Электрическое поле – это одна из теоретических концепций, объясняющих явления взаимодействия меж заряженными телами. Субстанцию нельзя пощупать, но можно доказать существование, что и было сделано в ходе сотен натурных экспериментов.

Взаимодействие заряженных тел

Привыкли считать устаревшие теории утопией, между тем мужи науки вовсе не глупые. Сегодня смешно звучит учение Франклина об электрической жидкости, видный физик Эпинус посвятил целый трактат. Закон Кулона открыт экспериментально на основе крутильных весов, аналогичными методами пользовался Георг Ом при выводе известного . Но что лежит за всем этим?

Должны признаться, электрическое поле попросту является очередной теорией, не уступающей франклиновой жидкости. Сегодня известно о субстанции два факта:

Изложенные факты заложили базис современного представления о взаимодействиях в природе, выступают опорой теории близкодействия. Помимо нее учеными выдвигались другие предположения о сути наблюдаемого явления. Теория близкодействия подразумевает мгновенное распространение сил без участия эфира. Поскольку явления пощупать труднее, нежели электрическое поле, многие философы окрестили подобные взгляды идеалистическими. В нашей стране они успешно критиковались советской властью, поскольку, как известно, большевики недолюбливали Бога, клевали по каждому удобному случаю идею существования чего-либо, «зависимого от наших представлений и поступков» (попутно изучая сверхвозможности Джуны).

Франклин объяснял положительные, отрицательные заряды тел избытком, недостаточностью электрической жидкости.

Характеристики электрического поля

Электрическое поле описывается векторной величиной – напряженностью. Стрелка, направление которой совпадает с силой, действующей в точке на единичный положительный заряд, длина пропорциональна модулю силы. Физики находят удобным пользоваться потенциалом. Величина скалярная, проще представить на примере температуры: в каждой точке пространства некоторое значение. Под электрическим потенциалом понимают работу, совершаемую для перемещения единичного заряда из точки нулевого потенциала в данную точку.

Поле, описываемое указанным выше способом, называется безвихревым. Иногда именуют потенциальным. Функция потенциала электрического поля непрерывная, изменяется плавно по протяженности пространства. В результате выделим точки равного потенциала, складывающие поверхности. Для единичного заряда сфера: дальше объект, слабее поле (закон Кулона). Поверхности называют эквипотенциальными.

Для понимания уравнений Максвелла заимейте представление о нескольких характеристиках векторного поля:

  • Градиентом электрического потенциала называется вектор, направление совпадает с наискорейшим ростом параметра поля. Значение тем больше, чем быстрее изменяется величина. Направлен градиент от меньшего значения потенциала к большему:
  1. Градиент перпендикулярен эквипотенциальной поверхности.
  2. Градиент тем больше, чем ближе расположение эквипотенциальных поверхностей, отличающихся друг от друга на заданную величину потенциала электрического поля.
  3. Градиент потенциала, взятый с обратным знаком, является напряженностью электрического поля.

Электрический потенциал. Градиент «взбирается в гору»

  • Дивергенция является скалярной величиной, вычисляемой для вектора напряженности электрического поля. Является аналогом градиента (для векторов), показывает скорость изменения величины. Необходимость во введении дополнительной характеристики: векторное поле лишено градиента. Следовательно, для описания требуется некий аналог – дивергенция. Параметр в математической записи схож с градиентом, обозначается греческой буквой набла, применяется для векторных величин.
  • Ротор векторного поля именуется вихрем. Физически величина равна нулю при равномерном изменении параметра. Если ротор отличен от нуля, возникают замкнутые изгибы линий. У потенциальных полей точечных зарядов по определению вихрь отсутствует. Не обязательно линии напряжённости в этом случае прямолинейны. Просто изменяются плавно, не образуя вихрей. Поле с ненулевым ротором часто называют соленоидальным. Часто применяется синоним – вихревое.
  • Полный поток вектора представлен интегралом по поверхности произведения напряженности электрического поля на элементарную площадь. Предел величины при стремлении емкости тела к нулю представляет собой дивергенцию поля. Понятие предела изучается старшими классами средней школы, ученик может составить некоторое представление на предмет обсуждения.

