Цель работы : Определить длину световой волны, используя дифракционную решетку .

Оборудование:

1. Прибор для определения длины световой волны, состоящий из линейки, пластины с дифракционной решеткой и движка со щелью.

2. Штатив.

3. Электрическая лампочка на напряжение 42 В в патроне.

Краткая теория

Как известно, свет представляет собой электромагнитные волны , которые характеризуются длиной световой волны. Дифракционная решетка служит для выделения из света с разными длинами волн света с определенной длиной волны или, как говорят, разложения света на его спектральные компоненты . Основой работы дифракционной решетки служат явления дифракции и интерференции света, и именно волновая природа света приводит к возникновению указанных выше двух явлений.

Дифракцией называется отклонение распространения света от прямолинейного в область, где при прямолинейном распространении света должна бы была быть тень.

Интерференцией называется сложение световых пучков, ведущее к образованию светлых и темных полос.

Дифракция. Дифракция наблюдается в случаях, когда свет проходит сквозь прозрачный материал, в котором есть непрозрачные небольшие препятствия, либо через небольшие отверстия в непрозрачном материале.

Различают два типа дифракции: дифракция в параллельных пучках света или дифракция Фраунгофера и дифракция в расходящемся пучке света – дифракция Френеля . В первом случае для наблюдения дифракционной картины используют либо солнечные лучи, которые являются параллельными, либо создают параллельный пучок света, используя простейшую оптическую систему – выпуклую линзу. Во втором случае используется точечный источник света, например, лампа с малыми размерами спирали.

Схема наблюдения дифракции Фраунгофера приведена на рис. 1.

Рис.1. Дифракция Фраунгофера.

В случае прямолинейного распространения света параллельный пучок лучей, сформированный линзой 1, пройдя через круглое отверстие в непрозрачном экране 1 и через фокусирующую линзу 2, должен был бы собраться в точку. Однако, из-за дифракции на экране 2 получается сложная дифракционная картина, состоящая из чередования светлых и темных колец.

Интерференция. При интерференции волны света с одинаковыми длинами волн максимально усиливают друг друга, когда приходят в точку наблюдения в одинаковой фазе , и ослабляют друг друга, когда приходят в противофазе . Суть явления интерференции поясняет рис.2.

Рис. 2. Интерференция от 2-х источников.

Точечные источники света В 1 и В 2 расположены друг от друга на расстоянии t. Колебания электромагнитного поля совершаются в этих точках в одной и той же фазе. Интерференция (т.е. сложение или вычитание колебаний) наблюдается в точках А и С на экране, находящемся на большом расстоянии L по сравнению t и l. В оптике установлено, что для максимального усиления волн разность хода (т.е. разность расстояний от источников до точки наблюдения) должно выполняться условие:

,

а для максимального ослабления волн:

, где n – целое число.

Из Рис. 2 можно определить разность хода . Тогда, используя предыдущие равенства, можно получить, что светлые полосы располагаются на расстоянии от точки А, расстояние между светлыми полосами , а темные полосы располагаются между светлыми. Очевидно, что в точке А разность хода равна нулю и в этой точке наблюдается сложение колебаний от источников света В 1 и В 2

Дифракционная решетка . Ряд прозрачных щелей, разделенных непрозрачными полосами, называется дифракционной решеткой . Дифракционная картина, которая имела место на одной щели при использовании дифракционной решетки, усложняется, так как кроме дифракции на каждой щели происходит еще и интерференция световых волн от щелей, которые можно рассматривать как источники света. На экране возникают максимумы и минимумы света, причем главные максимумы возникают при значении угла j , удовлетворяющих соотношению , где - период решетки равный сумме ширины щели и полосы. Положение 1-го максимума при определяется выражением

Из (1) видно, что для данной дифракционной решетки положения 1-го максимума для различных длин волн разное: чем больше длина волны света, тем больше угол отклонения наблюдаемого максимума от направления падающего пучка света.

Программа работы

Схема прибора приведена на рис.3.


Рис.3. Прибор для определения длины волны.

1. Включить электрическую лампочку.

2. Глядя через дифракционную решетку, направить прибор на лампочку так, чтобы через щель в движке была видна нить накала лампы. На черном фоне движка по обе стороны от нуля должны быть видны дифракционные спектры, состоящие из полос разного цвета. Если полосы располагаются не параллельно шкале, то это означает, что нить накала не параллельна штрихам на решетке. В этом случае надо повернуть немного либо дифракционную решетку, либо лампочку. Закрепить прибор.

3. Определить расстояние от щели на движке (нуля) до красной полосы слева на шкале.

4. Определить расстояние от щели на движке (нуля) до красной полосы справа на шкале. Записать это значение в таблицу.

5. Определить среднее значение расстояния до красной полосы по формуле:

Записать это значение в таблицу.

6. Определить расстояние от щели на движке (нуля) до фиолетовой полосы слева на шкале. Записать это значение в таблицу.

7. Определить расстояние от щели на движке (нуля) до фиолетовой полосы справа на шкале. Записать это значение в таблицу.

8. Определить среднее значение расстояния до фиолетовой полосы по формуле:

Записать это значение в таблицу.

9. Определить расстояние от дифракционной решетки до движка. Записать это значение в таблицу.

Цель работы: ознакомление с прозрачной дифракционной решеткой, опре-

деление длин волн спектра источника света - лампы накали-

Приборы и принадлежности:

1. Прозрачная дифракционная решетка.

2. Лампа накаливания.

3. Гониометр (прибор для точных измерений углов).

4. Линейная установка для определения длины волны света.

Дифракция света - явление, состоящее в отклонении от законов геометрической оптики и возникающее при прохождении световых волн вблизи непрозрачных препятствий, соразмеримых с длиной световых волн. Различают два вида дифракции:

1. Дифракция Френеля, т.е. такая, когда дифракционная картина образована расходящимся пучком лучей, имеющих сферический волновой фронт.

2. Дифракция Фраунгофера, т.е. такая, когда дифракционная картина образована системами параллельных лучей, имеющих плоский волновой фронт. В этом случае дифракционная картина в виде темных и светлых полос наблюдается только с помощью линзы, собирающей лучи в фокальной плоскости. Рассмотрим дифракцию Фраунгофера на дифракционной решетке.

Дифракционная решетка представляет собой плоскую прозрачную пластину, на которой нанесены чередующиеся прозрачные и непрозрачные полосы. Сумму ширины прозрачной и непрозрачной полос называют постоянной решетки d , или ее периодом.

