Классификация вулканов и извержений

Слово «вулкан» происходит от названия острова Вулкане (по имени древнеримского бога огня) в Средиземном море, образовавшегося из застывшей магмы. Наука, изучающая вулканы, носит название «вулканология».

Вулканы - это геологические образования над трещинами в земной коре, извергающие на поверхность лаву, вулканические газы, водяные пары, пепел, рыхлые породы, камни (так называемые вулканические бомбы) и пирокластические потоки. Лава составляет сравнительно небольшую часть общих выбросов. Большая часть вулканов представляет собой гору, внутри которой находится разлом поверхности. Как известно, внешнее ядро Земли состоит из жидкой массы чрезвычайно высоких температур - расплавленных базальтов и металлов.

Среди вулканологов существует особая классификация вулканов: по форме, степени активности, местонахождению и т. д. В зависимости от степени вулканической активности вулканы подразделяют на действующие, спящие и потухшие. Действующим принято считать вулкан, извергавшийся в исторический период времени или в эпоху голоцена антропогенового периода кайнозойской эры. Понятие активный достаточно неточное, так как вулканы, имеющие фумаролы (шипящие трещины, извергающие газ), некоторые ученые относят к активным, а некоторые - к потухшим. Спящими считаются недействующие вулканы, на которых возможны извержения, а потухшими - на которых они маловероятны.

Период активности вулкана может продолжаться от нескольких месяцев до нескольких миллионов лет. Многие вулканы проявляли вулканическую активность несколько десятков тысяч лет назад, но в настоящее время не считаются действующими. Общее количество действующих на Земле вулканов - 1343, причем многие из них подводные, а их активность приводит к образованию островов из застывшей лавы. Так, в 1963 г. в результате извержения подводного вулкана у юга Исландии возник остров Суртсей. В феврале 1971 г. в Тихом океане около острова Новые Гебриды произошло извержение подводного вулкана Каруа. Во время взрыва облако из дыма и пепла поднималось на высоту 1 км. По нескольку раз в минуту из воды вылетали крупные обломки горных пород. Примерно через сутки после начала извержения над поверхностью океана появился остров из пепла, достигавший высоты 1 м над приливным уровнем, длиной почти 200 м и шириной около 70 м. Поверхность этого вновь образованного острова была усеяна скальными обломками. Подводный вулкан Каруа за последние 150 лет извергался в третий раз и третий раз образовывал остров. Но пепел быстро размывается водой, и поэтому остров существует не более полугода.

Обычное место расположения вулканов - это разлом или соединение литосферных плит, т. к. здесь идет постоянное движение горячих пород, которые периодически выбрасываются на поверхность. Основные районы вулканической активности следующие: Южная и Центральная Америка, Ява, Меланезия, Японские и Курильские острова, Камчатка, Северо-Западная часть США, Аляска, Гавайские и Алеутские острова, Исландия, Атлантический океан. Больше всего действующих вулканов находится в Индонезии, где 77 из 200 огнедышащих гор извергались в исторически обозримые времена. Сам вулкан, а вернее, гора, в виде которой практически все его представляют, образуется из-за наслоений магмы и лавы, которые, охлаждаясь на воздухе, застывают.

Вулканическая активность - это наглядное проявление продолжающихся тектонических изменений нашей планеты. Теория «дрейфа континентов» позволяет предположить, что земная кора состоит из отдельных блоков - литосферных плит, которые медленно движутся в разных направлениях. Между земной корой и мантией находится достаточно тонкая (до 10 км) прослойка, называемая астеносферой. В ней породы находятся в частично расплавленном состоянии, поэтому астеносфера служит «смазкой», по которой движутся литосферные плиты. При движении плит происходит их столкновение (субдукция) и разрастание (спрединг). В результате движения плит в зонах субдукции и спрединга возникают землетрясения и повышается вулканическая активность.

Вулканы образуются над отверстиями и трещинами в земной коре и часто встречаются в местах столкновения двух тектонических плит как на суше, так и в море. Во время извержения магма подталкивается к земной поверхности в результате вдвигания тектонической плиты в так называемую магматическую камеру. Повышение давления выталкивает магму на поверхность.

По происхождению вулканы подразделяются на линейные и центральные. Линейные вулканы, или вулканы трещинного типа, обладают протяженными подводящими каналами, связанными с глубоким расколом коры. Как правило, из таких трещин изливается базальтовая жидкая магма, которая, растекаясь в стороны, образует крупные лавовые покровы. Вдоль трещин возникают пологие валы разбрызгивания, широкие плоские конусы, лавовые поля. Если магма имеет более кислый состав, образуются линейные экструзивные валы и массивы. Когда происходят взрывные извержения, то могут возникать эксплозивные рвы протяженностью в десятки километров.

