кулона, Ома и электромагнитной индукции. Явления интерференции, дифракции и поляризации света получили волновое истолкование. Установлены законы поглощения и рассеивания света.

Конечно, можно было бы назвать и другие не менее важные достижения, среди которых особое место занимает электромагнитная теория, разработанная выдающимся английским физиком Джеймсом Клерком Максвеллом. Максвелл является не только создателем классической электродинамики, но и одним из основоположников статистической физики. Он установил статистическое распределение молекул по скоростям, названное его именем. Развивая идеи Майкла Фарадея (1791–1867), он создал теорию электромагнитного поля (уравнения Максвелла), которая не только объясняла многие известные к тому времени электромагнитные явления, но и предсказала электромагнитную природу света. С электромагнитной теорией Максвелла вряд ли можно поставить рядом другую более значительную в классической физике. Однако и теория Максвелла оказалась не всемогущей.

В конце прошлого столетия при изучении спектра излучения абсолютно черного тела была экспериментально установлена закономерность распределения энергии в спектре излучения. Экспериментальные кривые распределения имели характерный максимум, который по мере повышения температуры смещался в сторону более коротких волн. В рамках классической электродинамики Максвелла не удалось объяснить закономерность распределения энергии в спектре излучения абсолютно черного тела. Правильное, согласующееся с опытными данными выражение для спектральной плотности энергетической светимости абсолютно черного тела было найдено в 1900 г. Максом Планком. Для этого ему пришлось отказаться от установившегося положения классической физики, согласно которому энергия любой системы может изменяться непрерывно, т. е. может принимать любые сколь угодно близкие значения. Согласно выдвинутой Планком квантовой гипотезе, атомные осцилляторы излучают энергию не непрерывно, а определенными порциями – квантами, причем энергия кванта пропорциональна частоте колебания.

Характерная особенность третьего этапа развития физики – современного этапа – заключается в том, что наряду с классическими широко внедряются квантовые представления, на основании которых объясняются многие микропроцессы, происходящие в пределах атома, ядра и элементарных частиц, и в связи с которыми возникли новые отрасли современной физики: квантовая электродинамика, квантовая теория твердого тела, квантовая оптика и многие другие.

Линия УМК А. В. Перышкина. Физика (7-9)

Линия УМК Г. Я. Мякишева, М.А. Петровой. Физика (10-11) (Б)

Линия УМК Н. С. Пурышевой. Физика (7-9)

Линия УМК Пурышевой. Физика (10-11) (БУ)

Как работает двигатель прогресса?

О совершенствовании методики преподавания физики в России: от XVIII до XXI века.

Физика. Кто придумал, почему оно взорвалось, как это рассчитать, что это такое, почему так происходит, зачем эта деталь, куда переходит энергия? Сотни вопросов. На огромное количество есть ответы, на огромное количество – нет, а еще большее число не задано вообще. Как менялось преподавание одной из самых важных дисциплин на протяжении трех последних столетий?
Читайте по теме:
Методическая помощь учителю физики
Важной особенностью физики является тесная взаимосвязь с развитием общества и его материальной культуры, поскольку она никак не может быть той самой «вещью в себе». Физика и зависит от уровня развития общества, и одновременно является двигателем его производительных сил. Вот почему именно науку о природе и ее законах можно считать тем «срезом», по которому видно научный потенциал страны и вектор ее развития.

Глава первая. Век восемнадцатый

Изначально отдельные вопросы физики (преподававшейся по Аристотелю) изучались в рамках курса философии в двух крупнейших славяно-греко-латинских академиях: Киево-Могилянской и Московской. Только в начале XVIII века физика выделилась в самостоятельный предмет, отделившись от натурфилософии, сформировав свои собственные цели и задачи, как и приличествует настоящей дисциплине. Обучение тем не менее продолжалось на классических языках, то есть латинском и греческом, что существенно снижало количество изучаемых предметов.

Тем не менее, забегая вперед, отметим, что работа по созданию отечественной методической литературы по физике началась в России куда раньше, чем на Западе. Ведь у нас физика как учебный предмет была введена в школу в конце XVIII века, в то время как в Европе – только в конце XIX.

Пока же – Петр Первый. Эта фраза содержит в себе все: ожидание европеизации образования, его распространения и популяризации. Бороды тут ни при чем, забудьте о бородах. Повсеместное открытие новых учебных заведений позволило физике выйти на новый уровень и во второй половине XVIII века стать отдельным предметом в университетах.