Рассмотрим элементарную теорию дифракционной решетки. Направим перпендикулярно плоскости решетки монохроматический пучок света, т.е. плоскую монохроматическую волну длины l . В соответствии с принципом Гюйгенса - Френеля каждая точка волнового фронта может рассматриваться как самостоятельный источник вторичных волн. Эти источники когерентны. Каждая щель решетки ведет себя как точечный источник вторичных волн при том условии, что ширина щели меньше длины волны. В этом случае дифракционная решетка представляет собой набор точечных когерентных источников (5), расположенных в щелях решетки и испускающих световые колебания во всех направлениях. Падающий на дифракционную решетку параллельный пучок лучей в результате дифракции изменит свою структуру. После решетки отклонение лучей от первоначального направления составляет от 0 0 до 90 0 вправо и влево. Если за дифракционный решеткой поместить собирающую линзу, то в фокальной плоскости линзы можно наблюдать дифракционную картину, являющуюся результатом двух процессов: дифракции света от каждой щели решетки и многолучевой интерференции от всех щелей. Основные черты этой картины определяются вторым процессом.


Так как на решетку падает плоская волна, то лучи одного и того же направления, выходящие из различных щелей, имеют одинаковые начальные фазы. Линза также не вносит разности фаз. Следовательно, разность фаз может создаваться только за счет разности хода лучей до линзы. Если разность хода pg соответствующих лучей (т.е. лучей, выходящих из соответственно расположенных точек двух соседних щелей) равна целому числу k=0,1,2,3... длин волн света l , т.е. pg=d×sinj=kl, то разность хода любых лучей, идущих в этом направлении:

также равна целому числу длин волн (множитель N равен разности номеров щелей). Следовательно, все лучи, выходящие под углом j , удовлетворяющих условию:

(1)

при интерференции, будут усиливать друг друга и на экране будут наблюдаться максимум света. Уравнение (1) является основным при практическом использовании дифракционных решеток. Измерив углы j, соответствующие положениям дифракционных максимумов, можно, зная длину волны света, найти постоянную решетки d, или наоборот, зная d, определить длину волны света. В центральной световой полосе, изображение которой создается пучком, параллельный падающему (k=0, sinj =0) суммируется действия всех лучей, независимо от длины волны. Справа и слева от центрального максимума располагаются световые полосы, для которых k=±1, ±2, ±3, ±4, ... Они называются дифракционными максимумами 1-го, 2-го... и k-го порядка. Согласно уравнению (1) различным значениям l соответствуют различные углы j (в дифракционных максимумах одного порядка). Поэтому при освещении решетки белым светом в фокальной плоскости линзы образуется ряд дифракционных спектров, перекрывающих друг друга.

Решая уравнение (1) относительно l, получим:

Это выражение является основной расчетной формулой для вычисления длин световых волн. В данной лабораторной работе определение длины волны света приводят с помощью гониометра и линейной установки.

С ПОМОЩЬЮ КОЛЕЦ НЬЮТОНА

Цель работы: пронаблюдать на опыте интерференцию света в тонкой пленке (в воздушном слое между линзой и пластинкой) в виде колец Ньютона и определить длину волны света с помощью колец Ньютона.

Приборы и принадлежности : плосковыпуклая линза, поставленная выпуклой стороной на плоскопараллельную пластину и закрепленная на ней; микроскоп; источник света; линейка с миллиметровой шкалой.

П р и м е ч а н и е: теория метода и описание установки приводятся в работе № 2.

1. Определение цены деления окулярной шкалы

П р и м е ч а н и е: задание выполняется так же, как и в работе № 2.

2. Определение длины волны света

Диаметр кольца Ньютона можно непосредственно измерить в делениях окулярной шкалы. Умножая этот результат на величину b , выраженную в мм/дел., получим диаметр в мм.

Радиусы i -го и n -го темных колец в соответствии с формулой (2.5)

r т, i = ,r т, n = , (3.1)

Возводя эти выражения в квадрат, и вычитая одно из другого, получим

. (3.2)

Формула (3.2) справедлива и для светлых колец. Так как центр кольца устанавливается с большой погрешностью, в опыте измеряют не радиус, а диаметр кольца D . Тогда формула (3.2) принимает вид

, (3.3)

откуда получаем формулу для вычисления длины волны света

. (3.4)

Радиус линзы приведен в табл. 3.1, номер линзы указан на держателе линзы. В целях упрощения расчетов величину обозначим через T . Тогда

l = . (3.5)

Таблица 3.1

Выполнение работы

2.1. См. п. 2.1 в работе №2.

2.2. См. п.2.2 в работе №2.

2.3 См. п. 2.3 в работе №2.

2.4. По формуле (3.5) определить < l >.

,

где DT найти по формуле, аналогичной формуле (2.7).

2.6. Результаты измерений и вычислений занести в табл. 3.2. Записать окончательный результат в виде доверительного интервала с указанием надежности и относительной погрешности.

Таблица 3.2

Номер кольца х 1 х 2 D D 2 i - n D 2 i -D 2 n T Т - (T - ) 2
. . .
Сумма
Ср. знач.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Явление интерференции света.

2. Когерентность.

3. Оптическая длина пути и оптическая разность хода.

4. Условия максимумов и минимумов при интерференции.

5. Явления, происходящие при отражении:

а) от среды, оптически более плотной;

б) от среды, оптически менее плотной.

6. Линии равной толщины. Кольца Ньютона.

7. Вывод расчетной формулы.

8. Ход эксперимента по определению радиуса кривизны линзы или длины волны света с помощью колец Ньютона.

9. Вычисление погрешностей измерений.

ЛАБОРАТОРНАЯ РАБОТА № 4

ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ

С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЕТКИ

Цель работы : определить характеристики дифракционной решетки; измерить длину световой волны с помощью дифракционной решетки.

Приборы и принадлежности : экспериментальная установка, дифракционная решетка.

Сведения из теории

Дифракцией света называют явления, вызванные нарушением цельности волновой поверхности. Дифракция проявляется в нарушении прямолинейности распространения колебаний. Волна огибает края препятствия и проникает в область геометрической тени. Дифракционные явления присущи всем волновым процессам, но проявляются особенно отчетливо лишь в тех случаях, когда длины волн излучений сопоставимы с размером препятствий.

