Фибоначчи Леонардо Пизанский (лат. Leonardo Pisano, Пиза, около 1170 -- около 1250) -- это первый крупный математик средневековой Европы. Более известен под прозвищем Фибонамччи (Fibonacci), что в переводе с итальянского означает «хороший сын родился» (Figlio Buono Nato Ci).

О бытие Фибоначчи известно немного. Неизвестна даже точная дата его рождения. Предполагается, что Фибоначчи родился предположительно в 1170 г

Леонардо Фибоначчи был знаменитым итальянским математиком, он славился своим умением делать расчеты. Однажды его осенило и он открыл простую последовательность чисел, соотношения между которыми описывали естественные пропорции всех тел вселенной!

Леонардо Фибоначчи был выдающимся математиком средневековья. Плоды его математических трудов применяются во многих науках, искусстве и повседневной жизни по сей день.

Заслугой Леонардо Фибоначчи является ряд чисел Фибоначчи. Считается, что об этом ряде было известно на Востоке, но именно Леонардо Фибоначчи опубликовал этот ряд чисел в книге «Liber Abaci» (сделал он это для демонстрации размножения популяции кроликов).

Эллиотт писал: "Закон пpиpоды включает в pассмотpение важнейший элемент- ритмичность. Закон пpиpоды - это не некая система, не метод игры на рынке, а явление, хаpактеpное, видимо, для хода любой человеческой деятельности. Его применение в пpогнозиpовании революционно."

Этот шанс предсказать движения цен побуждает легионы аналитиков трудиться денно и нощно. Мы сосредоточимся на способности делать предсказания и попытаемся выяснить, возможно это или нет. Вводя свой подход, Эллиотт был очень конкретен. Он писал: "Любой человеческой деятельности присущи три отличительных особенности: форма, время и отношение, -и все они подчиняются суммационной последовательности Фибоначчи".

Последовательность Фибоначчи, известная всем по фильму "Код Да Винчи" - ряд цифр, описанный в виде загадки Итальянским математиком Леонардо Пизанским, более известным под прозвищем Фибоначчи, в XIII веке. Вкратце суть загадки:

Кто-то поместил пару кроликов в некоем замкнутом пространстве, чтобы узнать, сколько пар кроликов родится при этом в течении года, если природа кроликов такова, что каждый месяц пара кроликов производит на свет другую пару, а способность к производству потомства у них появляется по достижению двухмесячного возраста.

Размышляя на эту тему, Фибоначчи выстроил такой ряд цифр.

Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21: 34 = 0,617, а 34: 55 = 0,618. Это отношение обозначается символом Ф. Только это отношение - 0,618: 0,382 - дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.

Фибоначчи так же занимался решением практических нужд торговли: с помощью какого наименьшего количества гирь можно взвесить товар? Фибоначчи доказывает, что оптимальной является такая система гирь: 1, 2, 4, 8, 16...

У этой последовательности есть ряд математических особенностей, которых обязательно нужно коснуться. Данная последовательность асимптотически (приближаясь все медленнее и медленнее) стремится к некоторому постоянному соотношению. Однако, это соотношение иррационально, то есть представляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифр в дробной части. Его невозможно выразить точно.

Так отношение какого-либо члена последовательности к предшествующему ему колеблется около числа 1,618, через pаз то превосходя, то не достигая его. Отношение к следующему аналогично приближается к числу 0,618, что обратно пропорционально 1,618. Если мы будем делить элементы последовательности через одно, то получим числа 2,618 и 0,382, которые так же являются обратно пропорциональными. Это так называемые коэффициенты Фибоначчи.

Природа как бы решает задачу сразу с двух сторон и складывает полученные результаты. Как только получает в сумме 1, то осуществляет переход в следующее измерение, где начинает строить все сначала. Но тогда она и должна строить это золотое сечение по определенному правилу. Природа не пользуется золотым сечением сразу. Она его получает путем последовательных итераций и для порождения золотого сечения пользуется другим рядом, - рядом Фибоначчи.

Чудесные свойства ряда Фибоначчи проявляются и в самих числах, являющихся членами этого ряда. Расположим члены ряда Фибоначчи по вертикали., а затем вправо, в порядке убывания, запишем натуральные числа.

21 20 19 18 17 16 15 14 13

34 33 32 31 30 29 28 27 26 25 24 23 22 21

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34

Каждая строчка начинается и завершается числом Фибоначчи, т. е. в каждой строчке всего два таких числа. "синие" числа - 4, 7, 6, 11, 10, 18, 16, 29, 26, 47, 42 обладают особыми свойствами (второй уровень иерархии ряда Фибоначчи):

(5-4)/(4-3) = 1/1

(8-7)/(7-5) = 1/2 и (8-6)/(6-5) = 2/1

(13-11)/(11-8) = 2/3 и (13-10)/(10-8) = 3/2

(21-18)/(18-13) = 3/5 и (21-16)/(1б-13) = 5/3

(34-29)/(29-21) = 5/8 и (34-26)/(26-21) = 8/5

(55-47)/(47-34) = 8/13 и (55-42)/(42-34) = 13/8

Мы получили дробный ряд Фибоначчи, который, возможно, «исповедуют» коллективные спины элементарных частиц и атомов химических элементов.

Представим эти числа как последовательность рычажных весов

К чему всё это? Так мы приближаемся к одному из самых загадочных явлений природы. Фибоначчи по сути не открыл ничего нового, он просто напомнил миру о таком явлении, как Золотое Сечение, которое не уступает по значимости теореме Пифагора.

Все окружающие нас предметы мы различаем в том числе и по форме. Какие-то нам нравятся больше, какие-то меньше, некоторые вовсе отталкивают взгляд. Иногда интерес может быть продиктован жизненной ситуацией, а порой красотой наблюдаемого объекта. Симметричная и пропорциональная форма, способствует наилучшему зрительному восприятию и вызывает ощущение красоты и гармонии. Целостный образ всегда состоит из частей разного размера, находящихся в определённом соотношении друг с другом и целым. Золотое сечение - высшее проявление совершенства целого и его частей в науке, искусстве и природе.