Уравнения Максвелла описывают изменяющееся во времени электрическое поле и показывают, что в таких случаях возникает волна. Принято считать, одна из формул указывает отсутствие в природе обособленных магнитных зарядов (полюсов). Иногда в литературе встретим особый оператор – лапласиан. Обозначается как квадрат набла, вычисляется для векторных величин, представляет дивергенцией градиента поля.

Пользуясь означенными величинами, математики и физики рассчитывают электрические и магнитные поля. Например, доказано: скалярный потенциал может быть только у безвихревого поля (точечных зарядов). Придуманы другие аксиомы. Вихревое поле ротора лишено дивергенции.

Подобные аксиомы легко положим в основу описания процессов, происходящих в реальных существующих устройствах. Антигравитационный, вечный двигатель были бы неплохим подспорьем экономике. Если реализовать на практике теорию Эйнштейна никому не удалось, наработки Николы Тесла исследуются энтузиастами. Отсутствуют ротор, дивергенция.

Краткая история развития электрического поля

За постановкой теории последовали многочисленные работы по применению электрического и электромагнитного полей на практике, самой известной из которых в России считают опыт Попова по передачи информации через эфир. Возник ряд вопросов. Стройная теория Максвелла бессильна объяснить явления, наблюдающихся при прохождении электромагнитных волн через ионизированные среды. Планк выдвинул предположение: лучистая энергия испускается дозированными порциями, названными впоследствии квантами. Дифракцию отдельных электронов, любезно демонстрируемую Ютуб в англоязычном варианте, открыли в 1949 году советские физики. Частица одновременно проявляла волновые свойства.

Это говорит нам: современные представление об электрическом поле постоянном и переменном, далеки совершенству. Многие знают Эйнштейна, бессильны объяснить, что отрыл физик. Теория относительности 1915 года связывает электрическое, магнитное поля и тяготение. Правда, формул в виде закона представлено не было. Сегодня известно: существуют частицы, движущееся быстрее, распространения света. Очередной камень в огород.

Системы единиц претерпевали постоянное изменение. Изначально введенная СГС, базирующаяся на наработках Гаусса, не удобна. Первые буквы обозначают базисные единицы: сантиметр, грамм, секунда. Электромагнитные величины добавлены к СГС в 1874 году Максвеллом и Томсоном. СССР в 1948 году страной стала использовать МКС (метр, килограмм, секунда). Конец баталиям положило введение в 60-х годах XX века системы СИ (ГОСТ 9867), где напряженности электрического поля измеряется в В/м.

Использование электрического поля

В конденсаторах происходит накопление электрического заряда. Следовательно, меж обкладками образуется поле. Поскольку емкость напрямую зависит от величины вектора напряженности, с целью повышения параметра пространство заполняется диэлектриком.

Косвенным образом электрические поля применяются кинескопами, люстрами Чижевского, потенциал сетки управляет движением лучей электронных ламп. Несмотря на отсутствие стройной теории, эффекты электрического поля лежат в основе многих изображений.

Действие заряженного тела на окружающие тела проявляется в виде сил притяжения и отталкивания, стремящихся поворачивать и перемещать эти тела по отношению к заряженному телу. Мы наблюдали проявление этих сил в опытах, описанных в предыдущих параграфах. Их можно наблюдать также с помощью поучительного опыта, который мы сейчас опишем.

Нальем в небольшую стеклянную кювету (рис. 25) какой-либо жидкий диэлектрик (например, масло), к которому подмешан порошок с крупинками удлиненной формы. В кювету поместим, например, две металлические пластинки, и соединим их с электрической машиной, позволяющей непрерывно разделять положительные и отрицательные заряды. Чтобы удобно было следить за поведением взвешенных в масле крупинок, спроецируем изображение всей картины на экран или просто отбросим тень кюветы на потолок (рис. 25). При зарядке пластинок можно видеть, что отдельные крупинки, расположенные вначале совершенно беспорядочно, начинают перемещаться и поворачиваться и в конце концов устанавливаются в виде цепочек, тянущихся от одного электрода к другому. На рис. 26 приведено изображение расположения крупинок между двумя параллельными металлическими пластинками, а на рис. 27- между двумя металлическими шариками.