Формы вулканов центрального типа зависят от состава и вязкости магмы. Горячие и легкоподвижные базальтовые магмы создают обширные и плоские щитовые вулканы (например, Мауна-Лоа, Гавайские острова). Наиболее известный тип вулканов - конусный. При этом жидкая обжигающая магма вытекает из жерла и, застывая, формирует коническую форму с кратером на вершине. При следующем извержении новый слой пепла и лавы ложится поверх старого, и вулкан растет в высоту, напоминая дымящуюся гору. Если вулкан периодически извергает лаву или пирокластический материал, возникает конусовидная слоистая постройка, или стратовулкан. Склоны такого вулкана обычно покрыты глубокими радиальными оврагами - барранкосами. Вулканы центрального типа могут быть чисто лавовыми либо образованными только вулканическими продуктами - вулканическими шлаками, туфами и подобными образованиями, либо могут быть смешанными - стратовулканами.

Различают моногенные и полигенные вулканы. Первые возникли в результате однократного извержения, вторые - после многократных извержений. Вязкая, кислая по составу, низкотемпературная магма, выдавливаясь из жерла, образует экструзивные купола (игла Мон-Пеле, 1902 г.).

Отрицательные формы рельефа, связанные с вулканами центрального типа, представлены кальдерами - крупными провалами округлой формы, диаметром в несколько километров. Кроме кальдер существуют и крупные отрицательные формы рельефа, связанные с прогибанием под воздействием веса извергнувшегося вулканического материала и дефицитом давления на глубине, возникшим при разгрузке магматического очага. Такие структуры называются вулканотектоническими впадинами, депрессиями. Вулканотектонические впадины распространены очень широко и часто сопровождают образование мощных толщ игнимбритов - вулканических пород кислого состава, имеющих различный генезис. Они бывают лавовыми или образованными спекшимися или сваренными туфами. Для них характерны линзовидные обособления вулканического стекла, пемзы, лавы, называемых фьямме, и туфовая или туфовидная структура основной массы. Как правило, крупные объемы игнимбритов связаны с неглубоко залегающими магматическими очагами, сформировавшимися за счет плавления и замещения вмещающих пород.

Извержения вулканов относятся к геологическим чрезвычайным ситуациям, которые могут привести к стихийным бедствиям. Еще совсем недавно «пробуждение огненного дракона» в недрах планеты казалось людям проявлением могущества сверхъестественных сил и гнева богов. Процесс извержения может длиться от нескольких часов до многих лет. Среди различных классификаций выделяются общие типы:

Гавайский тип - выбросы жидкой базальтовой лавы, часто образуются лавовые озера. Лавовые потоки небольшой мощности растекаются на десятки километров;

Стромболианский тип - извержение более вязкой основной лавы, которая выбрасывается разными по силе взрывами из жерла, образуя сравнительно короткие и более мощные лавовые потоки;

Плинианский тип - мощные, нередко внезапные взрывы, сопровождающиеся выбросами огромного количества тефры, образующей пемзовые и пепловые потоки. Плинианские извержения опасны, так как происходят внезапно, часто без предварительных предвещающих событий;

Пелейский тип - характеризуется образованием грандиозных раскаленных лавин или палящих туч, а также ростом экструзивных куполов чрезвычайно вязкой лавы;

Газовый (фреатический) тип - выбросы в воздух обломков твердых, древних пород, обусловлен либо магматическими газами, либо связан с перегретыми грунтовыми водами;

Подледный тип - извержения, происходящие подо льдом или ледником, могут вызвать опасные наводнения, лахары и шаровую лаву;

Гидроэксплозивный тип - извержения, происходящие в мелководных условиях океанов и морей, отличаются образованием большого количества пара, возникающего при контакте раскаленной магмы и морской воды;

Извержения пепловых потоков, широко распространенные в недалеком геологическом прошлом, но не наблюдавшиеся человеком. В какой-то мере данные извержения должны напоминать палящие тучи или раскаленные лавины.