С точки зрения представлений геометрической оптики о прямолинейном распространении света граница тени за непрозрачным препятствием резко очерчена лучами, которые проходят мимо препятствия, касаясь его поверхности. Следовательно, явление дифракции необъяснимо с позиций геометрической оптики. По волновой теории Гюйгенса, рассматривающей каждую точку поля волны как источник вторичных волн, распространяющихся по всем направлениям, в том числе и в область геометрической тени препятствия, вообще необъяснимо возникновение сколько-нибудь отчетливой тени. Тем не менее, опыт убеждает нас в существовании тени, но не резко очерченной, как утверждает теория прямолинейного распространения света, а с размытыми краями.

Принцип Гюйгенса - Френеля

Особенность дифракционных эффектов состоит в том, что дифракционная картина в каждой точке пространства является результатом интерференции лучей от большого числа вторичных источников Гюйгенса. Объяснение этих эффектов было осуществлено Френелем и получило название принципа Гюйгенса - Френеля.

Сущность принципа Гюйгенса - Френеля можно представить в виде нескольких положений:

1. Всю волновую поверхность, возбуждаемую каким-либо источником S 0 площадью S , можно разбить на малые участки с равными площадями dS , которые являются системой вторичных источников, испускающих вторичные волны.

2. Эти вторичные источники, эквивалентные одному и тому же первичному источнику S 0 , когерентны. Поэтому волны, распространяющиеся от источника S 0 , в любой точке пространства должны являться результатом интерференции всех вторичных волн.

3. Мощности излучения всех вторичных источников - участков волновой поверхности с одинаковыми площадями - одинаковы.

4. Каждый вторичный источник с площадью dS излучает преиму-щественно в направлении внешней нормали n к волновой поверхности в этой точке; амплитуда вторичных волн в направлении, составляющем с n угол a , тем меньше, чем больше угол a , и равна нулю при a ³ p / 2.

5. Амплитуда вторичных волн, дошедших до данной точки пространства, зависит от расстояния вторичного источника до этой точки: чем больше расстояние, тем меньше амплитуда.

Принцип Гюйгенса - Френеля позволяет объяснить явление дифракции и дать методы ее количественного расчета.

Метод зон Френеля

Принцип Гюйгенса - Френеля объясняет прямолинейность распространения света в свободной от препятствий однородной среде. Чтобы показать это, рассмотрим действие сферической световой волны от точечного источника S 0 в произвольной точке пространства P (рис. 4.1). Волновая поверхность такой волны симметрична относительно прямой S 0 P . Амплитуда искомой волны в точке P зависит от результата интерференции вторичных волн, излучаемых всеми участками dS поверхности S . Амплитуды и начальные фазы вторичных волн зависят от расположения соответствующих источников dS по отношению к точке P .



Френель предложил метод разбиения волновой поверхности на зоны (метод зон Френеля). По этому методу волновая поверхность разбивается на кольцевые зоны (рис. 4.1), построенные так, что расстояния от краев каждой зоны до точки P отличаются на l /2(l - длина световой волны). Если обозначить через b расстояние от вершины волновой поверхности 0 до точки P , то расстояния b + k (l /2) образуют границы всех зон, где k - номер зоны. Колебания, приходящие в точку P от аналогичных точек двух соседних зон, противоположны по фазе, так как разность хода от этих зон до точки P равна l /2. Поэтому при наложении эти колебания взаимно ослабляют друг друга, и результирующая амплитуда выразится суммой:

A = A 1 - A 2 + A 3 - A 4 + ... . (4.1)

Величина амплитуды A k зависит от площади DS k k -й зоны и угла a k между внешней нормалью к поверхности зоны в любой ее точке и прямой, направленной из этой точки в точку P .

Можно показать, что площадь DS k k -й зоны не зависит от номера зоны в условиях l << b . Таким образом, в рассматриваемом приближении площади всех зон Френеля равновелики и мощность излучения всех зон Френеля - вторичных источников - одинакова. Вместе с тем, с увеличением k возрастает угол a k между нормалью к поверхности и направлением на точку P , что приводит к уменьшению интенсивности излучения k -й зоны в данном направлении, т.е. к уменьшению амплитуды A k по сравнению с амплитудами предыдущих зон. Амплитуда A k уменьшается также вследствие увеличения расстояния от зоны до точки P с ростом k . В итоге

A 1 > A 2 > A 3 > A 4 > ... > A k > ...

Вследствие большого числа зон убывание A k носит монотонный характер и приближенно можно считать, что

. (4.2)

Переписав результирующую амплитуду (4.1) в виде

обнаруживаем, что, согласно (4.2) и с учетом малости амплитуды удаленных зон, все выражения в скобках равны нулю и уравнение (4.1) приводится к виду

A = A 1 / 2. (4.4)

Полученный результат означает, что колебания, вызываемые в точке P сферической волновой поверхностью, имеют амплитуду, даваемую половиной центральной зоны Френеля. Следовательно, свет от источника S 0 в точку P распространяется в пределах очень узкого прямого канала, т.е. прямолинейно. В результате явления интерференции уничтожается действие всех зон, кроме первой.

Дифракция Френеля от простейших преград

Действие световой волны в некоторой точке P сводится к действию половины центральной зоны Френеля в том случае, если волна безгранична, так как только тогда действия остальных зон взаимно компенсируются и можно пренебречь действием удаленных зон. При конечном участке волны условия дифракции существенно отличаются от описанных выше. Однако и здесь применение метода Френеля позволяет предвидеть и объяснить особенности распространения световых волн.

Рассмотрим несколько примеров дифракции Френеля от простых преград.



Дифракция на круглом отверстии . Пусть волна от источника S 0 встречает на пути непрозрачный экран с круглым отверстием BC (рис. 4.2). Результат дифракции наблюдается на экране Э , параллельном плоскости отверстия. Легко определить дифракционный эффект в точке P экрана, расположенной против центра отверстия. Для этого достаточно построить на открытой части фронта волны BC зоны Френеля, соответствующие точке P . Если в отверстии BC укладывается k зон Френеля, то амплитуда A результирующих колебаний в точке P зависит от четности и нечетности числа k , а так же от того, насколько велико абсолютное значение этого числа. Действительно, из формулы (4.1) вытекает, что в точке P амплитуда суммарного колебания

(первое уравнение системы при нечетном k , второе - при четном) или, учитывая формулу (4.2) и тот факт, что амплитуды двух соседних зон мало отличаются по величине и можно считать A k-1 приблизительно равным A k , имеем

где плюс соответствует нечетному числу зон k , укладывающихся на отверстии, а минус – четному.

