ПОЛИМОРФИЗМ в генетике (греч, polymorphos многообразный) - термин, обозначающий проявление индивидуальной, прерывистой изменчивости живых организмов. Первоначально он широко использовался для обозначения любой прерывистой изменчивости внутри вида (напр., каст общественных насекомых, возрастных отличий в окраске, полового диморфизма и др.), однако позже такие различия стали называть полифенизмом, а термином «полиморфизм» в соответствии с определением, данным английским генетиком Фордом (E. В. Ford), обозначать наличие в одной и той же популяции двух или более хорошо различимых форм, способных появляться в потомстве одной самки и встречающихся с частотой, достаточно высокой для того, чтобы исключить поддержание самой редкой из них повторно возникающими мутациями. Понятие «полиморфный» следует также отличать от понятия «политипический», к-рое обозначает сложные таксономические категории (напр., политипический вид - вид, представленный двумя или более подвидами, и т. п.).

Поскольку дискретные признаки организма контролируются, как правило, аллельными генами или блоками тесно сцепленных генов, так наз. супергенами (см. Ген), то некоторые исследователи предлагают под генетическим П. подразумевать наличие в популяции двух или более аллелей (см.) одного локуса (см.), встречающихся достаточно часто.

П. затрагивает любые особенности фенотипа на любом уровне, в т. ч. на клеточном и молекулярном. Напр., хорошо известен П. эритроцитарных антигенов у человека (группы крови), структуры хромосом - инверсии, дупликации, добавочные хромосомы (см. Хромосомный полиморфизм).

В конце 60-х - начале 70-х гг. 20 в. благодаря разработке чувствительных методов, гл. обр. различных методов электрофореза (см.), в популяциях животных и человека обнаружен еще более широкий П. по генам, ответственным за синтез белков крови и других тканей, который присущ почти трети всех изученных генных локусов, кодирующих синтез белков как ферментной, так и неферментной природы (см. Изоферменты).

Биол, значение такой широкой наследственной изменчивости популяций и видов до конца не расшифровано, и по этому вопросу существует две точки зрения. Согласно одной из них биохим. П. поддерживается в популяциях благодаря отбору, т. е. имеет приспособительное значение, согласно другой - биохим. П. должен быть отнесен к категории селективно-нейтральной изменчивости. Тем не менее существует множество достоверных фактов, свидетельствующих об исключительном значении явления генетического П. для биологии и медицины. Постоянное присутствие в популяции с достаточно высокой частотой двух или более дискретных форм - генотипов (см.) - означает, что такой П. поддерживается за счет преимущественного отбора гетерозигот. Примером этого может служить полиморфизм гемоглобина, широко распространенный в популяциях людей азиатского и африканского происхождения и приводящий к заболеванию, известному под названием серповидно-клеточной анемии (см.). Анемия связана с гомозиготностью по гену s, который обусловливает образование аномального гемоглобина. Гомозиготы ss погибают вскоре после рождения. Однако стало известно, что высокая частота этого гена в популяциях сохраняется благодаря тому, что гетерозиготы Ss менее поражаются малярией, чем гомозиготы SS. В условиях постоянного присутствия в окружающей среде возбудителя малярии в популяциях поддерживается устойчивое соотношение всех трех генотипов - SS, Ss и ss, так наз. сбалансированный полиморфизм.

Аналогичный или похожий механизм лежит в основе поддержания П. групп крови и различных белков в популяциях человека, что наряду с другими доказательствами подтверждается также открытием корреляции (ассоциаций) между той или иной группой крови и устойчивостью к определенным заболеваниям. Напр., среди больных язвой желудка и двенадцатиперстной кишки группа крови О встречается соответственно на 10 и 17% чаще, чем среди остальной части популяции. Частота группы крови А достоверно выше у больных нек-рыми формами анемии и сахарного диабета. Недавно показана также определенная роль полиморфизма тканевых антигенов в устойчивости организма человека к нек-рым заболеваниям.

Каждый индивидуум обладает уникальным генотипом в отношении групп крови и белков, и эта уникальность отражается на его физических и физиол, особенностях, в т. ч. и на устойчивости к заболеваниям как экзогенной, так и эндогенной природы. Очевидно, что связь между полиморфным состоянием гена и его функциональной ролью не всегда носит столь ярко выраженный специфический характер, как в случае серповидноклеточной анемии, а гораздо чаще определяется некоей интегральной структурой генотипа по совокупности многих полиморфных генов, контролирующих неспецифическую биол, устойчивость организма.