«Гора, извергающая адский пламень, несущая смерть и опустошение. Вулкан-убийца, вулкан-разрушитель…» - именно так принято называть проснувшиеся вулканы. Однако, вулканологи считают, что «огненные драконы» больше создают, нежели разрушают. Вулкан, по крайней мере, в момент своего зарождения, не гора, а, скорее, дыра. Отверстие в земной коре, через которое вырывается раскаленная магма. Застывая, она вместе с другими продуктами извержения - пеплом, обломками горных пород - образует конусообразные горы. Таким образом, вулканы строят сами себя, а также играют роль поставщика материалов, из которых создавалась и продолжает создаваться земная кора. Согласно подсчетам, общее количество действующих вулканов на Земле извергает ежегодно от 3 до 6 млрд, тонн вещества - приблизительно тысячу пирамид Хеопса. Во время извержений происходит обогащение почвы различными химическими элементами: калием, натрием, магнием, железом, алюминием. Она также обогащается и укрепляется упавшими на нее пеплом и песком. Конечно, нужны сотни и тысячи лет, чтобы все эти вещества под действием дождей, ветров, микроорганизмов были усвоены почвой, но результат получается замечательный.

Одной из нерешенных проблем проявления вулканической активности является определение источника тепла, необходимого для локального плавления базальтового слоя или мантии. Такое плавление должно быть узколокализованным, поскольку прохождение сейсмических волн показывает, что кора и верхняя мантия обычно находятся в твердом состоянии. Более того, тепловой энергии должно быть достаточно для плавления огромных объемов твердого материала. Например, в США в бассейне реки Колумбия (штаты Вашингтон и Орегон) объем базальтов более 820 тыс. куб. км; такие же крупные толщи базальтов встречаются в Аргентине (Патагония), Индии (плато Декан) и ЮАР (возвышенность Большое Кару). В настоящее время существуют три гипотезы. Одни геологи считают, что плавление обусловлено локальными высокими концентрациями радиоактивных элементов, но такие концентрации в природе кажутся маловероятными. Другие предполагают, что тектонические нарушения в форме сдвигов и разломов сопровождаются выделением тепловой энергии. Существует еще одна точка зрения, согласно которой верхняя мантия в условиях высоких давлений находится в твердом состоянии, а когда вследствие трещинообразования давление падает, она плавится, и по трещинам происходит излияние жидкой лавы.

После извержений, когда активность вулкана либо прекращается навсегда, либо он «дремлет» в течение тысяч лет, на самом вулкане и его окрестностях сохраняются процессы, связанные с остыванием магматического очага и называемые поствулканическими. К ним относят фумаролы, термы и гейзеры. В фумаролах - местах выхода горячих вулканических газов - вулкана Катиаи на Аляске (США) в 1912 г. была зарегистрирована рекордно высокая температура 6450 °C.

Ученые всего мира пристально следят за вулканами, отмечая даже мельчайшие проявления активности «огненного дракона». Это необходимо для того, чтобы своевременно подготовиться к извержению, исключив всевозможные неожиданности, приводящие к гибели людей или другим чрезвычайным происшествиям. Однако во время периода «спокойствия» вулкана его можно вполне свободно исследовать. Внутрь кратера часто спускаются скалолазы и исследователи, чтобы подробнее изучить это явление.

Наибольшую пользу от активности вулканов, расположенных на территории одной страны, сумели извлечь специалисты Исландии. Тепло огнедышащих гор используется здесь для обогрева оранжерей и даже жилых помещений. Вулканическому пеплу также нашли достойное применение - он является ценным удобрением для повышения урожая овощей и южных плодов.

Из книги Профессиональная преступность автора Гуров Александр Иванович

Классификация преступников После выхода в свет работ Ч. Ломброзо, явившихся по существу началом изучения личности преступника, в ряде стран стали проводиться исследования психологических свойств правонарушителя, в которых ученые пытались найти стержневую причину

Из книги Идеи на миллион, если повезет - на два автора Бочарский Константин

Классификация грабителей Среди преступников, специализирующихся на открытом похищении имущества (разбой, грабеж), выделились три основные категории: 1) совершающие захват денежных средств на объектах финансовой системы; 2) похищающие имущество граждан в их жилищах; 3)

Из книги Основы метасатанизма. Часть I. Сорок правил метасатаниста автора Морген Фриц Моисеевич

Этап 1. Классификация проблем Задача этапа - понять: а какие вообще бывают проблемы?Во-первых, можно отталкиваться от сложности проблемы. Например, простое решение - натянул веревку на балконе; чуть-чуть сложнее - подключил стиральную машину; сложное - сделал теплый пол на

Из книги Геннадий Шичко и его метод автора Дроздов Иван

Классификация людей: от бомжа до президента (http://fritzmorgen.livejournal.com/29337.html)Вчера я, наконец, собрался с духом и привёл в (не)человеческий вид Метасатанизм.RU. Манипуляции с сайтом заняли у меня меньше времени, чем я ожидал, и у меня остался нерастраченный запас энергии.Эту