При небольшом числе зон k амплитуда A k мало отличается от A 1 . Тогда результат дифракции в точке P зависит от четности k : при нечетном k наблюдается максимум дифракции, при четном – минимум. Минимумы и максимумы будут тем больше отличаться друг от друга, чем ближе A k к A 1 т.е. чем меньше k . Если отверстие открывает только центральную зону Френеля, амплитуда в точке P будет равна A 1 , она в два раза больше той, которая имеет место при полностью открытом волновом фронте (4.4), а интенсивность в этом случае в четыре раза больше, чем при отсутствии преграды. Напротив, при неограниченном увеличении числа зон k , амплитуда A k стремится к нулю (A k << A 1 ) и выражение (4.5) превращается в (4.4). Свет в этом случае фактически распространяется так же, как и при отсутствии экрана с отверстием, т.е. прямолинейно. Отсюда вытекает вывод о том, что следствия из волновых представлений и представлений о прямолинейном распространении света начинают совпадать тогда, когда число открытых зон велико.

Колебания от четных и нечетных зон Френеля взаимно ослабляют друг друга. Это приводит иногда к увеличению интенсивности света при закрывании непрозрачным экраном части волнового фронта, как это было в случае преграды с круглым отверстием, на котором укладывается только одна зона Френеля. Интенсивность света можно увеличить во много раз, если изготовить сложный экран - так называемую зонную пластинку (стеклянная пластинка с непрозрачным покрытием), которая закрывает все четные (или нечетные) зоны Френеля. Зонная пластинка действует подобно собирательной линзе. Действительно, если зонная пластинка закрывает все четные зоны, а число зон k = 2m , то из (4.1) следует

A = A 1 + A 3 +...+ A 2m-1

или при небольшом числе зон, когда A 2m-1 приблизительно равно A , A = mA 1 , т.е. интенсивность света в точке P в (2m ) 2 раз больше, чем при беспрепятственном распространении света от источника в точку P , при этом A = A 1 / 2, а интенсивность соот­вет­ствен­но / 4 .

Дифракция на круглом диске. При размещении между источником S 0 и экраном круглого непрозрачного дис­ка СВ закрывается одна или несколько пер­вых зон Френеля (рис. 4.3). Если диск закроет k зон Френеля, то в точке P амплитуда суммарной волны

и, так как выражения в скобках можно принять равными нулю, аналогично (4.3) получаем

A = A k +1 / 2. (4.6)

Таким образом, в случае круглого непрозрачного диска в центре картины (точка P ) при любом (как четном, так и нечетном) k получается светлое пятно.

Если диск закрывает лишь часть первой зоны Френеля, тень на экране отсутствует, освещенность во всех точках такая же, как и при отсутствии преграды. С ростом радиуса диска первая открытая зона отдаляется от точки P и увеличивается угол a между нормалью к поверхности этой зоны в какой-либо точке и направлением излучения в сторону точки P (см. принцип Гюйгенса - Френеля). Поэтому интенсивность центрального максимума ослабевает при увеличении размеров диска ( A k+1 << A 1 ). Если диск закрывает много зон Френеля, интенсивность света в области геометрической тени практически всюду равна нулю и лишь вблизи границ наблюдения имеет место слабая интерференционная картина. В этом случае можно пренебречь явлением дифракции и пользоваться законом прямолинейного распространения света.

Дифракция Фраунгофера

(дифракция в параллельных лучах)

В случае сферических волн результат дифракции зависит от трех параметров: длины волны излучения, испускаемого источником S 0 , геометрии препятствия (размеров щели, отверстия и т.д.) и расстояния от препятствия до экранов наблюдения. В условиях дифракции Фраунгофера осуществляется переход к плоским волнам, что исключает зависимость результата дифракции от третьей величины (расстояния от препятствия до экрана наблюдения), а геометрические размеры препятствия могут быть заранее учтены. В случае отверстия неизменных формы и размеров результат дифракции зависит только от изменения спектрального состава излучения, даваемого источником S 0 . Поэтому дифракционные явления в параллельных лучах могут использоваться для спектрального анализа состава излучения исследуемых веществ.

Принципиальная схема наблюдения плоских волн (дифракция Фраунгофера) изображена на рис. 4.4.

Свет от точечного источника S 0 превращается линзой L 1 в пучок параллельных лучей (плоскую волну), который проходит затем через отверстие в непрозрачном экране (круг, щель, и т.д.). Линза L 2 собирает в различных точках своей фокальной плоскости, где расположен экран наблюдения Э , все лучи, прошедшие через отверстие, в том числе и лучи, отклонившиеся от первоначального направления в результате дифракции.

Дифракция от одной щели. Практически щель представляется пря­мо­у­гольным отверстием, длина которого зна­чи­тельно больше ширины. В этом случае изо­бражение точки S 0 (рис. 4.4) рас­тя­нет­ся в полоску с минимумами и макси­му­ма­ми по направлению, перпендикулярному к ще­ли, ибо свет дифрагирует вправо и вле­во от щели (рис. 4.5). Если наблюдать изображение источника в направлении, пер­пендикулярном направлению образу­ю­щей щели, то можно ограничиться рас­смо­трением дифракционной картины в одном измерении (вдоль х ).

Так как плоскость щели совпадает с фронтом падающей волны, то в соответствии с принципом Гюйген­са - Френеля точки щели являются вторичными источниками волн, колеб­лющихся в одной фазе.

Разобьем площадь щели на ряд узких полосок равной ширины, параллельных образующей щели. Фазы волн от разных полосок на одинаковых расстояниях равны, амплитуды также равны, ибо выбранные элементы имеют равные площади и одинаково наклонены к направлению наблюдения.

Если бы при прохождении света через щель соблюдался закон прямолинейного распространения света (не было бы дифракции), то на экране Э , установленном в фокальной плоскости линзы L 2 , получалось бы изображение щели. Следовательно, направление j = 0 определяет недифрагированную волну с амплитудой A 0 , равной амплитуде волны, посылаемой всей щелью.

Из-за дифракции световые лучи отклоняются от прямолинейного направления на угол j . Отклонение вправо и влево симметрично относительно осевой линии OC 0 (рис. 4.5). Для отыскания действия всей щели в направлении, определяемом углом j , необходимо учесть разность фаз, характеризующую волны, доходящие до точки наблюдения C j от различных полосок (зон Френеля).

