В какой четверти находится каждая точка: А(-2;5), В(4;2), С(3;-6), А(-2;5), В(4;2), С(3;-6), D(7;1), E(-5;-3), M(-5;4), D(7;1), E(-5;-3), M(-5;4), K(-8;-2), P(1;-7), N(1;3), K(-8;-2), P(1;-7), N(1;3), R(-7;-1). R(-7;-1). I I IIIV I III III IV III II Карточка 1.









Самопроверка: 1.Две прямые, образующие при пересечении прямые углы… 2. Плоскость, на которой выбрана система координат,… 3. Координатную прямую у Две перпендикулярные координатные прямые х и у, которые пересекаются в начале отсчета – точке О,… 5.Координатную прямую х … … называются перпендикулярными. …называют координатной плоскостью. …называют осью ординат. …называют системой координат на плоскости. …называют осью абсцисс. Карточка 3.


Экскурсия в зоопарк. Экскурсия в зоопарк. Построить фигуру по заданным координатам. Построить фигуру по заданным координатам. Найти загадку о том, кого вы увидели в Зоопарке. Найти загадку о том, кого вы увидели в Зоопарке. Тренажер«Поймай рыбку» Тренажер«Поймай рыбку»



Этой точки на оси X’Х в прямоугольной системе координат . Величина абсциссы точки A равна длине отрезка OB (см. рисунок). Если точка B принадлежит положительной полуоси OX , то абсцисса имеет положительное значение. Если точка B принадлежит отрицательной полуоси X’O , то абсцисса имеет отрицательное значение. Если точка A лежит на оси Y’Y , то её абсцисса равна нулю .

В прямоугольной системе координат луч (прямая) X’X называется «осью абсцисс». При построении графиков функций , ось абсцисс обычно используется как область определения функции .

Этимология

См. также

Напишите отзыв о статье "Абсцисса"

Примечания

Ссылки

  • Абсцисса // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров . - 3-е изд. - М . : Советская энциклопедия, 1969-1978.

Отрывок, характеризующий Абсцисса

– Однако я тебя стесняю, – сказал он ему тихо, – пойдем, поговорим о деле, и я уйду.
– Да нет, нисколько, сказал Борис. А ежели ты устал, пойдем в мою комнатку и ложись отдохни.
– И в самом деле…
Они вошли в маленькую комнатку, где спал Борис. Ростов, не садясь, тотчас же с раздраженьем – как будто Борис был в чем нибудь виноват перед ним – начал ему рассказывать дело Денисова, спрашивая, хочет ли и может ли он просить о Денисове через своего генерала у государя и через него передать письмо. Когда они остались вдвоем, Ростов в первый раз убедился, что ему неловко было смотреть в глаза Борису. Борис заложив ногу на ногу и поглаживая левой рукой тонкие пальцы правой руки, слушал Ростова, как слушает генерал доклад подчиненного, то глядя в сторону, то с тою же застланностию во взгляде прямо глядя в глаза Ростову. Ростову всякий раз при этом становилось неловко и он опускал глаза.
– Я слыхал про такого рода дела и знаю, что Государь очень строг в этих случаях. Я думаю, надо бы не доводить до Его Величества. По моему, лучше бы прямо просить корпусного командира… Но вообще я думаю…
– Так ты ничего не хочешь сделать, так и скажи! – закричал почти Ростов, не глядя в глаза Борису.
Борис улыбнулся: – Напротив, я сделаю, что могу, только я думал…
В это время в двери послышался голос Жилинского, звавший Бориса.
– Ну иди, иди, иди… – сказал Ростов и отказавшись от ужина, и оставшись один в маленькой комнатке, он долго ходил в ней взад и вперед, и слушал веселый французский говор из соседней комнаты. abscissa - отрезок) точки A называется координата этой точки на оси X’X в прямоугольной системе координат . Величина абсциссы точки A равна длине отрезка OB (см. рис. 1). Если точка B принадлежит положительной полуоси OX, то абсцисса имеет положительное значение. Если точка B принадлежит отрицательной полуоси X’O, то абсцисса имеет отрицательное значение. Если точка A лежит на оси Y’Y, то её абсцисса равна нулю.