Если на простом примере, то Золотое Сечение - это деление отрезка на две части в таком соотношении, при котором большая часть относится к меньшей, как их сумма (весь отрезок) к большей.

Если мы примем весь отрезок c за 1, то отрезок a будет равен 0,618, отрезок b - 0,382, только так будет соблюдено условие Золотого Сечения (0,618/0,382=1,618; 1/0,618=1,618). Отношение c к a равно 1,618, а с к b 2,618. Это всё те же, уже знакомые нам, коэффициенты Фибоначчи.

Разумеется есть золотой прямоугольник, золотой треугольник и даже золотой кубоид. Пропорции человеческого тела во многих соотношениях близки к Золотому Сечению.

Но самое интересное начинается, когда мы объединим полученные знания. На рисунке наглядно показана связь между последовательностью Фибоначчи и Золотым сечением. Мы начинаем с двух квадратов первого размера. Сверху добавляем квадрат второго размера. Подрисовываем рядом квадрат со стороной, равной сумме сторон двух предыдущих, третьего размера. По аналогии появляется квадрат пятого размера. И так далее пока не надоест, главное, чтобы длина стороны каждого следующего квадрата равнялась сумме длин сторон двух предыдущих. Мы видим серию прямоугольников, длины сторон, которых являются числами Фибоначчи, и, как не странно, они называются прямоугольниками Фибоначчи.

Если мы проведём плавную линий через углы наших квадратов, то получим ни что иное, как спираль Архимеда, увеличение шага которой всегда равномерно.

Ряд Фибоначчи - это не только математическая загадка, мы встречаемся с ним каждый день в повседневной жизни:

И не только в раковине моллюска можно найти спирали Архимеда, а во многих цветах и растениях, просто они не такие явные.

Раковина в форме спирали - форма раковины заинтересовала Архимеда и он выяснил, что увеличение длины завитков раковины - это постоянная величина и равна она 1,618.

Алое многолистный.

Брокколи романеско.

Подсолнечник: Семена в подсолнухе, располагаются так же в виде спирали.

Сосновая шишка.

Рост растений тоже происходит в соответствии с числовым рядом Фибоначчи - от ствола отходит ветка, на которой появляется лист, затем происходит длинный выброс и снова появляется листок, но он уже короче предыдущего. Затем опять выброс, но и он короче предыдущего. В этой картине, первый выброс равен 100%, второй 62%, а третий 38%(уровни Фибоначчи, используемые в торговле) и т.д. С длиной лепестков все выглядит точно так же.

Ящерица - если поделить ящерицу на хвост и тело, то соотношение их будет 0,62 к 0,38.

Пирамиды - длина ребра пирамиды равна 783.3 футам, а высота пирамиды равна 484.4 футам. Соотношение длины ребра/высота пирамиды составляет 1,618.

Как видно, числовой ряд Фибоначчи широко представлен в нашей жизни: в строении живых существ, сооружений, с его помощью даже описывается устройство Галактик. Все это свидетельствует об универсальности математической загадки числового ряда Фибоначчи.

И тут самое время вспомнить о Золотом Сечении! Ни одни ли из самых прекрасных и гармоничных творений природы изображены на этих фотографиях? И это далеко не все. Присмотревшись, можно найти похожие закономерности во многих формах.

Конечно заявление, что все эти явление построены на последовательности Фибоначчи звучит слишком громко, но тенденция на лицо. Да и к тому же сама последовательность далека от совершенства, как и всё в этом мире.

Есть предположение, что последовательность Фибоначчи - это попытка природы адаптироваться к более фундаментальной и совершенной золотое сечение логарифмической последовательности, которая практически такая же, только начинается из ниоткуда и уходит в никуда. Природе же обязательно нужно какое-то целое начало, от которого можно оттолкнуться, она не может создать что-то из ничего. Отношения первых членов последовательности Фибоначчи далеки от Золотого Сечения. Но чем дальше мы продвигаемся по ней, тем больше эти отклонения сглаживаются. Для определения любой последовательности достаточно знать три её члена, идущие друг за другом. Но только не для золотой последовательности, ей достаточно двух, она является геометрической и арифметической прогрессией одновременно. Можно подумать, будто она основа для всех остальных последовательностей.

Каждый член золотой логарифмической последовательности явлется степенью Золотой Пропорции (z). Часть ряда выглядит примерно так: ... z-5; z-4; z-3; z-2; z-1; z0; z1; z2; z3; z4; z5 ... Если мы округлим значение Золотой пропорции до трёх знаков, то получим z=1,618, тогда ряд выглядит так: ... 0,090 0,146; 0,236; 0,382; 0,618; 1; 1,618; 2,618; 4,236; 6,854; 11,090 ... Каждый следующий член может быть получен не только умножением предыдущего на 1,618, но и сложением двух предыдущих. Таким образом экспоненциальный рост в последовательности обеспечивается путем простого сложения двух соседних элементов. Это ряд без начала и конца, и именно на него пытается быть похожей последовательность Фибоначчи. Имея вполне определённое начало, она стремится к идеалу, никогда его не достигая. Такова жизнь.

И всё-таки, в связи со всем увиденным и прочитанным, возникают вполне закономерные вопросы:

От куда взялись эти числа? Кто этот архитектор вселенной, попытавшийся сделать её идеальной? Было ли когда-то всё так, как он хотел? И если да, то почему сбилось? Мутации? Свободный выбор? Что же будет дальше? Спираль скручивается или раскручивается?