Проведем плоскость FD , перпендикулярную к направлению дифрагированных лучей и представляющую фронт новой волны. Так как линза не вносит дополнительной разности хода лучей, ход всех лучей от плоскости FD до точки C j одинаков. Следовательно, полная разность хода лучей от щели FE задается отрезком ED . Проведем плоскости, параллельные волновой поверхности FD , таким образом, чтобы они разделили отрезок ED на несколько участков, каждый из которых имеет длинуl /2 (рис. 4.5). Эти плоскости разделят щель на вышеупомянутые полоски - зоны Френеля, причем разность хода от соседних зон равна l /2 в соответствии с методом Френеля. Тогда результат дифракции в точке C j определится числом зон Френеля, укладывающихся в щели (см. дифракцию Френеля на круглом отверстии): если число зон четное (z = 2k ), в точке C j наблюдается минимум дифракции, если z - нечетное (z = 2k + 1), в точке C j - максимум дифракции. Число зон Френеля, укладывающихся на щели FE , определяется тем, сколько раз в отрезке ED содержится l/ 2 т.е. . Отрезок ED , выраженный через ширину щели а и угол дифракции j , запишется как ED = а sin j.

В итоге для положения максимумов дифракции получаем условие

а sin j = ±(2k + 1)l / 2,(4.7)

дляминимумов дифракции

а sin j = ± 2k l /2,(4.8)

где k = 1,2,3.. - целые числа. Величина k , принимающая значения чисел натурального ряда, называется порядком дифракционного максимума. Знаки ± в формулах (4.7) и (4.8) соответствуют лучам света, дифрагирующим от щели под углами +j и -j и собирающимся в побочных фокусах линзы L 2 : C j и C - j , симметричных относительно главного фокуса C 0 . В направлении j = 0 наблюдается самый интенсивный центральный максимум нулевого порядка.

Положение максимумов дифракции по формуле (4.7) соответствует углам

, , и т.д.

На рис. 4.6 приведена кри­вая распределения интен­сив­но­сти света в функции sin j . По­ло­жение цен­траль­ного макси­му­ма (j = 0) не за­висит от длины вол­ны и, сле­до­вательно, явля­ется общим для всех длин волн. Поэтому в слу­чае белого света центр диф­рак­ци­онной картины представится в виде белой по­лос­ки. Из рис. 4.6 и формул (4.7) и (4.8) ясно, что положение максимумов и ми­нимумов зави­сит от длины вол­ны. Поэтому простое че­ре­до­ва­ние темных и светлых полос имеет место только при монохроматическом свете. В случае белого света дифракционные картины для волн с разными l сдвигаются в соответствии с длиной волны. Центральный максимум белого цвета имеет радужную окраску только по краям (на ширине щели укладывается одна зона Френеля). Боковые максимумы для разных длин волн уже не совпадают между собой; ближе к центру располагаются максимумы, соответствующие более коротким волнам. Длинноволновые максимумы отстоят друг от друга дальше (j = arcsin l /2), чем коротковолновые. Поэтому дифракционный максимум представляет собой спектр, обращенный к центру фиолетовой частью.

Дифракционная решетка

Дифракционная решетка представляет собой систему большого числа одинаковых по ширине и параллельных друг другу щелей, лежащих в одной плоскости и разделенных непрозрачными промежутками, равными по ширине. Дифракционная решетка изготавливается путем нанесения параллельных штрихов на поверхность стекла. Число штрихов на 1 мм определяется областью спектра исследуемого излучения и изменяется от 300 мм -1 в инфракрасной области до 1200 мм -1 в ультрафиолетовой.


Пусть решетка состоит из N парал­лель­ных щелей с шириной каждой щели a и расстоянием между соседними ще­ля­ми b (рис. 4.7). Сумма a + b = d на­зы­­­ва­ет­ся периодом или постоянной ди­фра­к­ци­он­ной решетки. Пусть на решетку нор­мально па­дает плоская моно­хро­ма­ти­ческая вол­на. Требуется исследовать ин­тенсив­ность света, распро­стра­ня­ю­ще­­­гося в направле­нии, со­ста­вля­ю­щем угол j с нор­малью к плоскости ре­шетки. Кроме рас­пределе­ния ин­тен­сив­ности из-за ди­ф­ра­кции на каждой ще­ли, имеет мес­то перерас­пре­деление световой энер­гии за счет интерференции волн от N щелей когерентных источников. При этом минимумы будут находиться на прежних местах, ибо условие минимума дифракции для всех щелей (рис. 4.8) одинаково. Эти минимумы называются главными. Условие главных минимумов a sin j = ± k l совпадает с условием (4.8). Положение главных минимумов sin j = ± l/a , 2l /a ,... показано на рис. 4.8.

Однако в случае многих щелей к главным минимумам, создаваемым каждой щелью в отдельности, добавляются минимумы, возникающие в результате интерференции света, прошедшего через различные щели. На рис. 4.8 для примера показано распределение интенсивности и расположение максимумов и минимумов в случае двух щелей с периодом d и шириной щели a .

В одном и том же направлении все щели излучают энергию колебаний одинаковой амплитуды. И результат интерференции зависит от разности фаз колебаний, исходящих от сходственных точек соседних щелей (например, C и E , B и F ), или от оптической разности хода ED от сходственных точек двух соседних щелей до точки C j . Для всех сходственных точек эта разность хода одинакова. Если ED = ± k l или, так как ED = d si n j,

d sin j = ± k l , k = 0,1,2..., (4.9)

колебания соседних щелей взаимно усиливают друг друга, и в точке C j фокальной плоскости линзы наблюдается максимум дифракции. Амплитуда суммарного колебания в этих точках экрана максимальна:

A max = N A j , (4.10)

где A j - амплитуда колебания, посылаемого одной щелью под углом j . Интенсивность света

J max = N 2 A j 2 = N 2 J j .(4.11)

Поэтому формула (4.9) определяет положение главных максимумов интенсивности. Число k дает порядок главного максимума.

Положение главных максимумов (4.9) определяется соотношением

. (4.12)

Максимум нулевого порядка один и расположен в точке C 0 , максимумов первого, второго и т.д. порядков по два и расположены они симметрично относительно C 0 , на что указывает знак + . На рис. 4.8 показано положение главных максимумов.

Кроме главных максимумов, имеется большое число более слабых побочных максимумов, разделенных добавочными минимумами. Побочные максимумы значительно слабее главных. Расчет показывает, что интенсивность побочных максимумов не превышает 1/23 интенсивности ближайшего главного максимума.

В главных максимумах амплитуда в N раз, а интенсивность в N 2 раз больше амплитуды, даваемой в соответствующем месте одной щелью. Четко локализованные в пространстве линии с увеличенной яркостью легко обнаруживаются и могут быть использованы в целях спектроскопических исследований.

