Мы отметили, что любой одночлен можно привести к стандартному виду . В этой статье мы разберемся, что называют приведением одночлена к стандартному виду, какие действия позволяют осуществить этот процесс, и рассмотрим решения примеров с подробными пояснениями.

Навигация по странице.

Что значит привести одночлен к стандартному виду?

С одночленами удобно работать, когда они записаны в стандартном виде . Однако достаточно часто одночлены задаются в виде, отличном от стандартного. В этих случаях всегда можно перейти от исходного одночлена к одночлену стандартного вида, выполнив тождественные преобразования . Процесс проведения таких преобразований называют приведением одночлена к стандартному виду.

Обобщим приведенные рассуждения. Привести одночлен к стандартному виду – это значит выполнить с ним такие тождественные преобразования, чтобы он принял стандартный вид.

Как привести одночлен к стандартному виду?

Пришло время разобраться с тем, как приводить одночлены к стандартному виду.

Как известно из определения, одночлены нестандартного вида представляют собой произведения чисел, переменных и их степеней, причем, возможно, повторяющихся. А одночлен стандартного вида может содержать в своей записи только одно число и неповторяющиеся переменные или их степени. Теперь осталось понять, как произведения первого вида привести к виду вторых?

Для этого нужно воспользоваться следующим правилом приведения одночлена к стандартному виду , состоящим из двух шагов:

  • Во-первых, выполняется группировка числовых множителей, а также одинаковых переменных и их степеней;
  • Во-вторых, вычисляется произведение чисел и применяется .

В результате применения озвученного правила любой одночлен будет приведен к стандартному виду.

Примеры, решения

Осталось научиться применять правило из предыдущего пункта при решении примеров.

Пример.

Приведите одночлен 3·x·2·x 2 к стандартному виду.

Решение.

Сгруппируем числовые множители и множители с переменной x . После группировки исходный одночлен примет вид (3·2)·(x·x 2) . Произведение чисел в первых скобках равно 6 , а правило умножения степеней с одинаковыми основаниями позволяет выражение во вторых скобках представить как x 1 +2=x 3 . В итоге получаем многочлен стандартного вида 6·x 3 .

Приведем краткую запись решения: 3·x·2·x 2 =(3·2)·(x·x 2)=6·x 3 .

Ответ:

3·x·2·x 2 =6·x 3 .

Итак, для приведения одночлена к стандартному виду необходимо уметь проводить группировку множителей, выполнять умножение чисел, и работать со степенями.

Для закрепления материала решим еще один пример.

Пример.

Представьте одночлен в стандартном виде и укажите его коэффициент.

Решение.

Исходный одночлен имеет в своей записи единственный числовой множитель −1 , перенесем его в начало. После этого отдельно сгруппируем множители с переменной a , отдельно – с переменно b , а переменную m группировать не с чем, оставим ее как есть, имеем . После выполнения действий со степенями в скобках одночлен примет нужный нам стандартный вид , откуда виден коэффициент одночлена , равный −1 . Минус единицу можно заменить знаком минус: .

В изучении темы о многочленах отдельно стоит упомянуть о том, что многочлены встречаются как стандартного, так и не стандартного вида. При этом многочлен нестандартного вида можно привести к стандартному виду. Собственно, этот вопрос и будем разбирать в данной статье. Закрепим разъяснения примерами с подробным пошаговым описанием.

Yandex.RTB R-A-339285-1

Смысл приведения многочлена к стандартному виду

Немного углубимся в само понятие, действие – «приведение многочлена к стандартному виду».

Многочлены, подобно любым другим выражениям, возможно тождественно преобразовывать. Как итог, мы получаем в таком случае выражения, которые тождественно равны исходному выражению.

Определение 1

Привести многочлен к стандартному виду – означает замену исходного многочлена на равный ему многочлен стандартного вида, полученный из исходного многочлена при помощи тождественных преобразований.

Способ приведения многочлена к стандартному виду

Порассуждаем на тему того, какие именно тождественные преобразования приведут многочлен к стандартному виду.