Из книги Основы научного антисемитизма автора Баландин Сергей

Из книги Разрушители мозга (О российской лженауке). автора Арин Олег

Классификация гоев Выше мы рассматривали еврейство как народ, как нацию, как религиозную конфессию и т. д., гойство же нельзя рассматривать ни в одной из этих категорий, ибо нет у гоев ни особой «гойской культуры», ни какой бы то ни было общей «гойской религии», а потому,

Из книги Библия медпреда. Управление территорией автора Волченков Александр Евгеньевич

Классификация научных работников в России А теперь взглянем на российскую действительность с точки зрения слов, определяющих «ученых». В немалой степени сказанное ниже относится и к западной науке.Начнем с низшего ранга - кандидат наук. Это первая научная степень,

Из книги НЕ наша Russia [Как вернуть Россию?] автора Мухин Юрий Игнатьевич

Классификация задач медицинского представителя В работе медпреда встречаются самые разные задачи. С одной стороны есть задачи салона, есть задачи компании, есть личные задачи медпреда. Все эти задачи требуют времени и сил на их решение, и порой бывает очень сложно

Из книги 1000 чудес со всего света автора Гурнакова Елена Николаевна

Классификация Ошибка Маркса в классификации требует исправления. Человечество следует прежде всего разделить на три класса: по цели, которую данные индивидуумы преследуют в жизни. А уж потом, если это необходимо, классифицировать по другим признакам, к примеру по

Из книги автора

Факты вулканических извержений Вулканологи считают, что каждые два года Земля рождает в среднем три новых вулкана. Причем каждый третий из них - не на суше, а под водой. Самый высокий вулкан - заснеженный пик спящего вулкана Аконкагуа, расположенного высоко в Андах на

Эллиптические галактики имеют вид гладких эллипсов или кругов. Яркость звезд постепенно уменьшается по мере удаления от центра галактики к периферии. Эллиптические галактики заселены вторым типом звездного населения. Это красные и желтые гиганты, красные и желтые карлики, а также некоторое количество белых звезд. Светимость белых звезд не очень высокая.

В эллиптических галактиках нет бело-голубых сверхгигантов и гигантов. Поэтому эллиптические галактики не имеют структуры. Именно группировки бело-голубых гигантов и сверхгигантов вырисовываются в виде ярких сгустков. Поэтому звездная система с их участием имеет колоритную структурность. Нет в эллиптических галактиках и пыли (в структуре галактик, в которых есть пыль, присутствуют темные полосы).

Раз у эллиптических галактик нет структурных образований, то они не очень сильно отличаются внешне друг от друга. В основном это отличие состоит в том, что разные галактики сжаты больше или меньше. Под сжатием понимают вытянутость эллипса. Ясно, что у круговой галактики сжатие равно нулю. Если же у галактического эллипса большая полуось вдвое больше малой, то показатель сжатия оказывается равным 5, а когда большая ось намного больше малой, показатель сжатия равен 10. Сам показатель сжатия определяется по формуле


Здесь а и b - большая и малая полуоси. Этот показатель предложил использовать известный исследователь Вселенной Хаббл. На основании величины показателя сжатия он предложил все галактики (эллиптические в данном случае) классифицировать по степени их сжатости и округлять этот показатель до целой величины. Галактику эллиптического типа он предложил обозначать буквой Е. Если галактика обозначена Е7, то это значит, что она эллиптическая и что показатель ее сжатия равен 7. Кстати, это самый большой коэффициент сжатости. Галактик с коэффициентом сжатости 8,9 и 10 не наблюдалось.

На рисунках 19–21 показаны галактики NGC 4636, NGC 4406 и NGC 3115. Они относятся к типам Е0, Е3 и Е7 соответственно.


У всех их яркость постепенно убывает по мере удаления от центра галактик. Границы галактик очерчены не четко.

Наблюдая галактику, мы видим только один ее срез, только ее проекцию на плоскость, перпендикулярную лучу зрения. Конечно, галактика не представляет собой эллипс. И если была бы возможность посмотреть на одну и ту же галактику под разными углами, то мы могли бы определить ее полную форму. Но такой возможности у нас нет, мы жестко привязаны к одно-му-единственному месту наблюдения. Правда, есть один выход. Поскольку мы наблюдаем разные галактики, которые повернуты к нам по-разному, можно попытаться дорисовать объемную, пространственную форму эллиптических галактик. Обобщение наблюдательных данных свидетельствует о том, что эллиптические галактики имеют форму эллипсоида. Дело в том, что любая проекция эллипсоида на плоскость дает эллипс. Круг - это частный случай эллипса. Оно и понятно, ведь всякое вращающееся жидкое тело, которое находится под действием только своих собственных сил притяжения, принимает в равновесном состоянии форму эллипсоида.