По мере удаления от центра экрана интенсивность дифракционных максимумов убывает (увеличивается расстояние от источников). Поэтому не удается наблюдать все возможные дифракционные максимумы. Заметим, что количество дифракционных максимумов, даваемых решеткой по одну сторону экрана, определяется условием ½sin j½ £ 1 (j = p / 2 - максимальный угол дифракции), откуда с учетом (4.9)

При этом не следует забывать, что k - целое число.

Положение главных максимумов зависит от длины волны l . Поэтому при освещении дифракционной решетки белым светом все максимумы, кроме центрального (k = 0), разложатся в спектр, обращенный фиолетовым концом к центру дифракционной картины. Таким образом, дифракционная решетка может служить для исследования спектрального состава света, т.е. для определения частот (или длин волн) и интенсивности всех его монохроматических компонент. Применяемые для этого приборы называются дифракционными спектрографами, если исследуемый спектр регистрируется с помощью фотопластинки, и дифракционными спектроскопами, если спектр наблюдается визуально.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-02

Лабораторная работа.

Тема: Определение длины световой волны.

Цель работы: опытным путем определить длину световой волны.

Оборудование: прибор для определения длины световой волны, дифракционная решетка и источник света.

Теоретическая часть работы: Дифракционная решетка представляет собой совокупность большого числа узких щелей, разделенных непрозрачными промежутками.

d = a + b – период дифракционной решетки

d ∙ sin = k ∙ λ, k = 0, 1, 2… - формула дифракционной решетки,

φ – угол, под которым наблюдается max света соответствующего цвета.

В работе используется дифракционная решетка с периодом 1/100 мм, 1/50 мм (период указана на решетке). Она является основной частью измерительной установки показанной на рис.1. Решетка 1 устанавливается в держателе 2, который прикреплен к концу линейки 3. На линейке же устанавливается черный экран 4 с узкой вертикальной щелью 5, посередине, экран может перемещаться вдоль линейки, что позволяет изменять расстояние между ним и дифракционной решеткой (для получения наибольшей резкости). На экране и линейки имеются мм шкалы. Если смотреть сквозь решетку и прорезь на источник света, то на черном фоне экрана можно наблюдать по обе стороны от щели дифракционные спектры 1-го, 2- го и т. д. порядков (случайный перекос в расположении спектров устраняется поворотом рамки с решеткой).

Длину волны определяем по формуле: λ = (d ∙ sin)/ k.

Используя рис.2 и формулу дифракционной решетки, докажите, что длину световой волны можно определить по формуле: λ = (d ∙ b) / (k ∙ а), k – порядок спектра.

При выводе этой формулы учтите, что вследствие малости углов (не менее > 5) под которым наблюдаются максимумы, их sin можно заменить на tg.

Расстояние а отсчитывают по линейке от решетки до экрана, b – по шкале экрана от щели до выбранной линии спектра. В этой работе погрешность измерений λ не оценивается из-за неопределенности выбора середины части спектра данного цвета.

Скачать:


Предварительный просмотр:

Лабораторная работа.

Тема: Определение длины световой волны.

Цель работы: опытным путем определить длину световой волны.

Оборудование: прибор для определения длины световой волны, дифракционная решетка и источник света.

Теоретическая часть работы: Дифракционная решетка представляет собой совокупность большого числа узких щелей, разделенных непрозрачными промежутками.

D = a + b – период дифракционной решетки

D ∙ sin = k ∙ λ, k = 0, 1, 2… - формула дифракционной решетки,

φ – угол, под которым наблюдается max света соответствующего цвета.

В работе используется дифракционная решетка с периодом 1/100 мм, 1/50 мм (период указана на решетке). Она является основной частью измерительной установки показанной на рис.1. Решетка 1 устанавливается в держателе 2, который прикреплен к концу линейки 3. На линейке же устанавливается черный экран 4 с узкой вертикальной щелью 5, посередине, экран может перемещаться вдоль линейки, что позволяет изменять расстояние между ним и дифракционной решеткой (для получения наибольшей резкости). На экране и линейки имеются мм шкалы. Если смотреть сквозь решетку и прорезь на источник света, то на черном фоне экрана можно наблюдать по обе стороны от щели дифракционные спектры 1-го, 2- го и т. д. порядков (случайный перекос в расположении спектров устраняется поворотом рамки с решеткой).

Длину волны определяем по формуле: λ = (d ∙ sin )/ k.

Используя рис.2 и формулу дифракционной решетки, докажите, что длину световой волны можно определить по формуле: λ = (d ∙ b) / (k ∙ а), k – порядок спектра.

При выводе этой формулы учтите, что вследствие малости углов (не менее > 5) под которым наблюдаются максимумы, их sin можно заменить на tg.

Расстояние а отсчитывают по линейке от решетки до экрана, b – по шкале экрана от щели до выбранной линии спектра. В этой работе погрешность измерений λ не оценивается из-за неопределенности выбора середины части спектра данного цвета.

Практическая часть работы.

Задание №1.

  1. Собрать измерительную установку, установить экран на расстоянии, на котором четко просматриваются спектры.
  2. Глядя сквозь дифракционную решетку и щель в экране на источник света, и перемещая экран, установите его так, чтобы дифракционные спектры располагались параллельно шкале экрана.
  3. Не двигая прибора, по шкале определите положение середин цветных полос в спектрах I по-

рядка. Результаты запишите в таблицу. Определить среднее значение результатов измерения.

Расчеты:

  1. Сравните полученные результаты, полученные результаты с длинами волн этих цветов на цветной вклейке или по предложенной таблице:
  1. Сделайте вывод.

Задание №2. Наблюдение дифракции света в граммофонной пластинке(78 об/мин., 33 об/мин.)

  1. Взять отрезок пластинки в правую руку и приставить справа к глазу так, чтобы бороздки расположились вертикально, то есть параллельно нити лампы, а свет от лампы падал на поверхность под различными углами. Наблюдение лучше вести в затемненной комнате.
  2. Сделайте вывод зависимости отчетливости и яркости полученных спектров от количества бороздок и угла падения лучей.

Контрольные вопросы:

1) Почему в центральной части спектра полученного на экране при освещении дифракционной решетки белым светом, всегда наблюдается белая полоса?

2) Дифракционные решетки имеют 50 и 100 штрихов на 1 мм. Какая из них даст на экране более широкий спектр при прочих равных условиях?

3) Как изменяется картина дифракционного спектра при удалении экрана от решетки?

4) Какие трудности встречаются при постановке дифракционных опытов и как можно их преодолеть?

5) Чем отличается дифракционный спектр от дисперсионного (призматического) спектра?

6) Почему с помощью микроскопа нельзя увидеть атом?