Определение 2

Согласно определению, каждый многочлен стандартного вида состоит из одночленов стандартного вида и не имеет в своем составе подобных членов. Многочлен же нестандартного вида может включать в себя одночлены нестандартного вида и подобные члены. Из сказанного закономерно выводится правило, говорящее о том, как привести многочлен к стандартному виду:

  • в первую очередь к стандартному виду приводятся одночлены, составляющие заданный многочлен;
  • затем производится приведение подобных членов.

Примеры и решения

Разберем подробно примеры, в которых приведем многочлен к стандартному виду. Следовать будем правилу, выведенному выше.

Отметим, что иногда члены многочлена в исходном состоянии уже имеют стандартный вид, и остается только привести подобные члены. Случается, что после первого шага действий не оказывается подобных членов, тогда второй шаг пропускаем. В общих случаях необходимо совершать оба действия из правила выше.

Пример 1

Заданы многочлены:

5 · x 2 · y + 2 · y 3 − x · y + 1 ,

0 , 8 + 2 · a 3 · 0 , 6 − b · a · b 4 · b 5 ,

2 3 7 · x 2 + 1 2 · y · x · (- 2) - 1 6 7 · x · x + 9 - 4 7 · x 2 - 8 .

Необходимо привести их к стандартному виду.

Решение

рассмотрим сначала многочлен 5 · x 2 · y + 2 · y 3 − x · y + 1 : его члены имеют стандартный вид, подобные члены отсутствуют, значит многочлен задан в стандартном виде, и никаких дополнительных действий не требуется.

Теперь разберем многочлен 0 , 8 + 2 · a 3 · 0 , 6 − b · a · b 4 · b 5 . В его состав входят нестандартные одночлены: 2 · a 3 · 0 , 6 и − b · a · b 4 · b 5 , т.е. имеем необходимость привести многочлен к стандартному виду, для чего первым действием преобразуем одночлены в стандартный вид:

2 · a 3 · 0 , 6 = 1 , 2 · a 3 ;

− b · a · b 4 · b 5 = − a · b 1 + 4 + 5 = − a · b 10 , таким образом получаем следующий многочлен:

0 , 8 + 2 · a 3 · 0 , 6 − b · a · b 4 · b 5 = 0 , 8 + 1 , 2 · a 3 − a · b 10 .

В полученном многочлене все члены – стандартные, подобных членов не имеется, значит наши действия по приведению многочлена к стандартному виду завершены.

Рассмотрим третий заданный многочлен: 2 3 7 · x 2 + 1 2 · y · x · (- 2) - 1 6 7 · x · x + 9 - 4 7 · x 2 - 8

Приведем его члены к стандартному виду и получим:

2 3 7 · x 2 - x · y - 1 6 7 · x 2 + 9 - 4 7 · x 2 - 8 .

Мы видим, что в составе многочлена имеются подобные члены, произведем приведение подобных членов:

2 3 7 · x 2 - x · y - 1 6 7 · x 2 + 9 - 4 7 · x 2 - 8 = = 2 3 7 · x 2 - 1 6 7 · x 2 - 4 7 · x 2 - x · y + (9 - 8) = = x 2 · 2 3 7 - 1 6 7 - 4 7 - x · y + 1 = = x 2 · 17 7 - 13 7 - 4 7 - x · y + 1 = = x 2 · 0 - x · y + 1 = x · y + 1

Таким образом, заданный многочлен 2 3 7 · x 2 + 1 2 · y · x · (- 2) - 1 6 7 · x · x + 9 - 4 7 · x 2 - 8 принял стандартный вид − x · y + 1 .

Ответ:

5 · x 2 · y + 2 · y 3 − x · y + 1 - многочлен задан стандартным;

0 , 8 + 2 · a 3 · 0 , 6 − b · a · b 4 · b 5 = 0 , 8 + 1 , 2 · a 3 − a · b 10 ;

2 3 7 · x 2 + 1 2 · y · x · (- 2) - 1 6 7 · x · x + 9 - 4 7 · x 2 - 8 = - x · y + 1 .