Т. о., хотя не все в явлении генетического П. окончательно выяснено, его анализ позволяет изучать генетические процессы в популяциях различных видов животных и человека и решать важные вопросы, связанные с их происхождением, эволюцией и адаптацией к окружающей среде. Генетический П. позволяет также использовать группы крови и электрофоретические варианты белков в качестве генетических маркеров для решения ряда задач судебной медицины (напр., при идентификации генотипов с помощью исследования образцов крови и других биол, жидко-тей, при доказательстве монозигот-ности близнецов, при решении вопросов о спорном отцовстве и др.), для составления оптимальных схем трансплантации органов и тканей, для обнаружения связей между генотипом и устойчивостью к различным заболеваниям. Следует, однако, указать, что генетическое «содержание» вида не сводится к одной лишь изменчивости и что наряду с П. необходимо учитывать явление генетического мономорфизма, когда вид в целом представлен лишь одним, преобладающим генотипом, а частота вариантных форм не превышает вероятности повторного мутирования.

Имеются указания на то, что мономорфное состояние гена определяется его важной функциональной ролью в организме, в связи с чем многие вновь возникающие мутации соответствующих генов, как правило, отметаются отбором на ранних онтогенетических стадиях. Если же носители таких мутаций выживают, то они оказываются пораженными наследственными болезнями (см.), относящимися к категории так наз. врожденных нарушений обмена веществ.

ПОЛИМОРФИЗМ в патологии

ПОЛИМОРФИЗМ в патологии (греч. polymorphos многообразный) - многообразие структурных проявлений патологического процесса в органах, тканях и клетках.

В общей патологии П. наблюдается при компенсаторно-приспособительных процессах, возникающих на различных этапах развития болезни. Компенсаторные процессы (см.) весьма разнообразны и обычно развиваются в отдельных системах, органах и тканях организма. Напр., при регенерации костной ткани в зоне перелома костная мозоль может быть представлена как волокнистой соединительной тканью, так и костно-хрящевыми структурами. Кроме того, П. отмечается при метаплазии тканей (см. Метаплазия) и в процессе организации (см.). В частной патологии П. проявляется в изменчивости морфол, картины ряда заболеваний (туберкулеза, крупозной пневмонии и др.) под влиянием естественных и индуцированных факторов (см. Патоморфоз). В частности, течение крупозной пневмонии может начинаться со стадии красного опеченения или серого опеченения, а в нек-рых случаях она носит мигрирующий характер. Чаще понятие «полиморфизм» используют для морфол, характеристики опухолевого роста.

Различают тканевой, клеточный и ядерный П. Тканевой П., характеризующийся различным соотношением паренхимы и стромы, встречается, напр., в условиях хрон, воспаления, при к-ром вследствие дистрофии (см. Дистрофия клеток и тканей) и регенерации (см.) выявляются разнообразные клеточные элементы, большее или меньшее количество сосудов различного калибра. Тканевой П., напр, при циррозе печени, проявляется развитием неравномерных прослоек фиброзной ткани, среди к-рых располагаются скопления гепатоцитов различной величины и формы. При микроскопическом исследовании опухолей, напр, аденокарциномы, обнаруживают железистые комплексы различной величины и формы. Так, при раке предстательной железы величина железистых комплексов варьирует в широких пределах, форма их разнообразна, часто с фестончатыми очертаниями и многочисленными бухтообразными выпячиваниями. Значительным разнообразием величины и формы обладают тяжи и гнезда опухолевых клеток при плоскоклеточном раке.

Клеточный П. характеризуется изменением структуры и функции клеток, в связи с чем они могут иметь различную величину и форму. Клеточный П. может наблюдаться при регенерации в результате неодинаковой зрелости клеток, при различных дистрофиях. В злокачественных новообразованиях опухолевые клетки обычно имеют различную величину и форму (чаще всего неправильную), в цитоплазме обнаруживают разнообразные включения (жировые вакуоли, фрагменты разрушенных ядер и др.).

Для ядерного П. характерно появление ядер различной величины и формы, различных патол, форм кариокинеза. Так, в опухолевых клетках ядро может занимать почти всю цитоплазму или в части случаев бывает резко уменьшено в размерах. В связи с нарушениями митоза (см.) возникают гигантские многоядерные клетки. Ядра нек-рых клеток интенсивно окрашиваются, становятся гиперхромными. При гидропической дистрофии ядра клеток увеличены в объеме, округлой формы, с разреженной нуклеоплазмой. Иногда в ядрах имеют место признаки пикноза (см.). В условиях регенерации ядра могут приобретать неправильные очертания, в них отмечается перераспределение хроматина (см.). Часто в условиях регенерации и патологии обнаруживается П. внутриклеточных структур, таких как митохондрии (см.), эндоплазматическая сеть, лизосомы (см.).