7) Каковы причины погрешностей измерений?

8) Почему красная часть спектра любого порядка расположена ближе к центру от центра шкалы?

9) Сколько порядков спектра можно наблюдать с помощью данного прибора?

10) Какие физические величины или характеристики можно определить с помощью данного прибора?

Рис. 1. Прибор для определения длины волны света.

1 – дифракционная решетка; 4 –экран;

2 – держатель; 3 – линейка; 5 – вертикальная щель

Рис. 2. Схема опыта по определению длины волны.

Определение длины световой волны по готовым фотографиям.

Установка для получения фотографий состоит из лазера ЛГИ – 207Б, щели и экрана (расположенного на расстоянии L = 1,2 м от щели); на последний помещается лист фотобумаги. Время экспозиции центрального дифракционного пятна составляет 10 – 15 с, остальной части картины – 3 мин.

Были получены 4 фотографии дифракционных картин, соответствующие различной ширине щели:

b 1 = 0,33 мм (рис. 1), b 2 = 0,20 мм (рис. 2), b 3 = 0,15 мм (рис. 3), b 4 = 0,10 мм (рис.4).

Наблюдаемая на экране дифракционная картина является фраунгоферовой, поэтому для определения длины волны можно использовать условие дифракционного минимума: b sin φ = k λ. Ввиду малости угла выполняется условие sin φ ≈ tg φ = а /I, где а – расстояние от середины максимума нулевого порядка до минимума к – го порядка. Тогда формула для расчета длины волны имеет вид:

Относительная погрешность ε λ длины волны в этом случае определяется выражением:

ε λ = .

Так как погрешность уменьшается с увеличением ширины b и расстояния а , то для вычисления λ используется рис. 1. При k = 15 и а = 35 мм длина волны λ = 610 нм.

Затем, используя полученное значение λ и значения ширины щели b 2 , b 3 и b 4 , необходимо вычислить положения а 2 , а 3 , а 4 минимумов 5-го порядка. Сравнивая полученные значения а i с измерениями на рис. 2 - 4, необходимо сделать выводы о справедливости условия дифракционного минимума для щели и изменения вида дифракционной картины в зависимости от ширины щели.

Порядок выполнения работы.

1. По фотографии (рис. 1) определить положение 15-го дифракционного минимума относительно середины центрального максимума.

4. По фотографиям (рис. 2 - 4)найти положение этих же минимумов и сравнить полученные значения с вычислениями.

5. Сделать выводы.


Определение длины световой волны с помощью дифракционной решетки

1. ДИФРАКЦИЯ СВЕТА

Дифракция света – явление огибания светом встречающихся на его пути препятствий, сопровождающееся пространственным перераспределением энергии световой волны - интерференцией.

Расчет распределения интенсивности света в дифракционной картине может быть осуществлен с помощью принципа Гюйгенса - Френеля. Согласно этому принципу каждая точка фронта световой волны, т. е. поверхности, до которой распространился свет, является источником вторичных когерентных световых волн (начальные фазы их и частоты одинаковы); результирующее колебание в любой точке пространства обусловлено интерференцией всех вторичных волн, приходящих в эту точку, с учетом их амплитуд и фаз.

Положение фронта световой волны в любой момент времени определяет огибающая всех вторичных волн; любая деформация фронта волны (она обусловлена взаимодействием света с препятствиями) приводит к отклонению световой волны от первоначального направления распространения – свет проникает в область геометрической тени.

2. Дифракционная решетка

Прозрачная дифракционная решетка представляет собой стеклянную пластинку или целлулоидную пленку, на которой через строго определенные расстояния специальным резцом нарезаны узкие шероховатые бороздки (штрихи), не пропускающие света. Сумма ширины ненарушенного, прозрачного промежутка (щели) и ширины бороздки называется постоянной или периодом решетки.

Пусть на решетку падает плоская монохроматическая световая волна с длиной волны (рассмотрим самый простой случай - нормальное падение волны на решетку). Каждая точка прозрачных промежутков решетки, до которой дойдет волна, согласно принципу Гюйгенса становится источником вторичных волн. За решеткой эти волны распространяются по всем направлениям. Угол отклонения света от нормали к решетке называется углом дифракции.

Поместим на пути вторичных волн собирающую линзу. Она сфокусирует в соответствующем месте своей фокальной поверхности все вторичные волны, распространяющиеся под одним и тем же углом дифракции.

Для того, чтобы все эти волны при наложении максимально усиливали друг друга, необходимо, чтобы разность фаз волн, приходящих от соответствующих точек двух соседних щелей, т. е. точек, отстоящих на одинаковых расстояниях от краев этих щелей, была равна четному числу или разность хода этих волн была равна целому числу m длин волн . Из рис.1 видно, что разность хода волн 1 и 2

для точки P равна:

Следовательно, условие максимумов интенсивности результирующей световой волны при дифракции от дифракционной решетки можно записать следующим образом:

, (2)

где знак плюс соответствует положительной разности хода , минус - отрицательной.

Максимумы, удовлетворяющие условию (2), называются главными, число m называется порядком главных максимумов или порядком спектра. Значению m =0 соответствует максимум нулевого порядка (центральный максимум). Максимум нулевого порядка один, максимумов первого, второго и более высоких порядков - по два слева и справа от нулевого.

Положение главных максимумов зависит от длины световой волны. Поэтому при освещении решетки белым светом максимумы всех порядков, кроме нулевого, соответствующие разным длинам волн, смещаются друг относительно друга, т. е. разлагаются в спектр. Фиолетовая (коротковолновая) граница этого спектра обращена к центру дифракционной картины, красная (длинноволновая) - к периферии.

3. Описание установки

Работа проводится на спектрогониометре ГС-5 с установленной на нем дифракционной решеткой. Гониометр - прибор, предназначенный для точного измерения углов. Внешний вид спектрогониометра ГС-5 изображен на рис.2.

Рис.2

Коллиматор 1, снабженный регулируемой микрометрическим винтом 2 спектральной щелью, крепится на неподвижной стойке. Щель обращена к (ртутной лампе). На предметном столике 3 устанавливается прозрачная дифракционная решетка 4.

Наблюдение дифракционной картины производится через окуляр 5 зрительной трубы 6.

Целью работы является изучение дифракционной решетки, нахождение ее характеристик и определение с ее помощью длины световых волн спектра излучения паров ртути.