Рис. 19. Галактика NGC 4 636 типа Е0

Рис. 20. Галактика NGC 4406 типа Е3

Рис. 21. Галактика NGC 3115 типа Е7


Между прочим, планеты имеют форму сжатых эллипсоидов вращения, поскольку в масштабе всей планеты ее вещество ведет себя как жидкость. Правда, сжатие планет невелико. У Земли оно равно 0,03, у Юпитера больше - 0,65, а у Сатурна - все 1,03. Сжатие планеты зависит от угловой скорости вращения планеты, а также от средней плотности вещества планеты. Ясно, что чем больше скорость вращения и чем меньше плотность вещества, тем сжатие больше. Таким образом, ученые пришли к заключению, что эллиптические галактики имеют форму сжатых эллипсоидов вращения.

Видимая сжатость такого эллипсоида вращения зависит от угла наблюдения. Если луч зрения перпендикулярен оси вращения, то есть если галактика наблюдается с ребра, то ее сжатие будет самым большим. Это сжатие называют истинным сжатием эллиптической галактики. Истинным - потому, что в этом случае сжатие эллипса характеризует форму эллипсоида. Чем меньше угол между лучом зрения и осью вращения эллипсоида, тем наблюдаемый эллипс меньше сжат. Если же луч зрения совпадает с осью вращения галактики, то есть если мы наблюдаем галактику с ребра (в плане), то мы увидим светящийся круг. Таким образом, истинное сжатие эллиптической галактики может быть больше видимого сжатия. Конечно, оно может быть и равно ему.

Установлено, что среди эллиптических галактик, которые входят в состав скоплений галактик, чаще всего встречаются показатели истинного сжатия 4,5,6и 7. У этих галактик почти нет слабо сжатых и сферических галактик. Зато среди эллиптических галактик, которые не входят в состав скоплений, подавляющее большинство составляют галактики, у которых сжатие очень слабое или вообще нулевое (сферическая галактика). Те и другие галактики отличаются не только формой. Дело в том, что эллиптические галактики, которые входят в состав скоплений, - это гигантские галактики. Что же касается индивидуальных галактик (не входящих в состав скоплений), то они очень маленькие. Это, по сути, карлики в мире галактик.

> Эллиптические галактики

Эллиптические галактики – форма сферы с древними звездами Вселенной: описание и характеристика, классификация Хаббла, большая галактика М 87, формирование.

Эллиптические галактики – наиболее распространенные галактики. Но, так как они населены древними и тусклыми звездами, могут затмеваться более молодыми и яркими скоплениями. Здесь вы не найдете закрученные рукава, как у спиральных. Перед вами эллипс (удлиненный круг).

Классификация и характеристика эллиптических галактик

Система распределения галактических типов появилась в 1926 году благодаря Эдвину Хабблу – «камертон Хаббла». Согласно ей, все галактики классифицируют по форме. У эллиптических есть свои подвиды, которые отличаются протяжностью. Е0 – почти идеальные круги, а Е7 – скорее длиннее, чем шире. Не забывайте также, что галактика может поворачиваться к нам лицом или стороной, от чего вызывает путаницу у новичков.

Эллиптический отличаются богатым диапазоном размеров. Самые маленькие галактики (карликовые эллиптические) достигают меньше 10% размера , а по массе лишь в 10 миллионов раз больше солнечной. Но некоторые могут охватывать в ширине больше миллиона световых лет и содержать более 10 триллионов звезд. Здесь стоит упомянуть (Е0) – одна из самых больших эллиптических галактик. Не так давно был найден и призер по размеру – IC 1101. Она в 50 раз крупнее нашей и в 2000 раз массивнее.

Ученые полагали, что спиральных галактик больше. Но дело лишь в том, что они быстрее и проще находятся. В спиральных сосредоточены молодые звезды и много областей звездообразования. А вот эллиптические скорее мертвые. В них мало пыли и газа, а значит, новые звезды не могут формироваться. Вместо этого присутствуют старые красные звезды.