Во многих задачах действие приведения многочлена к стандартному виду – промежуточное при поиске ответа на заданный вопрос. Рассмотрим и такой пример.

Пример 2

Задан многочлен 11 - 2 3 z 2 · z + 1 3 · z 5 · 3 - 0 . 5 · z 2 + z 3 . Необходимо привести его к с стандартному виду, указать его степень и расположить члены заданного многочлена по убывающим степеням переменной.

Решение

Приведем члены заданного многочлена к стандартному виду:

11 - 2 3 z 3 + z 5 - 0 . 5 · z 2 + z 3 .

Следующим шагом приведем подобные члены:

11 - 2 3 z 3 + z 5 - 0 . 5 · z 2 + z 3 = 11 + - 2 3 · z 3 + z 3 + z 5 - 0 , 5 · z 2 = = 11 + 1 3 · z 3 + z 5 - 0 , 5 · z 2

Мы получили многочлен стандартного вида, что дает нам возможность обозначить степень многочлена (равна наибольшей степени составляющих его одночленов). Очевидно, что искомая степень равна 5 .

Остается только расположить члены по убывающим степеням переменных. С этой целью мы просто переставим местами члены в полученном многочлене стандартного вида с учетом требования. Таким образом, получим:

z 5 + 1 3 · z 3 - 0 , 5 · z 2 + 11 .

Ответ:

11 - 2 3 · z 2 · z + 1 3 · z 5 · 3 - 0 , 5 · z 2 + z 3 = 11 + 1 3 · z 3 + z 5 - 0 , 5 · z 2 , при этом степень многочлена – 5 ; в результате расположения членов многочлена по убывающим степеням переменных многочлен примет вид: z 5 + 1 3 · z 3 - 0 , 5 · z 2 + 11 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

Любая десятичная дробь может быть записана в виде a ,bc ... · 10 k . Такие записи часто встречается в научных расчетах. Считается, что работать с ними еще удобнее, чем с обычной десятичной записью.

Сегодня мы научимся приводить к такому виду любую десятичную дробь. Заодно убедимся, что подобная запись - это уже «перебор», и никаких преимуществ в большинстве случаев она не дает.

Для начала - небольшое повторение. Как известно, десятичные дроби можно умножать не только между собой, но и на обычные целые числа (см. урок « »). Особый интерес представляет умножение на степени десятки. Взгляните:

Задача. Найдите значение выражения: 25,81 · 10; 0,00005 · 1000; 8,0034 · 100.

Умножение выполняется по стандартной схеме, с выделением значащей части у каждого множителя. Кратко опишем эти шаги:

Для первого выражения: 25,81 · 10.

  1. Значащие части: 25,81 → 2581 (сдвиг вправо на 2 цифры); 10 → 1 (сдвиг влево на 1 цифру);
  2. Умножаем: 2581 · 1 = 2581;
  3. Суммарный сдвиг: вправо на 2 − 1 = 1 цифру. Выполняем обратный сдвиг: 2581 → 258,1.

Для второго выражения: 0,00005 · 1000.

  1. Значащие части: 0,00005 → 5 (сдвиг вправо на 5 цифр); 1000 → 1 (сдвиг влево на 3 цифры);
  2. Умножаем: 5 · 1 = 5;
  3. Суммарный сдвиг: вправо на 5 − 3 = 2 цифры. Выполняем обратный сдвиг: 5 → ,05 = 0,05.

Последнее выражение: 8,0034 · 100.

  1. Значащие части: 8,0034 → 80 034 (сдвиг вправо на 4 цифры); 100 → 1 (сдвиг влево на 2 цифры);
  2. Умножаем: 80 034 · 1 = 80 034;
  3. Суммарный сдвиг: вправо на 4 − 2 = 2 цифры. Выполняем обратный сдвиг: 80 034 → 800,34.