Рис. 25. Схема экспериментальной установки для получения картин электрического поля: 1 – кювета, содержащая касторовое масло с кристалликами хинина, 2 – проводники, соединенные с электрической машиной и создающие электрическое поле, 3 – источник света, 4 – экран, на который проецируется тень от кристалликов

Рис. 26. Расположение крупинок между двумя параллельными пластинками, заряженными разноименно

Рис. 27. Расположение крупинок между двумя металлическими шариками, заряженными разноименно

В этом опыте каждая крупинка подобна маленькой стрелке. Небольшие размеры крупинок позволяют разместить их одновременно во многих точках среды и благодаря этому обнаружить, что действие заряженного тела проявляется во всех точках пространства, окружающего заряд. Таким образом, можно судить о существовании электрического заряда в каком-нибудь месте по действиям, производимым им в различных точках окружающего пространства.

В зависимости от заряда и формы заряженного тела действие его в различных точках пространства будет различным. Поэтому для полной характеристики заряда надо знать, какое действие он производит во всевозможных точках окружающего пространства, или, как говорят, надо знать электрическое поле, которое возникает вокруг заряда. Таким образом, понятием «электрическое поле» мы обозначаем пространство, в котором проявляются действия электрического заряда.

Если имеется не один, а несколько зарядов, расположенных в различных местах, то в любой точке окружающего пространства проявится совместное действие этих зарядов, электрическое поле, создаваемое всеми этими зарядами.

Заметим, что в начале изучения электричества часто возникает стремление «объяснить» электрическое поле, т. е. свести его к каким-либо иным, уже изученным явлениям, подобно тому как тепловые явления мы сводим к беспорядочному движению атомов и молекул. Однако многочисленные попытки подобного рода в области электричества неизменно оканчивались неудачей. Поэтому следует считать, что электрическое поле есть самостоятельная физическая реальность, не сводящаяся ни к тепловым, ни к механическим явлениям. Электрические явления представляют собой новый класс явлений природы, с которыми мы знакомимся на опыте, и дальнейшая наша задача должна состоять в изучении свойств электрического поля и его законов.

Действие заряженного тела на окружающие тела проявляется в виде сил притяжения и отталкивания, стремящихся поворачивать и перемещать эти тела по отношению к заряженному телу. Мы наблюдали проявление этих сил в опытах, описанных в предыдущих параграфах. Их можно наблюдать также с помощью поучительного опыта, который мы сейчас опишем.

Нальем в небольшую стеклянную кювету (рис. 25) какой-либо жидкий диэлектрик (например, масло), к которому подмешан порошок с крупинками удлиненной формы. В кювету поместим, например, две металлические пластинки, и соединим их с электрической машиной, позволяющей непрерывно разделять положительные и отрицательные заряды. Чтобы удобно было следить за поведением взвешенных в масле крупинок, спроецируем изображение всей картины на экран или просто отбросим тень кюветы на потолок (рис. 25). При зарядке пластинок можно видеть, что отдельные крупинки, расположенные вначале совершенно беспорядочно, начинают перемещаться и поворачиваться и в конце концов устанавливаются в виде цепочек, тянущихся от одного электрода к другому. На рис. 26 приведено изображение расположения крупинок между двумя параллельными металлическими пластинками, а на рис. 27- между двумя металлическими шариками.

Рис. 25. Схема экспериментальной установки для получения картин электрического поля: 1 – кювета, содержащая касторовое масло с кристалликами хинина, 2 – проводники, соединенные с электрической машиной и создающие электрическое поле, 3 – источник света, 4 – экран, на который проецируется тень от кристалликов

Рис. 26. Расположение крупинок между двумя параллельными пластинками, заряженными разноименно

Рис. 27. Расположение крупинок между двумя металлическими шариками, заряженными разноименно

В этом опыте каждая крупинка подобна маленькой стрелке. Небольшие размеры крупинок позволяют разместить их одновременно во многих точках среды и благодаря этому обнаружить, что действие заряженного тела проявляется во всех точках пространства, окружающего заряд. Таким образом, можно судить о существовании электрического заряда в каком-нибудь месте по действиям, производимым им в различных точках окружающего пространства.

В зависимости от заряда и формы заряженного тела действие его в различных точках пространства будет различным. Поэтому для полной характеристики заряда надо знать, какое действие он производит во всевозможных точках окружающего пространства, или, как говорят, надо знать электрическое поле, которое возникает вокруг заряда. Таким образом, понятием «электрическое поле» мы обозначаем пространство, в котором проявляются действия электрического заряда.