В прямоугольной системе координат ось X’X называется «осью абсцисс».

Правописание

Обратите внимание на написание: Абс цисса, но не абцисса и не абсциса .

См. также

Wikimedia Foundation . 2010 .

  • Осым (река)
  • Ось Мира

Смотреть что такое "Ось абсцисс" в других словарях:

    ось абсцисс - Горизонтальная ось в декартовой системе координат. Тематики информационные технологии в целом EN abscise axishorizontal axisX axis … Справочник технического переводчика

    ось абсцисс - abscisių ašis statusas T sritis automatika atitikmenys: angl. abscissa axis vok. Abszissenachse, f rus. ось абсцисс, f pranc. axe d abscisses, m … Automatikos terminų žodynas

    ось абсцисс - abscisių ašis statusas T sritis fizika atitikmenys: angl. abscissa axis vok. Abszissenachse, f rus. ось абсцисс, f pranc. axe d’abscisses, m … Fizikos terminų žodynas

    Ось (значения) - Ось (слово «ось» происходит от древнерусского «ость» долгий усик на плевеле каждого зерна колосовых растений или волос в пушном товаре) понятие некой центральной прямой, в том числе воображаемой прямой (линии): В технике:… … Википедия

    ОСЬ - (1) в прикладной механике стержень, опирающийся на опоры и поддерживающий вращающиеся части машин (колёса вагонов) или механизмов (зубчатые колёса часов). В отличие от (см.) О. не передаёт полезного крутящего момента (см. (5)), а работает в… … Большая политехническая энциклопедия

    определение - 2.7 определение: Процесс выполнения серии операций, регламентированных в документе на метод испытаний, в результате выполнения которых получают единичное значение. Источник … Словарь-справочник терминов нормативно-технической документации

    Строфоида - (от греч. στροφή поворот) алгебраическая кривая 3 го порядка. Строится так (см. Рис. 1): Рис. 1 … Википедия

    АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ - раздел геометрии, который исследует простейшие геометрические объекты средствами элементарной алгебры на основе метода координат. Создание аналитической геометрии обычно приписывают Р.Декарту, изложившему ее основы в последней главе своего… … Энциклопедия Кольера

    Циссоида Диокла - Рис. 1. Построение циссоиды. Синяя и красная линии ветви циссоиды. Циссоида Диокла плоская алгебраическая кривая третьего порядка. В декартовой системе координат, где ось абсцисс направлена по … Википедия

    Циссоида Диоклеса - Циссоида Диокла плоская алгебраическая кривая третьего порядка. В декартовой системе координат, где ось абсцисс направлена по OX, а ось ординат по OY, на отрезке OA = 2a, как на диаметре строится вспомогательная окружность. В точке A проводится… … Википедия

1 . Если a > b , то b < a ; наоборот, если а < b , то b > a .

Пример . Если 5х – 1 > 2x + 1 , то 2х +1< 5x — 1 .

2 . Если a > b и b > с , то а > с . Точно так же, а < b и b < с , то a < с .

Пример . Из неравенств x > 2у , 2y > 10 следует, что x >10 .

3 . Если a > b, то a + c > b + с и a – c > b — c . Если же а < b , то а + с и a — c, т.е. к обеим частям неравенства можно прибавить (или вычесть) одну и ту же величину

Пример 1 . Дано неравенство х + 8>3 . Вычитая из обеих частей неравенства число 8, находим х > — 5 .

Пример 2 . Дано неравенство х – 6 < — 2 . Прибавляя обеим частям 6, находим х < 4 .

4 . Если a > b и с > d, то a + c >b + d ; точно так же если а < b и с < d , то a + с < b + d , т. е. два неравенства одинакового смысла) можно почленно складывать. Это справедливо и для любого числа неравенств, например, если a1 > b1, a2 > b2, a3 > b3 , то a1 + a2 + a3 > b1+b2 +b3 .