Линия УМК А. В. Перышкина. Физика (7-9 классы)
В доработанную версию УМК в конец каждой главы был добавлен обобщающий итоговый материал, включающий краткую теоретическую информацию и тестовые задания для самопроверки. Учебники также были дополнены заданиями разных типов, направленных на формирование метапредметных умений: сравнение и классификацию, формулирование аргументированного мнения, работу с разнообразными источниками информации, в том числе электронными ресурсами и интернетом, решение расчетных, графических и экспериментальных задач

В Московском университете чтение лекций по физике с 1757 года сопровождалось демонстрацией опытов. В середине столетия оснащение университетов приборами позволило перейти от «мелового этапа» к этапу более сложному – «приборной физике», но в большинстве случаев изучение физических явлений не просто сопровождалось, но сводилось к детальному изучению приборов. Студент однозначно имел представление о принципе действия стержней, пластин, термометров и вольтова столба.

Глава вторая. Век девятнадцатый

От чего зависит успешность преподавания любого предмета? От качества программ, методов, материальной базы и языка учебников, наличия физических приборов и реактивов, уровня самого педагога.

В период, о котором мы говорим, единой программы по физике не существовало ни в школе, ни в университете. Что делали школы? Школы работали на основании материалов, которые разрабатывались в учебном округе, университеты – опираясь на курс авторитетного автора либо следуя авторскому курсу, утвержденному Коллегией профессоров.

Все изменилось во второй половине века. Уже упомянутый Физический кабинет Московского университета рос, коллекция демонстрационных приборов увеличивалась, активно влияя на эффективность преподавания. А в программе по физике 1872 года рекомендовалось давать учащимся основательные знания, для этого же «ограничиться числом фактов по каждому отделу явлений и изучать их вполне, чем иметь огромное количество поверхностных сведений». Вполне логично, учитывая, что теория физики на тот момент была логична и лишена крайне неустойчивых дилемм.

Читайте по теме:
Подготовка к ЕГЭ по физике: примеры, решения, объяснения
Как же преподавали физику? Давайте поговорим о методах.

О педагогической деятельности Николая Алексеевича Любимова , выдающегося русского физика, профессора, одного из учредителей Московского математического общества, писали так: «Педагогическая деятельность Н. А. в Московском университете, несомненно, представляла значительный шаг вперед. В постановке преподавания физики приходилось начинать почти с азбуки, и доведение его до совершенства, которого оно достигло в руках Η. Α., требовало больших усилий и недюжинных способностей».Так-так, азбука – метафора или реальное положение дел? Кажется, что реальное и довольно похожее на современное положение дел во многих образовательных учреждениях.


Одним из самых популярных методов преподавания физики в XIX веке было механическое заучивание материала, в первом круге – по записям лекций, позже – по кратким учебникам. Неудивительно, что состояние знаний студентов вызывало тревогу. Тот же Николай Алексеевич довольно ясно выразился об уровне знаний гимназистов:

«Величайший недостаток учения у нас состоит в том, что оно доставляет только поверхностные сведения… Не одну сотню ответов пришлось нам слушать на экзаменах. Впечатление одно: отвечающий не понимает того, что сам доказывает».

Другой выдающийся и знакомый всем русский хирург, естествоиспытатель и педагог Николай Иванович Пирогов придерживался того же мнения, высказываясь в поддержку идеи важности не только личных качеств учителя, но методов его деятельности.

«Пора понять нам, что обязанность гимназического учителя не состоит только в одном сообщении научных сведений и что главное дело педагогики состоит именно в том, как эти сведения будут сообщены ученикам».

Понимание ошибочности такого подхода позволило перейти к принципиально новому по сравнению с веком восемнадцатым методу экспериментального преподавания. Не детальное изучение приборов и заучивание текста поставлено во главу угла, но самостоятельное получение новых знаний из анализа опытов. Список приборов Московского университета, составленный в 1854 году, насчитывал 405 приборов, большинство из них относились к разделу механики, около 100 – к разделу электричества и магнитных свойств, порядка 50 приборов – к теплоте. Стандартный набор любого кабинета и приборы, описание которых можно было бы найти в любом учебнике: архимедов винт, сифоны, ворот, рычаг, геронов фонтан, барометр, гигрометр.

Читайте по теме:
ЕГЭ по физике: решение задач о колебаниях

Устав 1864 года предписывал реальным (в приоритете предметы естественно-научного цикла) и классическим гимназиям иметь в распоряжении физические кабинеты, первым же – и химический класс в придачу. Активное развитие физики в 1860-х, ее неразрывная связь с промышленностью и развитием техники, общее повышение уровня студентов, как и количества желающих посвятить себя прикладной дисциплине, влияющей на будущее отечества, привели к «научному голоданию». Как это? Это острое ощущение нехватки специалистов, обладающих практикой научной работы. Как решить эту проблему? Верно, учить, как работать, и учить, как учить.