Давайте немного перепишем исходные примеры и сравним их с ответами:

  1. 25,81 · 10 1 = 258,1;
  2. 0,00005 · 10 3 = 0,05;
  3. 8,0034 · 10 2 = 800,34.

Что происходит? Оказывается, умножение десятичной дроби на число 10 k (где k > 0) равносильно сдвигу десятичной точки вправо на k разрядов. Именно вправо - ведь число увеличивается.

Аналогично, умножение на 10 −k (где k > 0) равносильно делению на 10 k , т.е. сдвигу на k разрядов влево, что приводит к уменьшению числа. Взгляните на примеры:

Задача. Найдите значение выражения: 2,73 · 10; 25,008: 10; 1,447: 100;

Во всех выражениях второе число - степень десятки, поэтому имеем:

  1. 2,73 · 10 = 2,73 · 10 1 = 27,3;
  2. 25,008: 10 = 25,008: 10 1 = 25,008 · 10 −1 = 2,5008;
  3. 1,447: 100 = 1,447: 10 2 = 1,447 · 10 −2 = ,01447 = 0,01447.

Отсюда следует, что одну и ту же десятичную дробь можно записать бесконечным числом способов. Например: 137,25 = 13,725 · 10 1 = 1,3725 · 10 2 = 0,13725 · 10 3 = ...

Стандартный вид числа - это выражения вида a ,bc ... · 10 k , где a , b , c , ... - обычные цифры, причем a ≠ 0. Число k - целое.

  1. 8,25 · 10 4 = 82 500;
  2. 3,6 · 10 −2 = 0,036;
  3. 1,075 · 10 6 = 1 075 000;
  4. 9,8 · 10 −6 = 0,0000098.

Для каждого числа, записанного в стандартном виде, рядом указана соответствующая десятичная дробь.

Переход к стандартному виду

Алгоритм перехода от обычной десятичной дроби к стандартному виду очень прост. Но перед тем как его использовать, обязательно повторите, что такое значащая часть числа (см. урок «Умножение и деление десятичных дробей »). Итак, алгоритм:

  1. Выписать значащую часть исходного числа и поставить после первой значащей цифры десятичную точку;
  2. Найти образовавшийся сдвиг, т.е. на сколько разрядов сместилась десятичная точка по сравнению с исходной дробью. Пусть это будет число k ;
  3. Сравнить значащую часть, которую мы выписали на первом шаге, с исходным числом. Если значащая часть (с учетом десятичной точки) меньше исходного числа, дописать множитель 10 k . Если больше - дописать множитель 10 −k . Это выражение и будет стандартным видом.

Задача. Запишите число в стандартном виде:

  1. 9280;
  2. 125,05;
  3. 0,0081;
  4. 17 000 000;
  5. 1,00005.
  1. 9280 → 9,28. Сдвиг десятичной точки на 3 разряда влево, число уменьшилось (очевидно, 9,28 < 9280). Результат: 9,28 · 10 3 ;
  2. 125,05 → 1,2505. Сдвиг - на 2 разряда влево, число уменьшилось (1,2505 < 125,05). Результат: 1,2505 · 10 2 ;
  3. 0,0081 → 8,1. В этот раз сдвиг произошел вправо на 3 разряда, поэтому число увеличилось (8,1 > 0,0081). Результат: 8,1 · 10 −3 ;
  4. 17000000 → 1,7. Сдвиг - на 7 разрядов влево, число уменьшилось. Результат: 1,7 · 10 7 ;
  5. 1,00005 → 1,00005. Сдвига нет, поэтому k = 0. Результат: 1,00005 · 10 0 (бывает и такое!).

Как видите, в стандартном виде представляются не только десятичные дроби, но и обычные целые числа. Например: 812 000 = 8,12 · 10 5 ; 6 500 000 = 6,5 · 10 6 .