Найдя ответ на один вопрос, получишь следующий. Разгадаешь его, получишь два новых. Разберёшься с ними, появится ещё три. Решив и их, обзаведёшься пятью нерешёнными. Потом восьмью, потом тринадцатью, 21, 34, 55...

Прикладное значение ряда Фибоначчи и Золотого Сечения заслуживает отдельного сайта. Сейчас лишь скажу, что, например, элементы ряда Фибоначчи применяются для вычисления скользящих средних (не говоря уже о росте популяции кроликов), и шедевры мирового искусства содержат в себе Золотое Сечение.

А пока, помните, что Фибоначчи -- легендарная личность в математике, экономике и финансах; он обнародовал Арабские числа и представил магический ряд чисел.

ряд число фибоначчи

Войнами и кровью. Казалось бы, ни о какой науке в это время и речи быть не может. И, тем не менее, два величайших открытия приходят к нам из этой эпохи - арабские цифры и последовательность Фибоначчи. Были, конечно, и другие научные открытия, но сейчас речь пойдёт не о них.

Оставив в стороне историю арабских цифр, более пристально присмотримся к последовательности Фибоначчи - что же она собой представляет, и чем она так знаменита. На самом деле последовательность Фибоначчи является рядом цифр, в которых старший член последовательности равняется сумме двух ближайших младших членов последовательности. В результате таких действий получится такие числа:

1; 1; 2; 3; 5; 8; 13; 21 и т.д.

Они называются а все вместе они образуют ряд Фибоначчи. Но дело даже не в самих числах, а в соотношениях между ними. Так, отношение числа в последовательности к предыдущему члену последовательности даёт в результате значение, близкое к 1,618. И чем цифры, используемые для такого отношения, больше, тем точнее соблюдается это значение.

Другим, не менее интересным фактом, которым обладает последовательность Фибоначчи, является отношение предыдущего члена к последующему. Это отношение приближается к значению 0,618 и является обратной величиной 1,618.

Если брать отношение других чисел из последовательности Фибоначчи, не ближайших, а, например, через одно или через два, то результатом будут другие значения: для членов последовательности, взятых через один, будет получаться число, стремящееся к 2,618. При вычислении отношения старшего члена к младшему через два члена последовательности, результат будет стремиться к 4,236. Если рассмотреть по такому же принципу отношения младших членов последовательности к старшим (через один или через два члена), то будут получены обратные значения уже полученным цифрам: 0,382 (обратное значение числа 2,618), следующее - 0,236 (обратное значение 4,236) и так далее.

На первый взгляд, это всё просто любопытные сведения, игра цифр, не имеющая практической реализации. Однако это совсем не так. В технике, в искусстве, в архитектуре существует понятие золотого сечения. Им является соотношение частей какого-либо предмета между собой, создающее наиболее гармоничное восприятие предмета в целом. Очень часто золотым сечением пользуются художники и архитекторы, добиваясь от своих картин и сооружений впечатления гармонии. Этим же соотношением рекомендуют пользоваться фотографы при компоновке кадра. Одно из правил гласит: для получения хорошего снимка дели кадр на три части и помещай центр композиции на пересечении вертикальной и горизонтальной линий, составляющих 2/3 горизонтали и вертикали кадра. А является одним из коэффициентов Фибоначчи - 1,618. Именно такое соотношение частей и целого обеспечит наиболее гармоничное восприятие. Так что, последовательность Фибоначчи служит не только игрой ума, но и является буквально фундаментом, на котором стоят гармония и красота восприятия окружающего мира.

Соотношения Фибоначчи справедливы и в живой природе. Касаться они могут самых разных областей. Так, раковина улитки, имеющая форму спирали, тоже подчиняется соотношениям Фибоначчи. Рост растений, число веток, листьев, их расположение зачастую также располагаются в соответствии с числами и коэффициентами Фибоначчи.

Ну и самое известное применение чисел Фибоначчи - в торговле на финансовых рынках. В практике трейдеров используются как цифры, составляющие последовательность Фибоначи, так и коэффициенты Фибоначчи. Применяются эти коэффициенты для планирования значимых уровней, на которых можно ожидать изменения поведения цены.

Кроме прямого Фибоначчи существует множество других методов торговли, созданных с их использованием. К ним можно отнести линии Фибоначчи, зоны Фибоначчи, проекции Фибоначчи и т.д. Это помогает трейдерам прогнозировать поведение рынка, заранее подготовиться к возможным изменениям поведения цен и спланировать свою торговлю.

Всё вышеописанное не охватывает всех проявлений влияния чисел и последовательности Фибоначчи в науке, технике, искусстве, но даёт представление о том, что же это такое - последовательность Фибоначчи.

Последовательность Фибоначчи определяется следующим образом:

Несколько первых её членов:

История

Эти числа ввёл в 1202 г. Леонардо Фибоначчи (Leonardo Fibonacci) (также известный как Леонардо Пизанский (Leonardo Pisano)). Однако именно благодаря математику 19 века Люка (Lucas) название "числа Фибоначчи" стало общеупотребительным.

Впрочем, индийские математики упоминали числа этой последовательности ещё раньше: Гопала (Gopala) до 1135 г., Хемачандра (Hemachandra) — в 1150 г.

Числа Фибоначчи в природе

Сам Фибоначчи упоминал эти числа в связи с такой задачей: "Человек посадил пару кроликов в загон, окруженный со всех сторон стеной. Сколько пар кроликов за год может произвести на свет эта пара, если известно, что каждый месяц, начиная со второго, каждая пара кроликов производит на свет одну пару?". Решением этой задачи и будут числа последовательности, называемой теперь в его честь. Впрочем, описанная Фибоначчи ситуация — больше игра разума, чем реальная природа.

Индийские математики Гопала и Хемачандра упоминали числа этой последовательности в связи с количеством ритмических рисунков, образующихся в результате чередования долгих и кратких слогов в стихах или сильных и слабых долей в музыке. Число таких рисунков, имеющих в целом долей, равно .