Пример 1 . Неравенства — 8 > — 10 и 5 > 2 верны. Складывая их почленно, находим верное неравенство — 3 > — 8 .

Пример 2 . Дана система неравенств (1/2)х + (1/2)у < 18 ; (1/2)х — (1/2)у < 4 . Складывая их почленно, находим x < 22 .

Замечание. Два неравенства одинакового смысла нельзя почленно вычитать друг из друга, так как результат может быть верным, но может быть и неверным. Например, если из неравенства 10 > 8 2 > 1 , то получим верное неравенство 8 > 7 но если из того же неравенства 10 > 8 почленно вычесть неравенство 6 > 1 , то получим нелепость. Сравнить следующий пункт.

5 . Если a > b и c < d , то а – с > b – d ; если а < b и с — d , то а — с < b — d , т. е. из одного неравенства можно почленно вычесть другое неравенство противоположного смысла), оставляя знак того неравенства, из которого вычиталось другое.

Пример 1 . Неравенства 12 < 20 и 15 > 7 верны. Вычитая почленно второе из первого и оставляя знак первого, получаем верное неравенство — 3 < 13 . Вычитая почленно первое из второго и оставляя знак второго, находим верное неравенство 3 > — 13 .

Пример 2 . Дана система неравенств (1/2)х + (1/2)у < 18; (1/2)х — (1/2)у > 8 . Вычитая из первого неравенства второе, находим y < 10 .

6 . Если а > b и m - положительное число, то ma > mb и a/n > b/n , т. е. обе части неравенства можно разделить или умножить на одно и то же положительное число (знак неравенства остается тем же).Если же a > b и n отрицательное число, то na < nb и a/n < b/n , т. е. обе части неравенства можно умножить или разделить на одно и то же отрицательное число, но при том знак неравенства нужно изменить на противоположный.

Пример 1 . Разделив обе части верного неравенства 25 > 20 на 5 , получим верное неравенство 5 > 4 . Если же мы делим обе части неравенства 25 > 20 на — 5 , то нужно переменить знак > на < , и тогда получим верное неравенство — 5 < — 4 .

Пример 2 . Из неравенства 2х < 12 следует, что х < 6 .

Пример 3 . Из неравенства -(1/3)х — (1/3)х > 4 следует, что x < — 12 .

Пример 4 . Дано неравенство х/к > у/l ; из него следует, что lx > ky , если знаки чисел l и k одинаковы, и что lx < ky , если знаки чисел l и k противоположны.


Неравенства в математике играют заметную роль. В школе в основном мы имеем дело с числовыми неравенствами , с определения которых мы начнем эту статью. А дальше перечислим и обоснуем свойства числовых неравенств , на которых базируются все принципы работы с неравенствами.

Сразу отметим, что многие свойства числовых неравенств аналогичны . Поэтому, излагать материал будем по такой же схеме: формулируем свойство, приводим его обоснование и примеры, после чего переходим к следующему свойству.

Навигация по странице.

Числовые неравенства: определение, примеры

Когда мы вводили понятие неравенства, то заметили, что неравенства часто определяют по виду их записи. Так неравенствами мы назвали имеющие смысл алгебраические выражения, содержащие знаки не равно ≠, меньше <, больше >, меньше или равно ≤ или больше или равно ≥. На основе приведенного определения удобно дать определение числового неравенства:

Встреча с числовыми неравенствами происходит на уроках математики в первом классе сразу после знакомства с первыми натуральными числами от 1 до 9 , и знакомства с операцией сравнения. Правда, там их называют просто неравенствами, опуская определение «числовые». Для наглядности не помешает привести пару примеров простейших числовых неравенств из того этапа их изучения: 1<2 , 5+2>3 .