Когда применять стандартную запись

По идее, стандартная запись числа должна сделать дробные вычисления еще проще. Но на практике заметный выигрыш получается только при выполнении операции сравнения. Потому что сравнение чисел, записанных в стандартном виде, выполняется так:

  1. Сравнить степени десятки. Наибольшим будет то число, у которого эта степень больше;
  2. Если степени одинаковые, начинаем сравнивать значащие цифры - как в обычных десятичных дробях. Сравнение идет слева направо, от старшего разряда к младшему. Наибольшим будет то число, в котором очередной разряд окажется больше;
  3. Если степени десятки равны, а все разряды совпадают, то сами дроби тоже равны.

Разумеется, все это верно только для положительных чисел. Для отрицательных чисел все знаки меняются на противоположные.

Замечательно свойство дробей, записанных в стандартном виде, заключается в том, что к их значащей части можно приписывать любое количество нулей - как слева, так и справа. Аналогичное правило существует для других десятичных дробей (см. урок «Десятичные дроби »), но там есть свои ограничения.

Задача. Сравните числа:

  1. 8,0382 · 10 6 и 1,099 · 10 25 ;
  2. 1,76 · 10 3 и 2,5 · 10 −4 ;
  3. 2,215 · 10 11 и 2,64 · 10 11 ;
  4. −1,3975 · 10 3 и −3,28 · 10 4 ;
  5. −1,0015 · 10 −8 и −1,001498 · 10 −8 .
  1. 8,0382 · 10 6 и 1,099 · 10 25 . Оба числа положительные, причем у первого степень десятки меньше, чем у второго (6 < 25). Значит, 8,0382 · 10 6 < 1,099 · 10 25 ;
  2. 1,76 · 10 3 и 2,5 · 10 −4 . Числа снова положительные, причем степень десятки у первого из них больше, чем у второго (3 > −4). Следовательно, 1,76 · 10 3 > 2,5 · 10 −4 ;
  3. 2,215 · 10 11 и 2,64 · 10 11 . Числа положительные, степени десятки совпадают. Смотрим на значащую часть: первые цифры тоже совпадают (2 = 2). Различие начинается на второй цифре: 2 < 6, поэтому 2,215 · 10 11 < 2,64 · 10 11 ;
  4. −1,3975 · 10 3 и −3,28 · 10 4 . Это отрицательные числа. У первого степень десятки меньше (3 < 4), поэтому (в силу отрицательности) само число будет больше: −1,3975 · 10 3 > −3,28 · 10 4 ;
  5. −1,0015 · 10 −8 и −1,001498 · 10 −8 . Снова отрицательные числа, причем степени десятки совпадают. Также совпадают и первые 4 разряда значащей части (1001 = 1001). На 5 разряде начинается отличие, а именно: 5 > 4. Поскольку исходные числа отрицательные, заключаем: −1,0015 · 10 −8 < −1,001498 · 10 −8 .

Многочленом называют сумму одночленов. Если все члены многочлена записать в стандартном виде (см. п. 51) и выполнить приведение подобных членов, то получится многочлен стандартного вида.

Всякое целое выражение можно преобразовать в многочлен стандартного вида - в этом состоит цель преобразований (упрощений) целых выражений.

Рассмотрим примеры, в которых целое выражение нужно привести к стандартному виду многочлена.

Решение. Сначала приведем к стандартному виду члены многочлена. Получим После приведения подобных членов получим многочлен стандартного вида

Решение. Если перед скобками стоит знак «плюс, то скобки можно опустить, сохранив знаки всех слагаемых, заключенных в скобки. Воспользовавшись этим правилом раскрытия скобок, получим:

Решение. Если перед скобками стоит зиак «минус», то скобки можно опустить, изменив знаки всех слагаемых» заключенных в скобки. Воспользовавшись этим правилом паскрытия скобок, получим:

Решение. Произведение одночлена и многочлена согласно распределительному закону равно сумме произведений этого одночлена и каждого члена многочлена. Получаем

Решение. Имеем

Решение. Имеем

Осталось привести подобные члены (они подчеркнуты). Получим:

53. Формулы сокращенного умножения.