ПОЛИМОРФИЗМ в химии

ПОЛИМОРФИЗМ в химии (греч. polymorphous многообразный) - способность одного и того же химического соединения или элемента образовывать в зависимости от внешних условий (температуры, давления и др.) различные кристаллические формы (модификации). П. объясняют способностью одних и тех же атомов или молекул образовывать различные кристаллические решетки, отличающиеся своей устойчивостью. Явление П. в химии открыто Мичерлихом (E. Mitscherlich) в 1821 г. П. наблюдается для простых веществ (так наз. аллотропия), для многих органических и неорганических соединений, а также для минералов. Примерами аллотропных простых веществ могут служить алмаз и графит, белый и фиолетовый (красный) фосфор и др. Примером П. хим. соединений могут служить кальцит и арагонит - полиморфные модификации карбоната кальция. Известны два основных вида П.: энантиотро-пия (обратимые превращения) и мо-нотропия (необратимые превращения).

Вещества, находящиеся в различных полиморфных модификациях, обладают разными физ.-хим. свойствами и разной биол, активностью; напр., рост гемофильных бактерий на синтетической среде, заменяющей кровь, происходит при наличии в среде гамма-Fe 2 O 3 , а в присутствии aльфа-Fe 2 O 3 бактерии погибают.

Библиография:

полиморфизм в генетике

Алтухов Ю. П. и Рычков Ю. Г. Генетический мономорфизм видов и его возможное биологическое значение, Журн. общ. биол., т. 33, № 3, с. 281, 1972; Бочков Н. П. Генетика человека, М., 1978; Майр Э. Популяции, виды и эволюция, пер. с англ., М., 1974; Харрис Г. Основы биохимической генетики человека, пер. с англ., М., 1973; Эрлих П. и Холм Р. Процесс эволюции, пер. с англ., М., 1966; С a v а 1 1 i - S f о г z a L. L. a. Bod- ш e г W. F. The genetics of human populations, San Francisco, 1971; Ford E. B. Polymorphism and taxonomy, в кн.: The new systematics, ed. by J. Huxley, p. 493, L., 1941.

полиморфизм в патологии

Давыдовский И. В. Общая патология человека, с. 506, М., 1969; С т р у к о в А. И. и Серов В. В. Патологическая анатомия с. 159, М., 1979.

полиморфизм в химии

Некрасов Б. В. Учебник общей химии, с. 382, М., 1981; Не-н и ц e с к у К. Общая химия, пер. с румын., с. 130, М., 1968.

Ю. П. Алтухов (полиморфизм в генетике), Г. М. Могилевский (полиморфизм в патологии),

Под генетическим полиморфизмом понимается состояние дли­тельного разнообразия генотипов, когда частота даже наиболее редко встречающихся генотипов в популяциях превышают 1%. Генетиче­ский полиморфизм поддерживается за счет мутаций и рекомбинаций генетического материала. Как показывают многочисленные исследо­вания, генетический полиморфизм широко распространен. Так, по теоретическим расчетам в потомстве от скрещивания двух особей, различающихся лишь по десяти локусам, каждый из которых пред­ставлен 4 возможными аллелями, окажется около 10 млрд. особей с различными генотипами.

Чем больше запас генетического полиморфизма в данной популя­ции, тем легче ей адаптироваться к новой среде и тем быстрее протекает эволюция. Однако, оценить количество полиморфных аллелей посредством традиционных генетических методов практически невозможно, поскольку сам факт присутствия какого-либо гена в генотипе устанавливается путем скрещивания особей, обладающих различными формами фенотипа, определяемого этим геном. Зная, какую долю в популяции составляют особи с различными фенотипами, можно выяснить, сколько аллелей участвуют в формировании данного признака.

Начиная с 60-х годов XX столетия для определения генетического полиморфизма стал широко применяться метод электрофореза белков (в том числе и ферментов) в геле. С помощью этого метода можно вызвать перемещение белков в электрическом поле в зависимости от их размера, конфигурации и суммарного заряда в разные участки ге­ля, а затем по расположению и числу проявляющихся при этом пятен проводить идентификацию исследуемого вещества. Для оценки сте­пени полиморфизма тех или иных белков в популяциях обычно ис­следуют около 20 и более локусов, а потом математическим путем определяют количество аллельных генов, соотношение гомо - и гетерозигот. Как показывают исследования, одни гены, как правило, бы­вают мономорфными, а другие - чрезвычайно полиморфными.

Различают переходный и сбалансированный полиморфизм, что зависит от селективной ценности генов и давления естественного отбора.