Числа Фибоначчи появляются и в работе Кеплера 1611 года, который размышлял о числах, встречающихся в природе (работа "О шестиугольных снежинках").

Интересен пример растения — тысячелистника, у которого число стеблей (а значит и цветков) всегда есть число Фибоначчи. Причина этого проста: будучи изначально с единственным стеблем, этот стебель затем делится на два, затем от главного стебля ответвляется ещё один, затем первые два стебля снова разветвляются, затем все стебли, кроме двух последних, разветвляются, и так далее. Таким образом, каждый стебель после своего появления "пропускает" одно разветвление, а затем начинает делиться на каждом уровне разветвлений, что и даёт в результате числа Фибоначчи.

Вообще говоря, у многих цветов (например, лилий) число лепестков является тем или иным числом Фибоначчи.

Также в ботанике известно явление ""филлотаксиса"". В качестве примера можно привести расположение семечек подсолнуха: если посмотреть сверху на их расположение, то можно увидеть одновременно две серии спиралей (как бы наложенных друг на друга): одни закручены по часовой стрелке, другие — против. Оказывается, что число этих спиралей примерно совпадает с двумя последовательными числами Фибоначчи: 34 и 55 или 89 и 144. Аналогичные факты верны и для некоторых других цветов, а также для сосновых шишек, брокколи, ананасов, и т.д.

Для многих растений (по некоторым данным, для 90% из них) верен и такой интересный факт. Рассмотрим какой-нибудь лист, и будем спускаться от него вниз до тех пор, пока не достигнем листа, расположенного на стебле точно так же (т.е. направленного точно в ту же сторону). Попутно будем считать все листья, попадавшиеся нам (т.е. расположенные по высоте между стартовым листом и конечным), но расположенными по-другому. Нумеруя их, мы будем постепенно совершать витки вокруг стебля (поскольку листья расположены на стебле по спирали). В зависимости от того, совершать витки по часовой стрелке или против, будет получаться разное число витков. Но оказывается, что число витков, совершённых нами по часовой стрелке, число витков, совершённых против часовой стрелки, и число встреченных листьев образуют 3 последовательных числа Фибоначчи.

Впрочем, следует отметить, что есть и растения, для которых приведённые выше подсчёты дадут числа из совсем других последовательностей, поэтому нельзя сказать, что явление филлотаксиса является законом, — это скорее занимательная тенденция.

Свойства

Числа Фибоначчи обладают множеством интересных математических свойств.

Вот лишь некоторые из них:

Фибоначчиева система счисления

Теорема Цекендорфа утверждает, что любое натуральное число можно представить единственным образом в виде суммы чисел Фибоначчи:

где , , , (т.е. в записи нельзя использовать два соседних числа Фибоначчи).

Отсюда следует, что любое число можно однозначно записать в фибоначчиевой системе счисления , например:

причём ни в каком числе не могут идти две единицы подряд.

Нетрудно получить и правило прибавления единицы к числу в фибоначчиевой системе счисления: если младшая цифра равна 0, то её заменяем на 1, а если равна 1 (т.е. в конце стоит 01), то 01 заменяем на 10. Затем "исправляем" запись, последовательно исправляя везде 011 на 100. В результате за линейное время будет получена запись нового числа.

Перевод числа в фибоначчиеву систему счисления осуществляется простым "жадным" алгоритмом: просто перебираем числа Фибоначчи от больших к меньшим и, если некоторое , то входит в запись числа , и мы отнимаем от и продолжаем поиск.

Формула для n-го числа Фибоначчи

Формула через радикалы

Существует замечательная формула, называемая по имени французского математика Бине (Binet), хотя она была известна до него Муавру (Moivre):

Эту формулу легко доказать по индукции, однако вывести её можно с помощью понятия образующих функций или с помощью решения функционального уравнения.

Сразу можно заметить, что второе слагаемое всегда по модулю меньше 1, и более того, очень быстро убывает (экспоненциально). Отсюда следует, что значение первого слагаемого даёт "почти" значение . Это можно записать в строгом виде:

где квадратные скобки обозначают округление до ближайшего целого.

Впрочем, для практического применения в вычислениях эти формулы мало подходят, потому что требуют очень высокой точности работы с дробными числами.

Матричная формула для чисел Фибоначчи

Нетрудно доказать матричное следующее равенство:

Но тогда, обозначая

получаем:

Таким образом, для нахождения -го числа Фибоначчи надо возвести матрицу в степень .

Вспоминая, что возведение матрицы в -ую степень можно осуществить за (см.

Итальянский математик Леонардо Фибоначчи жил в 13 столетии и одним из первых в Европе стал использовать арабские (индийские) цифры. Он придумал несколько искусственную задачу о кроликах, которых выращивают на ферме, причем все они считаются самками, самцы игнорируются. Кролики начинают размножаться после того, как им исполняется два месяца, а потом каждый месяц рожают по кролику. Кролики никогда не умирают.

Нужно определить, сколько кроликов будет на ферме через n месяцев, если в начальный момент времени был только один новорожденный кролик.

Очевидно, что фермер имеет одного кролика в первый месяц и одного кролика – во второй месяц. На третий месяц будет уже два кролика, на четвертый – три и т.д. Обозначим количество кроликов в n месяце как . Таким образом,
,
,
,
,
, …

Можно построить алгоритм, позволяющий найти при любомn .

Согласно условию задачи общее количество кроликов
вn +1 месяце раскладывается на три составляющие:

    одномесячные кролики, не способные к размножению, в количестве

;


Таким образом, получим

. (8.1)

Формула (8.1) позволяет вычислить ряд чисел: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, …

Числа в данной последовательности называются числами Фибоначчи .