Но, если было найдено меньше эллиптических галактик, тогда почему ученые говорят, что они доминируют? С продвижением технологий нам удается смотреть глубже в пространство, где и расположены эллиптические галактики. Поэтому подсчеты производятся с учетом полноценного размера Вселенной.

История и формирование эллиптических галактик

Из-за небольшого содержания газа и наполненности старыми звездами, исследователи думают, что эллиптические галактики представляют собою конец эволюционной линии. Галактики сталкиваются очень часто. Например, Млечный Путь ждет та же участь, когда он сольется с Андромедой через несколько миллиардов лет. В момент удара привычная форма спиральных теряется, и они превращаются в спиральные.

В центрах древних галактик находятся сверхмассивные . Они поглощают много газа и пыли и могут быть причиной замедления роста эллиптических. Созданные столкновением появляются чаще ближе к скоплениям или галактическим группам. Намного меньше таких случаев можно найти в ранней Вселенной. Смотрите видео про галактики, чтобы узнать больше о галактическом развитии, эволюции, рождении звезд и трансформации в эллиптический тип.

Эволюция эллиптических галактик

Астрофизик Ольга Сильченко о протогалактических облаках, изменениях металличности звезд и слиянии дисковых галактик:

Эволюция дисковых галактик

Астрофизик Ольга Сильченко о звездообразовании, моделировании галактик и аккреции внешнего холодного газа:

Галактика — это огромное скопление звезд, звездных систем, межзвёздного газа и пыли, тёмной материи, связанные гравитацией в единую систему. Все объекты в составе галактики участвуют в движении относительно общего центра масс. Галактики — это невообразимо далекие астрономические объекты, расстояние до ближайших из них принято измерять в мегапарсеках, а до далёких - в единицах красного смещения z.

Как правило галактики содержат от нескольких миллионов до нескольких триллионов звезд. Кроме обычных звезд и межзвездной среды галактики также содержат различные туманности. Размеры галактик от нескольких тысяч до нескольких сотен тысяч световых лет. А расстояние между галактиками достигает миллионов световых лет.

Около 90 % массы галактик приходится на долю темной материи и энергии. Природа этих невидимых компонентов пока не изучена. Существуют свидетельства того, что в центре многих галактик находятся сверхмассивные чёрные дыры. Пространство между галактиками практически не содержит вещества и имеет среднюю плотностью меньше одного атома на кубический метр. Предположительно, в видимой части вселенной находится около 100 млрд. галактик.

По классификации, предложенной Хабблом в двадцатых годах 20 века существуют несколько видов галактик:

— эллиптические(E),
— линзообразные(S0),
— обычные спиральные(S),
— пересеченные спиральные или спиральные с перемычкой (SB),
— неправильные (Ir).

Эллиптические галактики

На фото: карликовая эллиптическая галактика в созвездии Андромеды М32. По Фабблу классифицирована как E2. М32 означает, что галактика зарегистрирована в каталоге Мессье под номером 32

Эллиптические галактики (E) — класс галактик с четко выраженной сферической структурой и уменьшающейся к краям яркостью. Они выглядят как нерезкий круг или эллипс, яркость которого быстро уменьшается от центра к периферии. Полагают, что в центре ярких эллиптических галактик находится массивная черная дыра. Размеры эллиптических галактик колеблются от нескольких пк до более 100 кпк*

[* кпк — килопарсек=1000 парсек. Парсек (пк) = 30,8568 трлн км (петаметров) = 3,2616 светового года.]

По форме эллиптические галактики очень разнообразны: бывают как шаровые, так и очень сплюснутые. В связи с этим они подразделены на 8 подклассов - от Е0 (круглая) до Е7 (сплюснутая).

Это наиболее простые по структуре галактики. Состоят, преимущественно, из звёзд следующих типов: старых красных и желтых гигантов, красных, желтых и белых карликов. Образование звезд в галактиках этого типа не происходит уже несколько миллиардов лет. Холодного газа, как и космической пыли почти нет; наиболее массивные галактики заполнены очень разреженным горячим газом с температурой более 1 000 000 К*, поэтому цвет этих галактик красноватый. Вращение обнаружено лишь у наиболее сжатых из эллиптических галактик.

[* K — Кельвин — единица измерения температуры.0 К = -272.15 градусов С; 1 000 000 К = 999 726,85 С ]

Примерами эллиптических галактик служат галактики M32, M87 и M110.

Линзовидные галактики

На фото: эллиптическая галактика Верено (иначе: NGC 5866, MCG 9-25-17, ZWG 274.16) . Галактика наблюдается практически с ребра, что позволяет видеть тёмные области космической пыли, находящиеся в галактической плоскости. Находится на расстоянии примерно в 44 млн световых лет.