А дальше от натуральных чисел знания распространяются на другие виды чисел (целые, рациональные, действительные числа), изучаются правила их сравнения, и это значительно расширяет видовое разнообразие числовых неравенств: −5>−72 , 3>−0,275·(7−5,6) , .

Свойства числовых неравенств

На практике работать с неравенствами позволяет ряд свойств числовых неравенств . Они вытекают из введенного нами понятия неравенства. По отношению к числам это понятие задается следующим утверждением, которое можно считать определением отношений «меньше» и «больше» на множестве чисел (его часто называют разностным определением неравенства):

Определение.

  • число a больше числа b тогда и только тогда, когда разность a−b является положительным числом;
  • число a меньше числа b тогда и только тогда, когда разность a−b – отрицательное число;
  • число a равно числу b тогда и только тогда, когда разность a−b равна нулю.

Это определение можно переделать в определение отношений «меньше или равно» и «больше или равно». Вот его формулировка:

Определение.

  • число a больше или равно числу b тогда и только тогда, когда a−b – неотрицательное число;
  • число a меньше или равно числу b тогда и только тогда, когда a−b – неположительное число.

Данные определения мы будем использовать при доказательстве свойств числовых неравенств, к обзору которых мы и переходим.

Основные свойства

Обзор начнем с трех основных свойств неравенств. Почему они основные? Потому, что они являются отражением свойств неравенств в самом общем смысле, а не только по отношению к числовым неравенствам.

Числовым неравенствам, записанным с использованием знаков < и >, характерно:

Что касается числовых неравенств, записанных при помощи знаков нестрогих неравенства ≤ и ≥, то они обладают свойством рефлексивности (а не антирефлексивности), так как неравенства a≤a и a≥a включают в себя случай равенства a=a . Также им свойственны антисимметричность и транзитивность.

Итак, числовые неравенства, записанные при помощи знаков ≤ и ≥, обладают свойствами:

  • рефлексивности a≥a и a≤a – верные неравенства;
  • антисимметричности, если a≤b , то b≥a , и если a≥b , то b≤a .
  • транзитивности, если a≤b и b≤c , то a≤c , а также, если a≥b и b≥c , то a≥c .

Их доказательство очень похоже на уже приведенные, поэтому не будем на них останавливаться, а перейдем к другим важным свойствам числовых неравенств.

Другие важные свойства числовых неравенств

Дополним основные свойства числовых неравенств еще серией результатов, имеющих большое практическое значение. На них основаны методы оценки значений выражений, на них базируются принципы решения неравенств и т.п. Поэтому целесообразно хорошо разобраться с ними.

В этом пункте свойства неравенств будем формулировать только для одного знака строгого неравенства, но стоит иметь в виду, что аналогичные свойства будут справедливы и для противоположного ему знака, а также для знаков нестрогих неравенств. Поясним это на примере. Ниже мы сформулируем и докажем такое свойство неравенств: если a

  • если a>b , то a+c>b+c ;
  • если a≤b , то a+c≤b+c ;
  • если a≥b , то a+c≥b+c .

Для удобства представим свойства числовых неравенств в виде списка, при это будем давать соответствующее утверждение, записывать его формально с помощью букв, приводить доказательство, после чего показывать примеры использования. А в конце статьи сведем все свойства числовых неравенств в таблицу. Поехали!

    Прибавление (или вычитание) любого числа к обеим частям верного числового неравенства дает верное числовое неравенство. Другими словами, если числа a и b таковы, что a

    Для доказательства составим разность левой и правой частей последнего числового неравенства, и покажем, что она отрицательна при условии a(a+c)−(b+c)=a+c−b−c=a−b . Так как по условию a

    На доказательстве этого свойства числовых неравенств для вычитания числа c не останавливаемся, так как на множестве действительных чисел вычитание можно заменить прибавлением −c .

    Например, если к обеим частям верного числового неравенства 7>3 прибавить число 15 , то получится верное числовое неравенство 7+15>3+15 , что то же самое, 22>18 .