Если имеется не один, а несколько зарядов, расположенных в различных местах, то в любой точке окружающего пространства проявится совместное действие этих зарядов, электрическое поле, создаваемое всеми этими зарядами.

Заметим, что в начале изучения электричества часто возникает стремление «объяснить» электрическое поле, т. е. свести его к каким-либо иным, уже изученным явлениям, подобно тому как тепловые явления мы сводим к беспорядочному движению атомов и молекул. Однако многочисленные попытки подобного рода в области электричества неизменно оканчивались неудачей. Поэтому следует считать, что электрическое поле есть самостоятельная физическая реальность, не сводящаяся ни к тепловым, ни к механическим явлениям. Электрические явления представляют собой новый класс явлений природы, с которыми мы знакомимся на опыте, и дальнейшая наша задача должна состоять в изучении свойств электрического поля и его законов.

Еще древние греки знали, что янтарь потертый о мех получает способность притягивать к себе пух, волосы и другие легкие тела, но совсем не знали в чем сущность этого явления и чем оно может быть полезным для

человечества. Греческий философ Фалес Милетский в VI веке до нашей эры описал это явление, более 2000 лет оставалось не изученным. В XVI веке английский ученый Гилберт повторил опыты, описанные Фалес Милетский. На базе опытов он установил, что кроме янтаря, свойство притягивать легкие тела получают при трении алмаз, горный хрусталь, сера, смола... Тела, обладающие подобными свойствами стали называть наэлектризованными.

Слово «электричество» происходит от слова «электрон», что на греческом языке означает янтарь. А явление возникновения этих свойств в тел было названо электризацией. Доказательство электризации металлов трением впервые было дано русским физико В.В.Петровим. Оказалось, что наэлектризовать трением можно всякое тело не зависимо от того в каком оно состоянии: твердом, жидком или газообразном.

Дюфе в 1733 году обнаружил, что тела электризуются разнородными электриками: первый род появляется на стекле, драгоценных камнях, мехах, второй - на янтаре, смоле, шелка. Позже электричество, которая появляется на стекле, назвали положительной, а на янтаря - отрицательной.

Таким образом, всякое тело вмещает в себя богатое количество элементарных частиц вещества, имеющих электрический заряд: положительный (протоны) или отрицательный

(Электроны). Когда тело имеет одинаковое количество протонов и электронов, то говорят, что оно электрически нейтральное. В электрически заряженном теле преобладают те или другие заряды, и тогда говорят, что тело положительно или отрицательно заряженное.

Заряды (или электрически заряженные тела) взаимодействуют между собой на расстоянии разноименные заряженные частицы притягиваются друг к другу ("+ и -"), одноименные заряженные частицы отталкиваются друг от друга ("- и -" или "+ и +"). Это свойство зарядов назвали законом взаимодействия зарядов.

Таким образом, заряд - это свойство и степень наелектризованости тела. Электрический заряд обозначают - q, Кл (кулон). Электрический заряд электрона q = 1,6 × 10-19 Кл. То есть, при числе электронов 6,3 × 1018 q = 1 Кл и их называют единичным зарядом. Заряд размещается только на поверхности.

Электрическое поле - это материальная среда, которая окружает заряды, в котором заряды взаимодействуют между собой и которое невозможно почувствовать органами чувств.

Каждый заряд связан с окружающим его электрическим полем. Электрическое поле оказывает силовое действие на внесенное в него электрическое заряженное тело. Т.е. электрическое поле выполняет работу по отношению к внесенного тела, обладает энергией, которую называют электрической.

Электрическая энергия - это свойство электрического поля выполнять работу по отношению к внесенного в него электрически заряженного тела или частиц. Сказывается - W, Дж.

Электрическое поле – это вид материи, образующийся вокруг заряженных тел, посредством которого они взаимодействуют друг с другом.
Сила взаимодействия двух точечных зарядов определяется законом Кулона: F = k·q 1 ·q 2 /r 2 . При этом если заряженные тела имеют одинаковые заряды, то они отталкиваются друг от друга, а разноимённые – притягиваются. Заряженные тела взаимодействуют друг с другом посредством их электрических полей.