В некоторых случаях приведение целого выражения к стандартному виду многочлена осуществляется с использованием тождеств:

Эти тождества называют формулами сокращенного умножения,

Рассмотрим примеры, в которых нужно преобразовать заданное выражение в миогочлеи стандартного вида.

Пример 1. .

Решение. Воспользовавшись формулой (1), получим:

Пример 2. .

Решение.

Пример 3. .

Решение. Воспользовавшись формулой (3), получим:

Пример 4.

Решение. Воспользовавшись формулой (4), получим:

54. Разложение многочленов на множители.

Иногда можно преобразовать многочлен в произведение нескольких сомножителей - многочленов или одпочленов. Такое тождественное преобразование называется разложением многочлена на множители. В этом случае говорят, что многочлен делится на каждый из этих множителей.

Рассмотрим некоторые способы разложения многочленов на множители,

1) Вынесение общего множителя за скобку. Это преобразование является непосредственным следствием распределительного закона (для наглядности нужно лишь переписать этот закон «справа налево»):

Пример 1. Разложить на множители многочлен

Решение. .

Обычно при вынесении общего множителя за скобки каждую переменную, входящую во все члены многочлена, выносят с наименьшим показателем, который она имеет в данном многочлене. Если все коэффициенты многочлена - целые числа, то в качестве коэффициента общего множителя берут наибольший по модулю общий делитель всех коэффициентов многочлена.

2) Использование формул сокращенного умножения. Формулы (1) - (7) из п. 53, будучи прочитанными «справа налево, во многих случаях оказываются полезными для разложения многочленов на множители.

Пример 2. Разложить на множители .

Решение. Имеем . Применив формулу (1) (разность квадратов), получим . Применив

теперь формулы (4) и (5) (сумма кубов, разность кубов), получим:

Пример 3. .

Решение. Сначала вынесем за скобку общий множитель. Для этого найдем наибольший общий делитель коэффициентов 4, 16, 16 и наименьшие показатели степеней, с которыми переменные а и b входят в составляющие данный многочлен одночлены. Получим:

3) Способ группировки. Он основан на том, что переместительный и сочетательный законы сложения позволяют группировать члены многочлена различными способами. Иногда удается такая группировка, что после вынесения за скобки общих множителей в каждой группе в скобках остается однн и тот же многочлен, который в свою очередь как общий множитель может быть вынесен за скобки. Рассмотрим примеры разложения многочлена на множители.

Пример 4. .

Решение. Произведем группировку следующим образом:

В первой группе вынесем за скобку общий множитель во второй - общий множитель 5. Получим Теперь многочлен как общий множитель вынесем за скобку: Таким образом, получаем:

Пример 5.

Решение. .

Пример 6.

Решение. Здесь никакая группировка не приведет к появлению во всех группах одного и того же многочлена. В таких случаях иногда оказывается полезным представить какой-либо член многочлена в виде некоторой суммы, после чего снова попробовать применить способ группировки. В нашем примере целесообразно представить в виде суммы Получим

Пример 7.

Решение. Прибавим и отнимем одночлен Получим

55. Многочлены от одной переменной.

Многочлен , где a, b - числа переменная, называется многочленом первой степени; многочлен где а, b, с - числа переменная, называется многочленом второй степени или квадратным трехчленом; многочлен где а, b, с, d - числа переменная называется многочленом третьей степени.

Вообще если о, переменная, то многочлен

называется лсмогочленол степени (относительно х); , m-члены многочлена, коэффициенты, старший член многочлена, а - коэффициент при старшем члене, свободный член многочлена. Обычно многочлен записывают по убывающим степеням переменной, т. е. степени переменной постепенно уменьшаются, в частности, на первом месте стоит старший член, на последнем - свободный член. Степень многочлена - это степень старшего члена.

Например, многочлен пятой степени, в котором старший член, 1 - свободный член многочлена.

Корнем многочлена называют такое значение при котором многочлен обращается в нуль. Например, число 2 является корнем многочлена так как