Переходный полиморфизм возникает в популяции, когда проис­ходит замещение аллеля, бывшего некогда обычным, другими алле­лями, придающими своим носителям более высокую приспособлен­ность (множественный аллелизм). При переходном полиморфизме наблюдается направленный сдвиг в процентном соотношении форм генотипов. Переходный полиморфизм - это главный путь эволюции, ее динамика. Примером переходного полиморфизма может быть явление индустриального механизма. Так, в результате загрязнения атмосферы в промышленных городах Англии за последние сто лет у более чем 80 видов бабочек, появились темные формы. Например, если до 1848 г. березовые пяденицы имели бледно-кремовую окраску с черными точками и отдельными темными, пятнами, то в 1848 г. в Манчестере появились первые темнотелые формы, а к 1895 г. уже 98% пядениц стало темнотелыми. Это произошло вследствие закопчения стволов деревьев и избирательного выедания светлотелых пя­дениц дроздами и малиновками. Позже было установлено, что темная окраска тела у пядениц осуществляется мутантным меланистическим аллелем.

Сбалансированный полиморфизм характеризуется отсутствием сдвига числовых соотношений различных форм, генотипов в популя­циях, находящихся в стабильных условиях среды. При этом процент­ное соотношение форм либо из поколения в поколение остается од­ним и тем же, либо колеблется вокруг какой-то постоянной величины. В противоположность переходному, сбалансированный полиморфизм - это статика эволюции. И.И. Шмальгаузен (1940) назвал его равновесным гетероморфизмом.

Примером сбалансированного полиморфизма служит наличие двух полов у моногамных животных, поскольку они обладают равно­ценными селективными преимуществами. Их соотношение в популя­циях составляет 1:1. При полигамии селективное значение у предста­вителей разных полов может отличаться и тогда представители одно­го пола либо уничтожаются, либо в большей степени, чем особи дру­гого пола, отстраняются от размножения. Другой пример - группы крови человека по АВО-системе. Здесь частота разных генотипов в различных популяциях может варьировать, однако, в каждой конкретной популяции она остается постоянной из поколения в поколение. Это объясняется тем, что ни один генотип не обладает селективным преимуществом перед другими. Так, хотя у мужчин с первой группы крови, как показывает статистка, ожидаемая продолжительность жизни, выше, чем у мужчин с другими группами крови, у них чаше, чем у других, развивается язва двенадцатиперстной кишки, которая в случае прободения может привести к смерти.

Генетическое равновесие в популяциях может нарушаться давлением спонтанных мутаций, возникающих с определенной частотой в каждом поколении. Сохранение или же элиминация этих мутаций зависит от того, благоприятствует ли им естественный отбор или про­тиводействует. Прослеживая судьбу мутаций в той или иной популя­ции, можно говорить о ее адаптивной ценности. Последняя равна 1, если отбор не исключает ее и не противодействует распространению. В большинстве случаев показатель адаптивной ценности мутантных генов оказывается меньше 1, а если мутанты совершенно не способны размножаться, то он равен нулю. Такого рода мутации отметаются естественным отбором. Однако, один и тот же ген может неоднократ­но мутировать, что компенсирует его элиминацию, производимую отбором. В таких случаях может быть достигнуто равновесие, когда появление и исчезновение мутировавших генов становится сбаланси­рованным. Примером может служить серповидноклеточная анемия, когда доминантный мутантный ген в гомозиготе приводит к ранней гибели организма, однако, гетерозиготы по этому гену оказываются устойчивыми к заболеванию малярией. В районах, где распростране­на малярия, имеет место сбалансированный полиморфизм по гену серповидноклеточной анемии, поскольку наряду с элиминацией гомо­зигот, действует контротбор в пользу гетерозигот. В результате разновекторного отбора в генофонде популяций поддерживаются в каждом поколении генотипы, обеспечивающие приспособленность организмов с учетом местных условий. Помимо гена в серповидноклеточности, в популяциях человека есть ряд других полиморфных генов, которые как предполагают, вызывают явление гетерозиса

Рецессивные мутации (в том числе и вредные), не проявляющиеся фенотипически у гетерозигот, могут накапливаться в популяциях до более высокого уровня, чем вредные доминантные мутации.

Генетический полиморфизм является обязательным условием для непрерывной эволюции. Благодаря ему в изменяющейся среде всегда могут быть генетические варианты предаптированные к этим усло­виям. В популяции диплоидных раздельнополых организмов может храниться в гетерозиготном состоянии, не проявляясь фенотипически, огромный запас генетической изменчивости. Уровень последней, оче­видно, может быть еще более высоким у полиплоидных организмов, у которых за фенотипически проявляющимся нормальным аллелем может скрываться не один, а несколько мутантных аллелей.

Генетическое разнообразие или генетический полиморфизм - разнообразие популяций по признакам или маркерам генетической природы. Один из видов биоразнообразия. Генетическое разнообразие представляет собой важный компонент генетической характеристики популяции, группы популяций или вида. Генетическое разнообразие, в зависимости от выбора рассматриваемых генетических маркеров, характеризуется несколькими измеряемыми параметрами:

1. Средняя гетерозиготность.