Выделяют следующие характеристики электрического поля:
1. Силовая характеристика – напряжённость электрического поля – это сила, которая действует на единицу заряда, помещённого в данное электрическое поле: E = F/q . Измеряется в [В/м]
Если определённый точечный заряд Q образует электрическое поле, то напряжённость этого поля в точке, находящейся на расстоянии r от заряда вычисляется по формуле: E = Q/(4πε 0 εr 2) где Q – заряд, образующий данное электрическое поле; ε 0 = 8,84*10 -12 Ф/м- электрическая постоянная; ε- электрическая проницаемость среды, в которой образуется поле; r -расстояние от точечного заряда до точки, в которой исследуется напряжённость.
За направление напряжённости принимают направление силы, действующей на положительный заряд.
Величина напряжённости электрического поля графически изображается в виде силовых линий – тех линий, направление касательных к которым в любой точке совпадают с направлением напряжённости электрического поля. Чем больше линий – тем больше напряжённость.
2. Энергетическая характеристика электрического поля – потенциал.
В каждой точке электрического поля на внесённый в это поле заряд действует определённая сила. При перемещении заряда в электрическом поле будет совершаться работа. При этом каждая точка электрического поля будет характеризоваться потенциалом.
Потенциал поля в данной точке – это потенциальная энергия электрического поля в этой точке, приходящаяся на единицу помещённого в эту точку заряда: φ = W p /q [В] Потенциал поля характеризует возможную работу, которую совершает электрическое поле или которая совершается над электрическим полем при перемещении этого заряда в точку с другим потенциалом: Δφ = A/q.
Поскольку работа будет совершаться только при перемещении заряда между точками, обладающими неодинаковыми потенциалами, то физический смысл имеет лишь разность потенциалов, или напряжение между двумя точками электрического поля. Поэтому, когда употребляют термин ″потенциал″, имеют в виду разность потенциалов между данной точкой, потенциал которой измеряют, и бесконечно удалённой точкой пространства, потенциал которой можно считать равным 0. При этом потенциал в данной точке поля, созданного точечным зарядом Q , равен: φ = Q/(4πε 0 εγ) и, если потенциал создается большим числом зарядов, то φ = ∑φ.
Только разность потенциалов можно измерить с помощью вольтметра. Считают, что напряженность электрического поля – отрицательный градиент потенциала.

2. Действие электрического поля на вещества

Действие электрического поля на различные вещества неодинаково и зависит от их внутреннего строения. По этому действию все вещества делят на:
- проводники электрического тока
- полупроводники
- изоляторы, или диэлектрики.
Проводники характеризуются тем, что в них под действием электрического поля образуется электрический ток – направленное движение заряженных частиц. Это происходит благодаря тому, что в проводниках имеются свободные заряды. Существуют проводники 1 рода (металлы, в которых есть свободные электроны) и 2 рода (растворы электролитов, в которых свободными зарядами являются положительно заряженные ионы – катионы и отрицательно заряженные ионы – анионы).
Полупроводники при обычной температуре имеют мало свободных зарядов. Причём когда электроны в полупроводниках становятся свободными, то на их месте образуется дырка – избыток положительного заряда. Поэтому носителями заряда в полупроводниках являются электроны и дырки.
В диэлектриках нет свободных носителей зарядов, поэтому под действием электрического поля в них не возникает электрического тока, но возникает явление, называемое поляризацией диэлектрика – приобретение диэлектриком полярности за счёт разделения в нём положительных и отрицательных зарядов под действием электрического поля. Поляризация существует в 3 вариантах: ориентационная, электронная и ионная.
Указанные различия хорошо описываются зонной теорией твёрдых тел, или квантовой теорией энергетического спектра электронов в кристалле. Согласно теории в кристалле существуют запрещённые и разрешённые энергетические зоны для электронов. Нижние зоны заполнены полностью электронам. Физические свойства кристаллов определяются верхними зонами, содержащими электроны. Если между верхней зоной и следующей разрешённой зоной запрещённая зона узкая (энергетический интервал невелик), то вещество является проводником, а если запрещённая зона велика – то диэлектриком.