Первой обобщающей работой по методике преподавания физики стала книга Федора Шведова , выпущенная в 1894 году, «Методика физики». В ней были рассмотрены построение учебного курса, классификация методов и их психологическое обоснование, впервые было дано описание задач предмета.

«Задача науки методики состоит не только в развитии искусства, так сказать, виртуозности изложения, а главным образом в выяснении логических основ науки, которые могли бы послужить точкой отправления как для выбора материала, так и для порядка его расположения в каждом излагаемом курсе, цель которого предполагается намеченною».

Эта идея была прогрессивной для своего времени, более того, абсолютно не утратила своего значения и в современности.

Дореволюционный период характеризовался резким ростом числа методических изданий. Если собрать все новаторские идеи, содержащиеся в трудах Лерманова, Глинки, Баранова и Кашина, может получиться интереснейший список:

  • Внедрение «плодоносных», а не «стерильных» теоретических знаний.
  • Широкое использование демонстраций.
  • Двухступенчатая система.
  • Разработка и применение самодельных приборов.
  • Восприятие физики как дисциплины, формирующей мировоззрение.
  • Экспериментальный метод как одна из основ обучения.
  • Применение индукции и дедукции.
  • Творческое сочетание теории и эксперимента.

Именно расширение научных лабораторий, внедрение практик лабораторных работ в гимназическом и университетском образовании, развитие научных исследований привели к всплеску научных открытий на рубеже веков. Многие тенденции остались неизменными до наших дней, обеспечивая непрерывность и постоянное усовершенствование преподавания одной из самых важных для понимания мира дисциплин.

Глава третья. Век двадцатый


Линия УМК Н. С. Пурышевой. Физика (10-11 классы)
Основой курса, написанного по авторской программе, является индуктивный подход: путь к теоретическим построениям лежит через повседневный жизненный опыт, наблюдения за окружающей действительностью и простые эксперименты. Большое внимание уделяется практическим работам школьников и дифференцированному подходу к обучению. Учебники позволяют организовать и индивидуальную и групповую работу старшеклассников, благодаря чему развиваются навыки как самостоятельной деятельности, так и сотрудничества в команде.

Школьникам и студентам необходимо было все это объяснить. За полвека представление о мире поменялось, значит, должна была поменяться и педагогическая практика. Величайший прорыв в микромир, квантовая теория, специальная теория относительности, физика атомного ядра и физика высоких энергий.


Как же строилось преподавание физики в России после революции 1917? Строительство новой единой трудовой школы на социалистических принципах кардинально изменило содержание и методы обучения:

  • Значение физики было по достоинству оценено в учебном плане и в преподавании.
  • Были созданы НИИ и центры по педагогическим наукам, а также организованы кафедры методики в педагогических вузах.
  • Советская физика не отменяет наработок и прогрессивных тенденций дореволюционного периода, НО.
  • Ее особенностью (как же без этого?) становится материализм, содержание исследований идет неразрывно с потребностями и направлением движения страны. Борьба с формализмом – собственно, почему бы и нет.

Весь мир в середине XX столетия переживает научно-техническую революцию, роль советских ученых в которой неоценима. Об уровне советского технического образования ходят легенды. С конца 1950-х и до 1989 года, когда страна вступает в период нового кризиса, физика развивается интенсивно, а методика ее преподавания отвечает на целый ряд вызовов:

  • Новый курс должен соответствовать новейшим достижениям науки и техники. Учебники 1964 года уже содержали в себе сведения об ультразвуке, искусственных спутниках Земли, невесомости, полимерах, свойствах полупроводников, ускорителях заряженных частиц (!). Была даже введена новая глава – «Физика и технический прогресс».
  • Новые пособия и учебники для средней школы должны отвечать новым требованиям. Каким? Материал излагается доступно, интересно, с широким применением эксперимента и четким раскрытием законов физики.
  • Познавательная деятельность учащихся должна выйти на новый уровень. Именно тогда окончательно сформировались три функции урока: образовательная, воспитательная и развивающая.
  • Технические средства обучения – как же без них? Система школьного физического эксперимента должна совершенствоваться.

Именно советские методисты внесли существенный вклад в совершенствование структуры и методики преподавания технических дисциплин. Новые формы уроков физики, используемые и по сей день: проблемный урок, конференция-урок, урок-семинар, урок-экскурсия, практические занятия, экспериментальные задачи, – были разработаны в СССР.

«Методика физики должна разрешить три задачи: для чего учить, чему учить и как учить?» (учебник И. И. Соколова).

Обратите внимание на очередность, в ней – основа хорошего образования.