Линзовидные галактики похожи на эллиптические, но, кроме сфероидального компонента, имеют тонкий быстро вращающийся экваториальный диск, иногда с кольцеобразными структурами наподобие колец Сатурна. Линзовидные галактики практически не содержат газа и пыли. Поэтому процесс звездообразования происходит слишком медленно. Такие галактики состоят в основном из старых красноватых звезд-гигантов. По классификации Хаббла линзовидными являются классы S0, SB1, E8.

Спиральные галактики


На фото: спиральная галактика Андромеды M31 типа Sb. Ближайшая галактика Млечного Пути. Содержит примерно 1 триллион звёзд.

Спиральные галактики (S) - самый многочисленный тип - составляют около 50 % всех наблюдаемых галактик. Чаще всего наблюдаются за пределами скоплений галактик. Спиральная галактика состоит из почти сферического балджа (центр), окруженного плоским вращающимся диском, который, в свою очередь, окружен сферическим гало, диаметром близким к диаметру диска. Как правило, у галактики имеются две спиральные ветви, берущие начало в противоположных точках ядра, развивающиеся сходным, симметричным образом и теряющиеся в противоположных областях периферии галактики. Однако известны примеры большего, чем двух, числа спиральных ветвей в галактике. В других случаях спирали две, но они неравноправны - одна значительно более развита, чем другая.

Спиральные галактики с перемычкой (SB)- спиральные галактики с перемычкой из ярких звёзд, выходящей из центра и пересекающей галактику посередине. Спиральные ветви в таких галактиках начинаются на концах перемычек, тогда как в обычных спиральных галактиках они выходят непосредственно из ядра. Перемычка еще называется «бар». К ним, кстати, относится и наша Галактика Млечный Путь.

Спиральные галактики по Хабблу распределяются на категории a b с. Например:

Галактики Sa и SBa — галактики, у которых ветви развиты слабо, в некоторых случаях только намечаются. Ядра у таких галактик всегда большие, обычно составляют около половины наблюдаемого размера самой галактики. Из спиральных галактик Sa наименее выразительны, в них есть черты эллиптических галактик. Примером галактики типа Sa является NGC 3898. Эта галактика расположена в созвездии Большой Медведицы.

Следующий подкласс - Sb и SBb. У галактик этого типа спиральные ветви уже заметно развиты, но не имеют богатых разветвлений. Ядра меньше, чем у Sa. Примерами Sb могут служить галактики NGC 488, NGC 3521 и NGC 6384. Для этих трех галактик характерна множественность спиральных ветвей. В отличие от них, у галактики NGC 210, также типа Sb, только две легко выраженные почти не разветвленные спиральные ветви. Галактикой Sb является также известная туманность Андромеды (NGC 224).

Sc и SBc — Галактики с сильно развитыми, разделяющимися на несколько рукавов ветвями и малым в сравнении с ними ядром относятся к типу Sс. Яркими примерами спиралей типа Sc являются NGC 628, NGC 1232 и NGC 157.

Спиральные галактики, наблюдаются нами либо в плане, либо в три четверти. А как же выглядят спиральные галактики, если наблюдать их с ребра?

У всех спиральных галактик, наблюдаемых с ребра, видна темная полоса, как бы разделяющая галактику на две части. В нашей Галактике около ее плоскости симметрии сосредоточена темная пылевая материя, поэтому внегалактический наблюдатель, рассматривая Галактику с ребра, тоже должен видеть темную полосу, как бы разделяющую Галактику на две части. Следовательно, темная полоса, наблюдаемая в других спиральных галактиках, показывает, что и в них, как в нашей Галактике, имеется темная пылевая материя, сосредоточенная около плоскости симметрии.

Рукава спиральных галактик имеют голубоватый цвет, так как в них присутствует много молодых гигантских звёзд. Эти звёзды возбуждают свечение диффузных газовых туманностей, разбросанных вместе с пылевыми облаками вдоль спиральных ветвей. Цвет центральных сгущений - красновато-жёлтый, свидетельствующий о том, что они состоят в основном из звёзд спектральных классов G, K и M. Все спиральные галактики вращаются со значительными скоростями, поэтому звёзды, пыль и газы сосредоточены у них в узком диске. Вращение в подавляющем большинстве случаев происходит в сторону закручивания спиральных ветвей.