    Если обе части верного числового неравенства умножить (или разделить) на одно и то же положительное число c, то получится верное числовое неравенство. Если обе части неравенства умножить (или разделить) на отрицательное число c , и изменить знак неравенства на противоположный, то получится верное неравенство. В буквенном виде: если для чисел a и b выполняется неравенство ab·c.

    Доказательство. Начнем со случая, когда c>0 . Составим разность левой и правой частей доказываемого числового неравенства: a·c−b·c=(a−b)·c . Так как по условию a0 , то произведение (a−b)·c будет отрицательным числом как произведение отрицательного числа a−b на положительное число c (что следует из ). Следовательно, a·c−b·c<0 , откуда a·c

    На доказательстве рассмотренного свойства для деления обеих частей верного числового неравенства на одно и то же число c не останавливаемся, так как деление всегда можно заменить умножением на 1/c .

    Покажем пример применения разобранного свойства на конкретных числах. Например, можно обе части верного числового неравенства 4<6 умножить на положительное число 0,5 , что дает верное числовое неравенство −4·0,5<6·0,5 , откуда −2<3 . А если обе части верного числового неравенства −8≤12 разделить на отрицательное число −4 , и изменить знак неравенства ≤ на противоположный ≥, то получится верное числовое неравенство −8:(−4)≥12:(−4) , откуда 2≥−3 .

    Из только что разобранного свойства умножения обеих частей числового равенства на число следуют два практически ценных результата. Так их и сформулируем в виде следствий.

    Все разобранные выше в этом пункте свойства объединяет то, что сначала дано верное числовое неравенство, и из него посредствам некоторых манипуляций с частями неравенства и знаком получается другое верное числовое неравенство. Сейчас мы приведем блок свойств, в которых изначально дано не одно, а несколько верных числовых неравенств, а новый результат получается из их совместного использования после сложения или умножения их частей.

    Если для чисел a , b , c и d справедливы неравенства a

    Докажем, что (a+c)−(b+d) – отрицательное число, этим будет доказано, что a+c

    По индукции это свойство распространяется на почленное сложение трех, четырех, и, вообще, любого конечного числа числовых неравенств. Так, если для чисел a 1 , a 2 , …, a n и b 1 , b 2 , …, b n справедливы неравенства a 1 a 1 +a 2 +…+a n .

    Например, нам даны три верных числовых неравенства одного знака −5<−2 , −1<12 и 3<4 . Рассмотренное свойство числовых неравенств позволяет нам констатировать, что неравенство −5+(−1)+3<−2+12+4 – тоже верное.

    Можно почленно умножать числовые неравенства одного знака, обе части которых представлены положительными числами. В частности, для двух неравенств a

    Для доказательства можно умножить обе части неравенста a

    Указанное свойство справедливо и для умножения любого конечного числа верных числовых неравенств с положительными частями. То есть, если a 1 , a 2 , …, a n и b 1 , b 2 , …, b n – положительные числа, причем a 1 a 1 ·a 2 ·…·a n .

    Отдельно стоит заметить, что если в записи числовых неравенств содержатся неположительные числа, то их почленное умножение может приводить к неверным числовым неравенствам. Например, числовые неравенства 1<3 и −5<−4 – верные и одного знака, почленное умножение этих неравенств дает 1·(−5)<3·(−4) , что то же самое, −5<−12 , а это неверное неравенство.

    • Следствие. Почленное умножение одинаковых верных неравенств вида a

В заключение статьи, как и было обещано, соберем все изученные свойства в таблицу свойств числовых неравенств :

Список литературы.

  • Моро М. И. . Математика. Учеб. для 1 кл. нач. шк. В 2 ч. Ч. 1. (Первое полугодие) / М. И. Моро, С. И. Волкова, С. В. Степанова.- 6-е изд. - М.: Просвещение, 2006. - 112 с.: ил.+Прил. (2 отд. л. ил.). - ISBN 5-09-014951-8.
  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.