2. Число аллелей на локус.

3. Генетическое расстояние (для оценки межпопуляционного генетического разнообразия).

Полиморфизм бывает:

Хромосомный;

Переходный;

Сбалансированный.

Генетический полиморфизм наблюдается, когда ген представлен более чем одним аллелем. Пример – системы групп крови.

Хромосомный полиморфизм – между особями имеются различия по отдельным хромосомам. Это результат хромосомных аббераций. Есть различия в гетерохроматиновых участках. Если изменения не имеют патологических последствий – хромосомный полиморфизм, характер мутаций – нейтрален.

Переходный полиморфизм – замещение в популяции одного старого аллеля новым, который более полезен в данных условиях. У человека есть ген гаптоглобина - Нр1f, Hp 2fs. Старый аллель - Нр1f, новый - Нр2fs. Нр образует комплекс с гемоглобином и обусловливает слипание эритроцитов в острую фазу заболеваний.

Сбалансированный полиморфизм – возникает, когда ни один из генотипов преимущества не получает, а естественный отбор благоприятствует разнообразию.

Все формы полиморфизма очень широко распространены в природе в популяциях всех организмов. В популяциях организмов, размножающихся половым путем, всегда есть полиморфизм.

Беспозвоночные животные полиморфнее, чем позвоночные. Чем полиморфнее популяция, тем более она эволюционно пластична. В популяции большие запасы аллелей не обладают максимальной приспособленностью в данном месте в данное время. Эти запасы встречаются в небольшом количестве и гетерозиготном состоянии. После изменений условий существования они могут стать полезными и начать накапливаться – переходный полиморфизм. Большие генетические запасы помогают популяции реагировать на окружающую среду. Одним из механизмов, поддерживающих разнообразие – превосходство гетерозигот. При полном доминировании – нет проявления, при неполном доминировании наблюдается гетерозис. В популяции отбор поддерживает генетически неустойчивую гетерозиготную структуру, и такая популяция содержит 3 типа особей (АА, Аа, аа). В результате действия естественного отбора происходит генетическая гибель, снижающая репродуктивный потенциал популяции. Численность популяции падает. Поэтому генетическая гибель – бремя для популяции. Ее также называют генетическим грузом.


Генетический груз – часть наследственной изменчивости популяции, определяющая появление менее приспособленных особей, подвергающихся избирательной гибели в результате естественного отбора.

Существует 3 типа генетического груза.

1. Мутационный.

2. Сегрегационный.

3. Субституционный.

Каждый тип генетического груза коррелирует с определенным типом естественного отбора.

Мутационный генетический груз - побочное действие мутационного процесса. Стабилизирующий естественный отбор удаляет вредные мутации из популяции.

Сегрегационный генетический груз – характерен для популяций, использующих преимущество гетерозигот. Удаляются хуже приспособленные гомозиготные особи. Если обе гомозиготы летальны – половина потомков погибает.

Субституционный генетический груз – происходит замена старого аллеля новым. Соответствует движущей форме естественного отбора и переходному полиморфизму.

генетический полиморфизм создает все условия для протекающей эволюции. При появлении нового фактора в среде популяция способна адаптироваться к новым условиям. Например, устойчивость насекомых к различным видам инсектицидов.

Мутации -- основной источник генетического полиморфизма, т.е. наличия в популяции нескольких аллелей одного локуса. Полиморфная природа ДНК позволила разработать системы методов генетического и психогенетического анализа, которые позволяют определить и картировать целый ряд генов, вовлеченных в формирование индивидуальных различий по исследуемым поведенческим признакам. Так например, использование полиморфных маркёров ДНК позволило картировать ген на коротком плече хромосомы 4, ответственный за развитие хореи Гентингтона.

В качестве примера рассмотрим два типа ДНК маркёров: полиморфизм длины рестрикционных фрагментов (Л/Х/"-полиморфизм) и полиморфизм повторяющихся комбинаций нуклеотидов (STR-no-лиморфизм). Для изучения полиморфности (этот процесс также называется тайпингом ДНК) ДНК выделяется из клеток крови или любых других клеток организма, содержащих ДНК (например, берется соскоб с внутренней стороны щеки). При использовании технологии RFLP, ДНК, под воздействием ферментов, распознающих специфические последовательности нуклеотидов в ДНК и избирательно разрушающих ее цепь в определенных местах, разрезается на куски-фрагменты. Такие ферменты впервые были найдены в бактериях, которые производят их с целью защиты от вирусной инфекции.