Неправильные галактики

На фото: галактика в созвездии Эридан NGC 1427A(другие обозначения - ESO 358-49, MCG −6-9-16, AM 0338-354, FCC 235, PGC 13500). Она находится на расстоянии 62 млн световых лет от Земли, входя в Скопление Печи. В галактику NGC 1427A входит большое число молодых горячих голубых звёзд, что свидетельствует об интенсивном формировании новых звёзд.

Неправильные галактики - это галактики, которые не обнаруживают ни спиральной ни эллиптической структуры. Чаще всего такие галактики имеют хаотичную форму без ярко выраженного ядра и спиральных ветвей. В процентном отношении составляют одну четверть от всех галактик. Большинство неправильных галактик в прошлом являлись спиральными или эллиптическими, но были деформированы гравитационными силами.

Существует два больших типа неправильных галактик:

1. Неправильные галактики первого типа (Irr I) представляют собой неправильные галактики, имеющие намеки на структуру, которых, однако, не достаточно, чтобы отнести их к последовательности Хаббла. Существует два подтипа таких галактик - обнаруживающих подобие спиральной структуры (Sm), и с отсутствием таковой (Im).

2. Неправильные галактики второго типа (Irr II) - это галактики, не имеющие никаких особенностей в своей структуре, позволяющих отнести их к последовательности Хаббла.

Третий подтип неправильных галактик - так называемые карликовые неправильные галактики, обозначаемые как dI или dIrrs. Этот тип галактик в настоящее время считается важным звеном в понимании общей эволюции галактик. Вызвано это тем, что они обнаруживают тенденцию низкого содержания металлов и экстремально высокого содержания газа и поэтому подразумеваются схожими с самыми ранними галактиками, заполнявшими Вселенную.


Эллиптические галактики «elliptical» (обозначаются - Е) - имеющие форму эллипсоидов. Эллиптические галактики внешне невыразительные. Они имеют вид гладких эллипсов или кругов с постепенным круговым уменьшением яркости от центра к периферии. Космической пыли в них, как правило, нет, чем они отличаются от спиральных галактик, в которых поглощающее свет пылевое вещество имеется в большом количестве. Внешне эллиптические галактики отличаются друг от друга в основном одной чертой - большим или меньшим сжатием.

Представитель - кольцевая туманность в созвездии Лиры находится на расстоянии 2100 световых лет от нас и состоит из светящегося газа, окружающего центральную звезду. Эта оболочка образовалась, когда состарившаяся звезда сбросила газовые покровы, и они устремились в пространство. Звезда сжалась и перешла в состояние, по массе сравнимого с Солнцем, а по размеру с Землей.

Иррегулярные галактики

Иррегулярные (неправильные) «irregular» (обозначаются - I) - обладающие неправильными формами. Перечисленные до сих пор типы галактик характеризовались симметричностью форм определенным характером рисунка. Но встречаются большое число галактик неправильной формы. Без какой-либо закономерности структурного строения.

Неправильная форма у галактики может быть, вследствие того, что она не успела принять правильной формы из-за малой плотности в ней материи или из-за молодого возраста. Есть и другая возможность: галактика может стать неправильной вследствие искажения формы в результате взаимодействия с другой галактикой. По-видимому, эти оба случая встречаются среди неправильных галактик, и может быть с этим связанно разделение неправильных галактик на 2 подтипа.

Неправильные галактики подтипа II, характеризуется сравнительно высокой поверхностью, яркостью и сложностью неправильной структуры. Французский астроном Вакулер в некоторых галактиках этого подтипа, например, Магеллановых облаках, обнаружил признаки спиральной разрушенной структуры.

Неправильные галактики подтипа обозначаемого III, отличаются очень низкой поверхностью и яркостью. Эта черта выделяет их из среды галактик всех других типов. В то же время она препятствует обнаружению этих галактик, вследствие чего удалось выявить только несколько галактик подтипа III расположенных сравнительно близко.

Представители иррегулярных галактик - Большое Магелланово Облако. Находится на расстоянии 165000 световых лет и, таким образом, является ближайшей к нам галактикой сравнительно небольшого размера, рядом с ней расположена галактика поменьше - Малое Магелланово Облако. Обе они - спутники нашей галактики.

Последующие наблюдения показали, что описанная классификация недостаточна, чтобы систематизировать все многообразие форм и свойств галактик. Так, были обнаружены галактики, занимающие в некотором смысле промежуточное положение между спиральными и эллиптическими галактиками (обозначаются - So). Эти галактики имеют огромное центральное сгущение и окружающий его плоский диск, но спиральные ветви отсутствуют.