Глава четвертая. Век двадцать первый

Эта глава еще недописана, она открытый лист, который необходимо заполнить. Как? Создав предмет, который будет отвечать и техническому прогрессу, и задачам, которые в данный момент стоят перед отечественной наукой, и цели стимулирования научного и изобретательского потенциала ученика.


Дайте школьнику текст урока – он его выучит.

Дайте школьнику текст урока и приборы – и он поймет принцип их работы.

Дайте школьнику текст лекции, приборы и учебное пособие – и он научится систематизировать свои знания, поймет действие законов

Дайте школьнику учебники, лекции, приборы и хорошего преподавателя – и у него появится вдохновение к научной работе

Дайте школьнику все это и свободу, Интернет, и у него будет возможность мгновенно получить любую статью, создать 3D-модель, посмотреть видео эксперимента, быстро рассчитать и проверить свои выводы, постоянно узнавать новое – и вы получите человека, который научится сам ставить вопросы. Не это ли самое важное в обучении?

Новые учебно-методические комплексы «Российского учебника»* – это соединение всех четырех столетий: текста, заданий, обязательных лабораторных работ, проектной деятельности и электронного обучения.

Мы хотим, чтобы вы сами написали четвертую главу.

Ольга Давыдова
*С мая 2017 года объединенная издательская группа «ДРОФА-ВЕНТАНА» входит в корпорацию «Российский учебник». В корпорацию также вошли издательство «Астрель» и цифровая образовательная платформа «LECTA». Генеральным директором назначен Александр Брычкин, выпускник Финансовой академии при Правительстве РФ, кандидат экономических наук, руководитель инновационных проектов издательства «ДРОФА» в сфере цифрового образования.

Наука возникла в глубокой древности как попытка осмыслить окружающие явления, взаимосвязь природы и человека. Сначала она не разделялась на отдельные направления, как сейчас, а объединялась в одну общую науку - философию. Астрономия выделилась в отдельную дисциплину раньше физики и является наряду с математикой и механикой одной из древнейших наук. Позже наука о природе так же выделилась в самостоятельную дисциплину. Древнегреческий учёный и философ Аристотель назвал физикой одно из своих сочинений.

Одна из главных задач физики - объяснить строение окружающего нас мира и происходящие в нём процессы, понять природу наблюдаемых явлений. Другая важная задача - выявить и познать законы, которым подчиняется окружающий мир. Познавая мир, люди используют законы природы. Вся современная техника основана на применении законов, открытых учёными.

С изобретением в 1780-х гг. парового двигателя началась промышленная революция. Первый паровой двигатель изобрёл английский учёный Томас Ньюкомен в 1712 г. Паровая машина пригодная для использования в прмышленности, впервые создана в 1766 г. русским изобретателем Иваном Ползуновым (1728-1766).Шотландец Джеймс Уатт усовершенствовал конструкцию. Созданный им в 1782 г. двухтактный паровой двигатель приводил в движение машины и механизмы на фабриках.

Сила пара приводила в движение насосы, поезда, пароходы, прядильные станки и множество других машин. Мощным толчком для развития техники послужило создание английским физиком «гениальным самоучкой» Майклом Фарадеем в 1821 г. первого электродвигателя. Создание в 1876г. немецким инженером Николаусом Отто четырёхтактного двигателя внутреннего сгорания открыло эру автомобилестроения, сделало возможным существование и повсеместное использование автомобилей, тепловозов, судов и других технических объектов.

То, что раньше считалось фантастикой, сейчас становится реальной жизнью, которую мы уже не представляем без аудио- и видеотехники, персонального компьютера, сотового телефона и Интернета. Их возникновение обязано открытиям сделанным в различных областях физики.

Однако и развитие техники способствует прогрессу в науке. Создание электронного микроскопа позволило заглянуть внутрь вещества. Создание точных измерительных приборов сделало возможным более точный анализ результатов экспериментов. Огромный прорыв в области изучения космоса был связан именно с появлением новых современных приборов и технических устройств.


Таким образом, физика как наука играет огромную роль в развитии цивилизации. Она перевернула самые фундаментальные представления людей - представления о пространстве, времени, устройстве Вселенной, позволив человечеству совершить качественный скачок в своём развитии. Успехи физики позволили сделать ряд фундаментальных открытий в других естественных науках, в частности, в биологии. Развитие физики в наибольшей степени обеспечивало бурный прогресс медицины.

С успехами физики связаны и надежды учёных на обеспечение человечества неиссякаемыми альтернативными источниками энергии, использование которых позволит решить многие серьёзные экологические проблемы. Современная физика призвана обеспечить понимание самых глубинных основ мироздания, появления и развития нашей Вселенной, будущего человеческой цивилизации.