Существуют сотни таких «рестрицирующих» ферментов, каждый из которых разрезает ДНК в определенном месте, распознавая определенную последовательность оснований; этот процесс называется рестрикцией. Например, один из часто используемых ферментов, EcoRI, распознает последовательность GAA ТТС и разрезает молекулу ДНК между основаниями Си А. Последовательность GAATTC может быть представлена в геноме несколько тысяч раз. Если в определенном локусе эта последовательность различна у разных людей, то у тех из них, которые являются носителями измененной последовательности, фермент в данном локусе ее не разрежет. В результате ДНК геномов, несущих нестандартные последовательности, разрезана в данном локусе не будет и, следовательно, образует более длинный фрагмент. Таким способом распознается разница в структуре ДНК. В результате разреза «рестрицирующими» ферментами могут получиться два типа фрагментов, соответствующих данному локусу, -- длинный и короткий. Их также называют аллелями. По аналогии с «обычными» генами полиморфизмы могут быть гомозиготными по короткому фрагменту, гомозиготными по длинному фрагменту или гетерозиготными по длинному и короткому фрагментам.

Несмотря на то что существуют сотни «рестрицирующих» ферентов, распознающих различные последовательности ДНК, они, как выяснилось, способны отыскать только примерно 20% полиморфны участков ДНК. Были разработаны несколько других типов ДНК-маркёров, распознающих полиморфизмы других типов. Широко используется, например, полиморфизм повторяющихся комбинаций нуклеотидов (/5ТД-полиморфизм). Как уже упоминалось, по неизвестной пока причине в ДНК присутствуют повторяющиеся последовательности, состоящие из 2, 3 или более нуклеотидов. Количество таких повторов варьирует от генотипа к генотипу, и в этом смысле они также обнаруживают полиморфизм. Например, один генотип может быть носителем двух аллелей, содержащих по 5 повторов, другой -- носителем двух аллелей, содержащих по 7 повторов. Предполагается, что геном человека содержит примерно 50 000 локусов, включающих подобные повторяющиеся последовательности. Хромосомные координаты многих локусов, обнаруживающих ^ГЛ-полиморфизм, установлены и теперь используются для картирования структурных генов, служа координатами на хромосомных картах.

Таким образом, генетический полиморфизм, связанный с присутствием так называемых нейтральных (не изменяющих синтезируемый белок) мутаций, плодотворно используется в молекулярно-генетических, в том числе психогенетических, исследованиях, поскольку генетическую изменчивость, выявленную молекулярными методами, можно сопоставлять с изменчивостью фенотипов. Пока этот перспективный путь используется в подавляющем большинстве случаев для исследования разных форм патологии, дающих четко очерченные фенотипы. Однако есть все основания надеяться, что он будет включен и в изучение изменчивости нормальных психических функций. ...

Одним из наиболее замечательных биологических открытий XX столетия стало определение структуры ДНК. Расшифровка генетического кода, открытие механизмов транскрипции, трансляции и некоторых Других процессов на уровне ДНК являются фундаментом в строящемся здании психогенетики -- науки, одна из задач которой состоит в раскрытии секретов соотношения генов и психики. Современные представления о структуре и функциях ДНК коренным образом изменили наши представления о структуре и функционировании генов. Сегодня гены определяются не как абстрактные «факторы наследственности», а как функциональные отрезки ДНК, контролирующие синтез белка и Регулирующие активность других генов. Одним из основных источников изменчивости являются генные мутации. Своими успехами современная молекулярная генетика обязана открытию и использованию закономерностей мутирования ДНК Целью обнаружения и картирования генетических маркёров. Именно они позволят психогенетике перейти от популяционных характеристик к индивидуальным.

Полиморфизм человеческих популяций. Генетический груз .

    Классификация полиморфизма.

    Генетический полиморфизм популяций человека.

    Генетический груз.

    Генетические аспекты предрасположенности к заболеваниям.

Естественный отбор может:

Стабилизировать вид;

Приводить к новообразованию видов;

Способствовать разнообразию.

Полиморфизм – существование в единой панмиксной популяции двух и более резко различающихся фенотипов. Они могут быть нормальными или аномальными. Полиморфизм – явление внутрипопуляционное.

Полиморфизм бывает:

Хромосомный;

Переходный;

Сбалансированный.

Генетический полиморфизм наблюдается, когда ген представлен более чем одним аллелем. Пример – системы групп крови.

Хромосомный полиморфизм – между особями имеются различия по отдельным хромосомам. Это результат хромосомных аббераций. Есть различия в гетерохроматиновых участках. Если изменения не имеют патологических последствий – хромосомный полиморфизм, характер мутаций – нейтрален.

Переходный полиморфизм – замещение в популяции одного старого аллеля новым, который более полезен в данных условиях. У человека есть ген гаптоглобина - Нр1f, Hp 2fs. Старый аллель - Нр1f, новый - Нр2fs. Нр образует комплекс с гемоглобином и обусловливает слипание эритроцитов в острую фазу заболеваний.