В лаборатории физического практикума кафедры физики УГТУ-УПИ в качестве источника линейчатого спектра в лабораторной работе № 29 используется ртутная лампа, в которой при электрическом разряде генерируется линейчатый спектр излучения, которое пройдя коллиматор спектрогониометра ГС-5 падает на дифракционную решетку (фотография ГС-5 приведена на титульном файле). Экспериментатор определяет угол дифракции с точностью до нескольких секунд, наводя визирную линию окуляра на соответствующую линию спектра, затем по вышеописанной методике вычисляет длину волны выбранной линии.

В компьютерном варианте данной работы достаточно точно моделируются условия проведения опытов. На экране дисплея воспроизводится окуляр, визирную линию которого следует наводить на любую выбранную спектральную линию, точнее говоря на середину цветовой полоски, что повышает точность измерения углов до нескольких угловых секунд.

Как и реальном спектре паров ртути, в компьютерной работе также “генерируются” четыре наиболее ярких видимых линий спектра: фиолетовая, зеленая и две желтых линии. Спектры расположены зеркально симметрично относительно центрального (белого) максимума. Внизу под окуляром для лучшей ориентации на тонкой черной полоске приведены все линии спектра ртути. Причем две желтые линии сливаются в одну. Дело в том, что эти линии расположены рядом и имеют близкие значения длин волн – так называемый дуплет, однако на хорошей дифракционной решетке они разделяются (разрешаются), что видно в окуляре. В данной работе одной из задач и является определение разрешающей способности дифракционной решетки.

Итак, наведя курсор на «Измерения» и нажав левую клавишу мышки, можно приступать к измерениям. «Вращать» окуляр можно в четырех различных режимах как влево, так и вправо, до тех пор, пока в поле зрения окуляра не покажется цветная вертикальная линия. Следует навести черную вертикальную визирную линию окуляра на центральную часть цветной полоски, при этом на цифровом табло высвечиваются значения угла дифракции с точностью до нескольких угловых секунд. Спектральные линии расположены примерно от 60 до 150 градусов. При этом от тщательности проведения опытов зависит точность числовых значений углов и, как следствие, правильность полученных результатов. Экспериментатору предоставляется возможность самому выбирать последовательность выполнения измерений

Результаты измерений надо занести в соответствующие таблицы отчета и произвести необходимые вычисления.

4.1.Определение длины волны спектральных линий паров ртути.

Измерения проводятся для линий спектра первого порядка (m=1). Постоянная решетки d=833,3 нм., ее длина (ширина) равна 40 мм. Значение синуса угла можно определить по соответствующим таблицам или с помощью калькулятора, однако следует иметь в виду, что угловые секунды и минуты нужно переводить в десятичные разряды градусов, т. е. 30 минут равны 0,5 градуса и т. п.

Результаты измерений заносятся в таблицу 2 отчета (смотри Приложение). Значение длины волны получают, используя формулу (2):

4.2.Расчет характеристик дифракционной решетки.

Максимальное значение порядка m дифракционных спектров для какой-либо дифракционной решетки может быть определено в случае нормального падения света на решетку по следующей формуле:

Значение m max определяется для наибольшей длины волны - в данной работе для второй желтой линии ж. Наивысший порядок спектров равен целой части (без округления!) отношения .

Разрешающая способность R дифракционной решетки характеризует ее способность разделять (разрешать) спектральные линии, мало отличающиеся по длинам волн. По определению

где - длина волны, вблизи которой производится измерение;

Минимальная разность длин волн двух спектральных линий, воспринимаемых в спектре раздельно.

Величина обычно определяется критерием Рэлея: две спектральные линии и считаются разрешенными, если максимум порядка m одной из них (с большей длиной волны), определяемый условием

,

совпадает с первым добавочным минимумом в спектре этого же порядка m для другой линии , определяемым условием:

.

Из этих уравнений следует, что

,

и разрешающая способность решетки оказывается равной

(6)

Таким образом, разрешающая способность решетки зависит от порядка m спектра и от общего числа N штрихов рабочей части решетки, т. е. той части, через которую проходит исследуемое излучение и от которой зависит результирующая дифракционная картина. По формуле (5) находится разрешающая сила R используемой дифракционной решетки для спектра первого порядка (m =1).

Из (5) следует, что две спектральные линии и разрешаются дифракционной решеткой в спектре m - го порядка, если:

. (7)

Используя найденное значение R , по формуле (5) вычисляется (в нанометрах) линейное разрешение спектральных линий вблизи линий ф, з,ж спектра

(9)

где - угловое расстояние между двумя спектральными линиями, отличающимися по длинам волн на .

Формула для D получается дифференцированием соотношения(2): левой части по углу дифракции , а правой - по длине волны :

,

(10)

Таким образом, угловая дисперсия решетки зависит от порядка m спектра, постоянной d решетки и от угла дифракции .

По формуле (8) находится (в “/нм- угловых секундах на нанометр) угловая дисперсия используемой дифракционной решетки для углов дифракции, соответствующих всем измеряемым длинам волн спектра.

Полученные результаты записываются в таблицу 2 отчета (смотри Приложение).

5. Kонтрольные вопросы

1. В чем состоит явление дифракции света?

2. Сформулируйте принцип Гюйгенса-Френеля.

3. Что такое разрешающая способность дифракционной решетки и от чего она зависит?

4. Как экспериментально определить угловую дисперсию D дифракционной решетки?

5. Какой вид имеет дифракционная картина, полученная от прозрачной решетки?

ПРИЛОЖЕНИЕ

ФОРМА ОТЧЕТА

Титульный лист:

У Г Т У - У П И

Кафедра физики

О Т Ч Е Т

по лабораторной работе 29

Изучение дифракционных решеток. Определение длины световой волны с помощью дифракционной решетки

Студент______________________________

Группа ______________________________

Дата _________________________________

Преподаватель……………………….

На внутренних страницах :

1. Расчетные формулы:

где - длина волны;

m – порядок спектра (m=1).

2. Источник излучения – ртутная лампа.

3. Ход лучей

4. Результаты измерений углов дифракции и длин волн

спектральных линий паров ртути. Таблица 1

Спектроальная линия

Порядок максимума, m

5. Расчет искомых величин.

Таблица 2 Xарактеристики дифракционной решетки

Период d

Наивысший

Порядок m

Спектров

Разрешающая

Линейное

Разрешение

Угловая дисперсия

D для линий

ртути, ”/ нм

6. Оценка погрешностей измерений длин волн рассчитывается по формуле:

Табличные значения длин волн спектральных линий паров ртути:

Фиолетовая – 436 нм,

Зеленая - 546 нм,

1 желтая – 577 нм,

2 желтая - 579 нм.