Если принять
и
, то с помощью формулы (8.1) можно определить все остальные числа Фибоначчи. Формула (8.1) называется рекуррентной формулой (recurrence – «возвращение» на латыни).

Пример 8.1. Предположим, что имеется лестница в n ступенек. Мы можем подниматься по ней с шагом в одну ступеньку, либо – с шагом в две ступеньки. Сколько существует комбинаций различных способов подъема?

Если n = 1, имеется только один вариант решения задачи. Для n = 2 существует 2 варианта: два единичных шага либо один двойной. Для n = 3 существует 3 варианта: три единичных шага, либо один единичный и один двойной, либо один двойной и один единичный.

В следующем случае n = 4, имеем 5 возможностей (1+1+1+1, 2+1+1, 1+2+1, 1+1+2, 2+2).

Для того чтобы ответить на заданный вопрос при произвольном n , обозначим количество вариантов как , и попробуем определить
по известными
. Если мы стартуем с единичного шага, то имеем комбинаций для оставшихсяn ступенек. Если стартуем с двойного шага, то имеем
комбинаций для оставшихсяn –1 ступенек. Общее количество вариантов для n +1 ступенек равно

. (8.2)

Полученная формула как близнец напоминает формулу (8.1). Тем не менее, это не позволяет отождествлять количество комбинаций с числами Фибоначчи. Мы видим, например, что
, но
. Однако имеет место следующая зависимость:

.

Это справедливо для n = 1, 2, и также справедливо для каждого n . Числа Фибоначчи и количество комбинаций вычисляются по одной и той же формуле, однако начальные значения
,
и
,
у них различаются.

Пример 8.2. Этотпример имеет практическое значение для задач помехоустойчивого кодирования. Найдем число всех двоичных слов длины n , не содержащих несколько нулей подряд. Обозначим это число через . Очевидно,
, а слова длины 2, удовлетворяющие нашему ограничению, таковы: 10, 01, 11, т.е.
. Пусть
– такое слово изn символов. Если символ
, то
может быть произвольным (
)-буквенным словом, не содержащим несколько нулей подряд. Значит, число слов с единицей на конце равно
.

Если же символ
, то обязательно
, а первые
символа
могут быть произвольными с учетом рассматриваемых ограничений. Следовательно, имеется
слов длины n с нулем на конце. Таким образом, общее число интересующих нас слов равно

.

С учетом того, что
и
, полученная последовательность чисел – это числа Фибоначчи.

Пример 8.3. В примере 7.6 мы нашли, что число двоичных слов постоянного веса t (и длиной k ) равно . Теперь найдем число двоичных слов постоянного весаt , не содержащих несколько нулей подряд.

Рассуждать можно так. Пусть
число нулей в рассматриваемых словах. В любом слове имеется
промежутков между ближайшими нулями, в каждом из которых находится одна или несколько единиц. Предполагается, что
. В противном случае нет ни одного слова без рядом стоящих нулей.

Если из каждого промежутка удалить ровно по одной единице, то получим слово длины
, содержащеенулей. Любое такое слово может быть получено указанным образом из некоторого (и притом только одного)k -буквенного слова, содержащего нулей, никакие два из которых не стоят рядом. Значит, искомое число совпадает с числом всех слов длины
, содержащих ровнонулей, т.е. равно
.

Пример 8.4. Докажем,что сумма
равна числам Фибоначчи для любого целого. Символ
обозначаетнаименьшее целое число, большее или равное . Например, если
, то
; а если
, то
ceil («потолок»). Также встречается символ
, который обозначаетнаибольшее целое число, меньшее или равное . По-английски эту операцию называютfloor («пол»).

Если
, то
. Если
, то
. Если
, то
.

Таким образом, для рассмотренных случаев сумма действительно равна числам Фибоначчи. Теперь приведем доказательство для общего случая. Поскольку числа Фибоначчи можно получить с помощью рекуррентного уравнения (8.1), то должно выполняться равенство:

.

И оно действительно выполняется:

Здесь мы использовали полученную ранее формулу (4.4):
.

      Сумма чисел Фибоначчи

Определим сумму первых n чисел Фибоначчи.

0+1+1+2+3+5 = 12,

0+1+1+2+3+5+8 = 20,

0+1+1+2+3+5+8+13 = 33.

Легко заметить, что прибавлением к правой части каждого уравнения единицы мы снова получаем число Фибоначчи. Общая формула для определения суммы первых n чисел Фибоначчи имеет вид:

Докажем это, используя метод математической индукции. Для этого запишем:

Эта сумма должна быть равна
.

Сократив левую и правую часть уравнения на –1, получим уравнение (6.1).

      Формула для чисел Фибоначчи

Теорема 8.1. Числа Фибоначчи можно рассчитать по формуле

.

Доказательство . Убедимся в справедливости этой формулы для n = 0, 1, а затем докажем справедливость данной формулы для произвольного n по индукции. Вычислим отношение двух ближайших чисел Фибоначчи:

Мы видим, что отношение этих чисел колеблется около значения 1.618 (если игнорировать несколько первых значений). Этим свойством числа Фибоначчи напоминают члены геометрической прогрессии. Примем
, (
). Тогда выражение

преобразуется в

которое после упрощений выглядит так

.

Мы получили квадратное уравнение, корни которого равны:

Теперь можем записать:

(где c является константой). Оба члена и не дают чисел Фибоначчи, например
, в то время как
. Однако разность
удовлетворяет рекуррентному уравнению:

Для n =0 эта разность дает, то есть:
. Однако при n =1 мы имеем
. Чтобы получить
, необходимо принять:
.

Теперь мы имеем две последовательности: и
, которые начинаются с одинаковых двух чисел и удовлетворяют одной и той же рекуррентной формуле. Они должны быть равны:
. Теорема доказана.

При возрастании n член становится очень большим, в то время как
, и роль членав разности сокращается. Поэтому при больших n приближенно можем записать

.