Сбалансированный полиморфизм – возникает, когда ни один из генотипов преимущества не получает, а естественный отбор благоприятствует разнообразию.

Все формы полиморфизма очень широко распространены в природе в популяциях всех организмов. В популяциях организмов, размножающихся половым путем, всегда есть полиморфизм.

Корень «морфизм» предполагает рассмотрение строения.

Сейчас под термином «полиморфизм» понимают любой признак, который детерминирован генетически и не являющийся следствием фенокопии. Очень часто имеются 2 альтернативных признака, тогда говорят о диморфизме. Например, половой диморфизм.

До середины 60-х годов ХХ века (точнее 1966) для изучения полиморфизма использовали мутации с морфологическим признаком. Они случаются с небольшой частотой, приводят к серьезным изменениям, а потому, очень заметны.

Тимофеев – Рисовский « о цветочных морфах берлинской популяции божьей коровки…». 8 типов окраски. 3 более часто встречаются (черные пятна на красном фоне) – красные морфы, если наоборот – черные морфы. Определил, что красные – доминантные, а черные – рецессивные. Красных больше зимой, черных – летом. Наличие полиморфизма в популяции носит приспособительный характер.

Изучают окраску садовой улитки в Европе.

В 1960г Хабби и Левонтин предложили использовать метод электрофореза для определения морф белков человека и животных. Происходит распределение белков по слоям благодаря заряду. Метод очень точен. Пример – изоферменты. У организмов одного и того же вида есть несколько форм ферментов, катализирующих одну химическую реакцию, но различающихся по строению. Активность их также варьирует. Отличны и их физико-химические свойства.16% локусов структурных генов – полиморфны. У глюкозы-6-фосфатазы 30 форм. Часто есть сцепление с полом. В клинике давно различают лактатдегидрогеназы (ЛДГ), которых существует 5 форм. Этот фермент осуществляет превращение глюкозы в пируват, концентрация того или иного изофермента в разных органах различает, на чем основана лабораторная диагностика заболеваний.

Беспозвоночные животные полиморфнее, чем позвоночные. Чем полиморфнее популяция, тем более она эволюционно пластична. В популяции большие запасы аллелей не обладают максимальной приспособленностью в данном месте в данное время. Эти запасы встречаются в небольшом количестве и гетерозиготном состоянии. После изменений условий существования они могут стать полезными и начать накапливаться – переходный полиморфизм. Большие генетические запасы помогают популяции реагировать на окружающую среду. Одним из механизмов, поддерживающих разнообразие – превосходство гетерозигот. При полном доминировании – нет проявления, при неполном доминировании наблюдается гетерозис. В популяции отбор поддерживает генетически неустойчивую гетерозиготную структуру, и такая популяция содержит 3 типа особей (АА, Аа, аа). В результате действия естественного отбора происходит генетическая гибель, снижающая репродуктивный потенциал популяции. Численность популяции падает. Поэтому генетическая гибель – бремя для популяции. Ее также называют генетическим грузом.

Генетический груз – часть наследственной изменчивости популяции, определяющая появление менее приспособленных особей, подвергающихся избирательной гибели в результате естественного отбора.

Существует 3 типа генетического груза.

    Мутационный.

    Сегрегационный.

    Субституционный.

Каждый тип генетического груза коррелирует с определенным типом естественного отбора.

Мутационный генетический груз - побочное действие мутационного процесса. Стабилизирующий естественный отбор удаляет вредные мутации из популяции.

Сегрегационный генетический груз – характерен для популяций, использующих преимущество гетерозигот. Удаляются хуже приспособленные гомозиготные особи. Если обе гомозиготы летальны – половина потомков погибает.

Субституционный генетический груз – происходит замена старого аллеля новым. Соответствует движущей форме естественного отбора и переходному полиморфизму.

Генетический полиморфизм создает все условия для протекающей эволюции. При появлении нового фактора в среде популяция способна адаптироваться к новым условиям. Например, устойчивость насекомых к различным видам инсектицидов.

Впервые генетический груз в популяции человека был определен в 1956г в Северном полушарии и составил 4%. Т.е. 4% детей рождались с наследственной патологией. За последующие годы было введено более миллиона соединений в биосферу (более 6000 ежегодно). Ежедневно – 63000 химических соединений. Растет влияние источников радиоактивного излучения. Структура ДНК нарушается.

3% детей в США страдают от врожденной умственной отсталости (даже не обучаются в средней школе).

В настоящее время число врожденных отклонений увеличилось в 1,5 – 2 раза (10%), а медицинские генетики говорят о цифре – 12-15%.

Вывод: беречь окружающую среду.

Полиморфизм по группам крови.

Антигены групп крови приобретают все большее значение в медицине. В некоторых случаях при переливании крови возникает агглютинация – результат взаимодействия антигена донора и антител реципиента.

В системе АВО 4 группы крови. Каждый человек относится только к одной группе.

3 аллеля -А, В, О.

JªJª, JªJ° - А

JªJв, Jв J° - В

Все популяции людей полиморфны по группам крови, но у каждой популяции частоты встречаемости будут разными. В Швеции часта О группа. Среди индейцев полностью отсутствует В группа. Параллельный полиморфизм по группам крови по системе АВО обнаружен и человекообразных обезьян. Вывод: полиморфизм возник раньше возникновения человеческого вида, а значит, уже предок человека имел разные группы крови.

Есть связь между группами крови заболеваниями.

О группа. Ревматизм редок, но язва желудка и 12-перстной кишки, встречается в популяциях чаще, если они находились долгое время в изоляции. Например – аборигены, индейцы, коренное население Австралии. У них имел место естественный отбор, причина его – инфекционные заболевания – холера, туберкулез, сифилис.

Алкоголизм – важный фенотипический признак. Бывает острый и хронический. Чаще проявляется у мужчин. Долгое время считалось, что алкоголизм развивается в условиях среды, вклад наследственности не учитывался. Однако оказалось, генотип важен.

Например, в случае взятия ребенка из детского дома в семью, получены следующие результаты:

Истинный и приемный родители алкоголики – 46% детей алкоголики, а не алкоголики – 8%.

Истинный родитель алкоголик, приемный нет – 50% алкоголики.

Истинный – не алкоголик, приемный алкоголик – 14%.

У человека существуют 2 изофермента, расщепляющие этиловый спирт – алкогольдегидрогеназы. Есть АДН1 и АДН2. Чем быстрее идет расщепление спирта, тем хуже человек переносит алкоголь, т.к. в результате реакции образуется альдегид, обладающий токсическими свойствами. АДГ1 менее активна по сравнению с АДГ2, поэтому люди с АДГ2 не переносят алкоголь.

Однако есть другой фермент, который осуществляет расщепление альдегида и от его активности также зависит переносимость человеком алкоголя.

Генетический полиморфизм широко распространен и лежит в основе наследственной предрасположенности к заболеваниям. Однако болезни наследственных предрасположений проявляются лишь при взаимодействии генов и среды. Условия среды – недостаток или избыток питательных веществ, наличие психогенных факторов, токсических веществ и др. Клиническое течение болезней может быть разнообразно. Чем больше воздействие факторов среды, тем больше лиц больных с предрасположенностью к данному заболеванию. Болезни протекают тяжелее (гипертония, ревматизм, сахарный диабет и другие),

Есть моногенные и полигенные болезни.

Моногенные болезни наследственного предрасположения – наследственные заболевания, проявляющиеся из-за мутации одного гена или проявляющиеся при действии определенного фактора среды (аутосомно-рецессивные или сцепленные с Х-хромосомой).

Проявляются при воздействии факторов:

Физических;

Химических;

Пищевых;

Загрязнения среды.

Парамиотомия – в сырую погоду происходят тонические спазмы мышц при холоде, под влиянием тепла – проходят. Болезнь связана с термочувствительным белком. Реакция проявляется в младенчестве и не изменяется на протяжении жизни человека.

Пигментная ксеродерма - веснушчатая кожа особого типа. Проявляется в 4-6 лет. Дети не переносят УФ-свет возникают злокачественные опухоли, такие дети умирают от метастаз еще до 15 лет. Не переносят также и гамма-лучей.

Синдром Блюма. Пигментная «бабочка» на лице, маленький рост, удлиненная голова. Евреи, поляки, беларусы, австрийцы. Погибают до 18 лет. Не переносят УФ-облучения, гамма-лучей.

Альфа-1 антитрипсин при загрязнении воздуха, табачном дыме проявляется острой закупоркой бронхов или циррозом печени.

У европеоидов люди, не переносящие молоко, составляют 10-20%, в Африке – 70-80%.

Влияние лекарственных средств: сульфаниламидные препараты провоцируют заболевания крови.

Есть полигенные болезни наследственного происхождения – такие болезни, которые возникают при действии многих факторов (мультифакториальные) и в результате взаимодействия многих генов. Установить диагноз в таком случае очень сложно, т.к. действует много факторов, и появляется новое качество при взаимодействии факторов.

Широкий полиморфизм помогает популяции приспосабливаться к условиям среды. У здоровых людей нет противоречия между средой и генотипом, если возникает это противоречие - проявляются болезни наследственного предрасположения. Любые классификации болезней включают группу подобных заболеваний.