Мы игнорируем 1/2 (поскольку числа Фибоначчи возрастают до бесконечности при росте n до бесконечности).

Отношение
называется золотым сечением , его используют за пределами математики (например, в скульптуре и архитектуре). Золотым сечением является отношение между диагональю и стороной правильного пятиугольника (рис. 8.1).

Рис. 8.1. Правильный пятиугольник и его диагонали

Для обозначения золотого сечения принято использовать букву
в честь известного афинского скульптора Фидия.

      Простые числа

Все натуральные числа, большие единицы, распадаются на два класса. К первому относятся числа, имеющие ровно два натуральных делителя, единицу и самого себя, ко второму – все остальные. Числа первого класса называют простыми , а второго – составными . Простые числа в пределах первых трех десятков: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, …

Свойства простых чисел и их связь со всеми натуральными числами изучалась Евклидом (3 век до нашей эры). Если выписывать простые числа подряд, то можно заметить, что относительная плотность их убывает. На первый десяток их приходится 4, т. е. 40%, на сотню – 25, т.е. 25%, на тысячу – 168, т.е. меньше 17%, на миллион – 78498, т.е. меньше 8%, и т.д.. Тем не менее, их общее число бесконечно.

Среди простых чисел попадаются пары таких, разность между которыми равна двум (так называемые простые близнецы ), однако конечность или бесконечность таких пар не доказана.

Евклид считал очевидным, что с помощью умножения только простых чисел можно получить все натуральные числа, причем каждое натуральное число представимо в виде произведения простых чисел единственным образом (с точностью до порядка множителей). Таким образом, простые числа образуют мультипликативный базис натурального ряда.

Изучение распределения простых чисел привело к созданию алгоритма, позволяющего получать таблицы простых чисел. Таким алгоритмом является решето Эратосфена (3 век до нашей эры). Этот метод заключается в отсеивании (например, путем зачеркивания) тех целых чисел заданной последовательности
, которые делятся хотя бы на одно из простых чисел, меньших
.

Теорема 8 . 2 . (теорема Евклида). Число простых чисел бесконечно .

Доказательство . Теорему Евклида о бесконечности числа простых чисел докажем способом, предложенным Леонардом Эйлером (1707–1783). Эйлер рассмотрел произведение по всем простым числам p :

при
. Это произведение сходится, и если его раскрыть, то в силу однозначности разложения натуральных чисел на простые сомножители получается, что оно равняется сумме ряда, откуда следует тождество Эйлера:

.

Так как при
ряд справа расходится (гармонический ряд), то из тождества Эйлера следует теорема Евклида.

Русский математик П.Л. Чебышев (1821–1894) вывел формулу, определяющую пределы, в которых заключено число простых чисел
, не превосходящихX :

,

где
,
.

еонардо из Пизы, известный как Фибоначчи, был первым из великих математиков Европы позднего Средневековья. Будучи рожденным в Пизе в богатой купеческой семье, он пришел в математику благодаря сугубо практической потребности установить деловые контакты. В молодости Леонардо много путешествовал, сопровождая отца в деловых поездках. Например, мы знаем о его длительном пребывании в Византии и на Сицилии. Во время таких поездок он много общался с местными учеными.

Числовой ряд, носящий сегодня его имя, вырос из проблемы с кроликами, которую Фибоначчи изложил в своей книге «Liber abacci», написанной в 1202 году:

Человек посадил пару кроликов в загон, окруженный со всех сторон стеной. Сколько пар кроликов за год может произвести на свет эта пара, если известно, что каждый месяц, начиная со второго, каждая пара кроликов производит на свет одну пару?

Можете убедиться, что число пар в каждый из двенадцати последующих месяцев месяцев будет соответственно

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Иными словами, число пар кроликов создает ряд, каждый член в котором - сумма двух предыдущих. Он известен как ряд Фибоначчи , а сами числа - числа Фибоначчи . Оказывается, эта последовательность имеет множество интересных с точки зрения математики свойств. Вот пример: вы можете разделить линию на два сегмента, так что соотношение между большим и меньшим сегментом будет пропорционально соотношению между всей линией и большим сегментом. Этот коэффицент пропорциональности, приблизительно равный 1,618, известен как золотое сечение . В эпоху Возрождения считалось, что именно эта пропорция, соблюденная в архитектурных сооружениях, больше всего радует глаз. Если вы возьмете последовательные пары из ряда Фибоначчи и будете делить большее число из каждой пары на меньшее, ваш результат будет постепенно приближаться к золотому сечению.

С тех пор как Фибоначчи открыл свою последовательность, были найдены даже явления природы, в которых эта последовательность, похоже, играет немаловажную роль. Одно из них - филлотаксис (листорасположение) - правило, по которому располагаются, например, семечки в соцветии подсолнуха. Семечки упорядочены в два ряда спиралей, один из которых идет по часовой стрелке, другой против. И каково же число семян в каждом случае? 34 и 55.

Последовательность Фибоначчи. Если смотреть на листья растения сверху, можно заметить, что они распускаются по спирали. Углы между соседними листьями образуют правильный математический ряд, известный под названием последовательности Фибоначчи. Благодаря этому каждый отдельно взятый лист, растущий на дереве, получает максимально доступное количество тепла и света.

Пирамиды в Мексике

Hе только египетские пиpамиды постpоены в соответствии с совеpшенными пpопоpциями золотого сечения, то же самое явление обнаpужено и у мексиканских пиpамид. Возникает мысль, что как египетские, так и мексиканские пиpамиды были возведены пpиблизительно в одно вpемя людьми общего пpоисхождения.
Hа попеpечном сечении пиpамиды видна фоpма, подобная лестнице.В пеpвом яpусе 16 ступеней, во втоpом 42 ступени и в тpетьем - 68 ступеней.
Эти числа основаны на соотношении Фибоначчи следующим обpазом:
16 x 1.618 = 26
16 + 26 = 42
26 x 1.618 = 42
42 + 26 = 68

После нескольких первых чисел последовательности отношение любого ее члена к последующему приблизительно равно 0,618, а к предшествующему – 1,618. Чем больше порядковый номер члена последовательности, тем ближе отношение к числу фи, являющемуся иррациональным числом и равному 0,618034… Отношение между членами последовательности, разделенными одним числом, примерно равно 0,382, а обратное ему число равно 2,618. На рис. 3-2 приведена таблица соотношений всех чисел Фибоначчи от 1 до 144.

Ф является единственным числом, которое, будучи прибавленным к 1, дает обратное себе число: 1 + 0,618 = 1: 0,618. Это родство процедур сложения и умножения приводит к следующей последовательности уравнений:

Если мы продолжим этот процесс, мы создадим прямоугольники размером 13 на 21, 21 на 34 и так далее.

Теперь проверьте это. Если вы разделите 13 на 8, вы получите 1,625. И если вы разделите большее число на меньшее число, то эти коэффициенты становятся всё ближе и ближе к числу 1.618, известному многим людям как Золотое сечение, числу, которое очаровывало математиков, учёных и художников на протяжении многих веков.

Таблица коэффициентов Фибоначчи

По мере роста новой прогрессии числа образуют третью последовательность, составленную из чисел, прибавленных к произведению четверки и числа Фибоначчи. Это делается возможным в связи с тем. что отношение между членами последовательности, отстоящими друг от друга на две позиции, равно 4.236. где число 0,236 является обратным к 4,236 и. кроме того, разностью между 4,236 и 4. Другие множители приводят к другим последовательностям, все они основаны на коэффициентах Фибоначчи.

1. Никакие из двух последовательных чисел Фибоначчи не имеют общих делителей.

2. Если члены последовательности Фибоначчи пронумеровать как 1, 2, 3, 4, 5, 6, 7 и т. д., мы обнаружим, что, за исключением четвертого члена (число 3), номер любого числа Фибоначчи, являющегося простым числом (т. е. не имеющим иных делителей, кроме себя самого и единицы), также является простым чистом. Сходным образом, за исключением четвертого члена последовательности Фибоначчи (число 3), все со ставные номера членов последовательности (то есть те, что имеют как минимум два делителя за исключением себя самого и единицы), соответствуют составным числам Фибоначчи, что и показывает приведенная ниже таблица. Обратное не всегда оказывается верным.

3. Сумма любых десяти членов последовательности делится на одиннадцать.

4. Сумма всех чисел Фибоначчи до определенной точки последовательности плюс единица равна числу Фибоначчи, отстоящему на две позиции от последнего прибавленного числа.

5. Сумма квадратов любых последовательных членов, начинающихся с первой 1, всегда будет равна последнему (из данной выборки) числу последовательности, умноженному на следующий член.

6. Квадрат числа Фибоначчи минус квадрат второго члена последовательности в сторону уменьшения всегда будет числом Фибоначчи.

7. Квадрат любого числа Фибоначчи равен предыдущему члену последовательности, умноженному на следующее число в последовательности, плюс или минус единица. Прибавление и вычитание единицы чередуются по мере развития последовательности.

8. Сумма квадрата числа Fn и квадрата следующего числа Фибоначчи F равна числу Фибоначчи F,. Формула F - + F 2 = F„ , применима к прямоугольным треугольникам, где сумма квадратов двух более коротких сторон равна квадрату самой длинной стороны. Справа приведен пример, использующий F5, F6 и квадратный корень из Fn.

10. Одно из удивительных явлений, которое, насколько нам известно, до сих пор не упоминалось, состоит в том, что отношения между числами Фибоначчи равны числам, очень близким к тысячным долям других чисел Фибоначчи, при разности, равной тысяч ной доле еще одного числа Фибоначчи (см. рис. 3-2). Так, в направлении возрастания отношение двух идентичных чисел Фибоначчи равно 1, или 0,987 плюс 0,013: соседние числа Фибоначчи имеют отношение 1.618. или 1,597 плюс 0,021; числа Фибоначчи, расположенные с двух сторон от некоторого члена последовательности, имеют отношение 2.618, или 2.584 плюс 0,034, и так далее. В обрат ном направлении соседние числа Фибоначчи имеют отношение 0.618. или 0,610 плюс 0,008: числа Фибоначчи, расположенные с двух сторон от некоторого члена последовательности, имеют отношение 0.382, или 0.377 плюс 0,005; числа Фибоначчи между которыми расположены два члена последовательности, имеют отношение 0.236, или 0,233 плюс 0,003: числа Фибоначчи, между которыми расположены три члена последовательности, имеют отношение 0 146. или 0.144 плюс 0,002: числа Фибоначчи, между которыми расположены четыре члена последовательности, имеют отношение 0,090, или 0,089 плюс 0.001: числа Фибоначчи, между которыми расположены пять членов последовательности, имеют отношение 0.056. или 0,055 плюс 0,001; числа Фибоначчи, между которыми расположено от шести до двенадцати членов последовательности, имеют отношения, которые сами являются тысячными долями чисел Фибоначчи, начиная с 0,034. Интересно, что в этом анализе коэффициент, связывающий числа Фибоначчи, между которыми располагаются тринадцать членов последовательности, снова начинает ряд с числа 0.001, с тысячной доли того числа, где он начался! При всех подсчетах мы действительно получаем подобие или «самовоспроизведение в бесконечном ряду», раскрывающее свойства «самой прочной связи среди всех математических отношений».

И, наконец, заметим, что(V5 + 1)/2 = 1.618 и[\^5- 1)/2 = 0.618. где V5 = 2,236. 5 оказывается наиболее важным для волнового принципа числом, а его квадратный корень является математическим ключом к числу ф.

Число 1,618 (или 0,618) известно как золотое отношение, или золотое среднее. Связанная с ним пропорциональность приятна для глаза и уха. Оно проявляется и в биологии, и в музыке, и в живописи, и в архитектуре. В своей статье, вышедшей в декабре 1975 года в журнале Smithsonian Magazine, Вильям Хоффер сказал:

«...Отношение числа 0,618034 к 1 является математической основой формы игральных карт и Парфенона, подсолнуха и морской раковины, греческих ваз и спиральных галактик внешнего космоса. В основании очень многих произведений искусства и архитектуры греков лежит эта пропорция. Они называли ее «золотая середина».

Плодовитые кролики Фибоначчи выскакивают в самых неожиданных местах. Числа Фибоначчи, несомненно, являются частью мистической природной гармонии, которая приятна для ощущений, приятно выглядит и даже звучит приятно. Музыка, к примеру, основана на октаве в восемь нот. На фортепиано это представлено 8 белыми и 5 черными клавишами - в целом 13. Не случайно, что музыкальный интервал, приносящий нашему слуху самое большое наслаждение - это секста. Нота «ми» вибрирует в отношении 0.62500 к ноте «до». Это всего лишь на 0.006966 отстоит от точной золотой середины. Пропорции сексты передают приятные для слуха вибрации улитке среднего уха - органа, который тоже имеет форму логарифмической спирали.

Постоянное возникновение чисел Фибоначчи и золотой спирали в природе точно объясняет, почему отношение 0,618034 к 1 настолько приятно в произведениях искусства. Человек видит в искусстве отражение жизни, которая имеет в основании золотую середину».

Природа использует золотое отношение в своих наиболее совершенных творениях - от таких мелких, как микроизвилины мозга и молекулы ДНК (см. рис. 3 9), до таких крупных, как галактики. Оно проявляется и таких различных явлениях, как рост кристаллов, преломление светового луча в стекле, строение мозга и нервной системы, музыкальные построения, структура растений и животных. Наука предоставляет все больше свидетельств того, что у природы действительно есть главный пропорциональный принцип. Кстати, вы держите эту книгу двумя из своих пяти пальцев, причем каждый палец состоит из трех частей. Итого: пять единиц, каждая из которых делится на три - прогрессия 5-3-5-3, подобная той, что лежит в основе волнового принципа.

Симметричная и пропорциональная форма, способствует наилучшему зрительному восприятию и вызывает ощущение красоты и гармонии. Целостный образ всегда состоит из частей разного размера, находящихся в определённом соотношении друг с другом и целым. Золотое сечение - высшее проявление совершенства целого и его частей в науке, искусстве и природе.

Если на простом примере, то Золотое Сечение - это деление отрезка на две части в таком соотношении, при котором большая часть относится к меньшей, как их сумма (весь отрезок) к большей.

Если мы примем весь отрезок c за 1, то отрезок a будет равен 0,618, отрезок b - 0,382, только так будет соблюдено условие Золотого Сечения (0,618/0,382=1,618; 1/0,618=1,618). Отношение c к a равно 2,618, а с к b 1,618. Это всё те же, уже знакомые нам, коэффициенты Фибоначчи.

Разумеется есть золотой прямоугольник, золотой треугольник и даже золотой кубоид. Пропорции человеческого тела во многих соотношениях близки к Золотому Сечению.

Но самое интересное начинается, когда мы объединим полученные знания. На рисунке наглядно показана связь между последовательностью Фибоначчи и Золотым сечением. Мы начинаем с двух квадратов первого размера. Сверху добавляем квадрат второго размера. Подрисовываем рядом квадрат со стороной, равной сумме сторон двух предыдущих, третьего размера. По аналогии появляется квадрат пятого размера. И так далее пока не надоест, главное, чтобы длина стороны каждого следующего квадрата равнялась сумме длин сторон двух предыдущих. Мы видим серию прямоугольников, длины сторон, которых являются числами Фибоначчи, и, как не странно, они называются прямоугольниками Фибоначчи.

Если мы проведём плавную линий через углы наших квадратов, то получим ни что иное, как спираль Архимеда, увеличение шага которой всегда равномерно.


Каждый член золотой логарифмической последовательности явлется степенью Золотой Пропорции (z ). Часть ряда выглядит примерно так: ... z -5 ; z -4 ; z -3 ; z -2 ; z -1 ; z 0 ; z 1 ; z 2 ; z 3 ; z 4 ; z 5 ... Если мы округлим значение Золотой пропорции до трёх знаков, то получим z=1,618 , тогда ряд выглядит так: ... 0,090 0,146; 0,236; 0,382; 0,618; 1; 1,618; 2,618; 4,236; 6,854; 11,090 ... Каждый следующий член может быть получен не только умножением предыдущего на 1,618 , но и сложением двух предыдущих. Таким образом экспоненциальный рост в последовательности обеспечивается путем простого сложения двух соседних элементов. Это ряд без начала и конца, и именно на него пытается быть похожей последовательность Фибоначчи. Имея вполне определённое начало, она стремится к идеалу, никогда его не достигая. Такова жизнь.

И всё-таки, в связи со всем увиденным и прочитанным, возникают вполне закономерные вопросы:
От куда взялись эти числа? Кто этот архитектор вселенной, попытавшийся сделать её идеальной? Было ли когда-то всё так, как он хотел? И если да, то почему сбилось? Мутации? Свободный выбор? Что же будет дальше? Спираль скручивается или раскручивается?

Найдя ответ на один вопрос, получишь следующий. Разгадаешь его, получишь два новых. Разберёшься с ними, появится ещё три. Решив и их, обзаведёшься пятью нерешёнными. Потом восьмью, потом тринадцатью, 21, 34, 55...