3. Электрический ток

Основной характеристикой электрического тока является

сила тока

– количество заряда, пересекающее поперечное сечение проводника за единицу времени. I

= Δq/Δt или для мгновенной силы тока: I

Dq/dt. Единицей измерения силы тока является ампер (

A

). 1 ампер – сила тока, когда заряд 1 кулон проходит через поперечное сечение проводника за 1 секунду. Часто используют миллиампер (

мА мА A

Обычно за направление электрического тока в проводнике принимают направление движения положительных зарядов.


Другой величиной, характеризующей электрический ток, является плотность тока – сила тока, приходящаяся на единицу площади проводника. Измеряется в амперах на квадратный метр: J = I/S.

Различают:
- Постоянный ток – электрический ток, параметры которого (сила и направление) не изменяются во времени. Источниками постоянного тока являются генераторы, которые поддерживают постоянную разность потенциалов на концах проводника.
- Переменный ток – электрический ток, параметры которого изменяются во времени по закону синуса или косинуса. Электрический ток, передаваемый в потребительской электросети, представляет собой синусоидальное колебание частотой 50 Гц : I = I max ·cos(ωt + φ 0).
Основным законом, описывающим постоянный электрический ток, является закон Ома: сила тока в проводнике прямо пропорциональна разности потенциалов между его концами, или электрическому напряжению (U ): I = U/R.
Величина R называется электрическим сопротивлением . Сопротивление является свойством проводников препятствовать прохождению через него электрического тока, при этом электрическая энергия превращается в тепловую энергию. Сопротивление возникает из-за столкновения заряженных частиц (носителей тока) с внутренними структурами проводника – атомами и молекулами. Единицей измерения сопротивления является Ом . Обратная величина сопротивлению называется электрической электропроводностью (D ).
Для многих веществ сопротивление является постоянной величиной, независимой от силы тока. Сопротивление проводника является функцией его размера, формы, строения и температуры. Величина сопротивления провода: R = ρ(1/S) (5)
, где l – длина проводника, S - площадь поперечного сечения проводника. Константа прямой пропорциональности ρ называется удельным сопротивлением [ом·м] . Она зависит только от свойств вещества и температуры. Обратной величиной удельному сопротивлению является удельная электропроводность (γ ) [ом -1 ·м -1 ] .
На основе удельной электропроводности характеризуют свойство веществ проводить электрический ток. Хорошие проводники тока имеют высокую удельную электропроводность. Изоляторы, или диэлектрики, имеют низкую удельную электропроводность. Полупроводники имеют промежуточную удельную электропроводность. Используя удельную электропроводность, как характеристику вещества, можно представить закон Ома в другой форме: J = γ E.
Из формулы следует, что плотность тока в проводнике прямо пропорциональна напряженности электрического поля ), создающего этот ток, и удельной электропроводности вещества проводника (γ ).

Удельная электропроводность электролитов и биологических тканей

Плотность тока в растворе электролитов определяется электрическим зарядом положительных и отрицательных ионов, их концентрациями и скоростями движения в электрическом поле: J = q + n + v + + q - n - v.
Если принять, что концентрация и величина электрического заряда положительных и отрицательных ионов равны, то J = qn(v + + v -)(8)
Скорость v ионов пропорциональна напряженности электрического поля E и зависит от подвижности ионов u , которая, в свою очередь, является функцией размера, степени гидратации ионов, вязкости растворителя:
v = uE (9)
Тогда J = qn(u + + u -)·E (10).
Это выражение является законом Ома для растворов электролитов .
Хотя сопротивление биологических тканей постоянному электрическому току велико, и по удельной электропроводности биологические ткани близки к диэлектрикам, для объяснения различий в электропроводности различных тканей, их рассматривают как проводники 2 рода, носителями заряда в которых служат ионы.
Биологические ткани не различаются существенно по их ионному составу, но отличаются условиями ионного перемещения. Поэтому ткани разнородны с точки зрения их электрических свойств. Мембраны клеток препятствуют перемещению ионов. Их электрическое сопротивление является наибольшим. Кровь, лимфа, цереброспинальная жидкость характеризуются низким сопротивлением электрическому току. Внутренние органы, содержащие много воды (мышцы, печень, почки, и т.п.), также имеют сравнительно низкое сопротивление. Но сопротивление таких тканей, как кожа и кости, очень высокое. Постоянный электрический ток плохо проникает через сухую кожу. Он распространяется в теле человека, главным образом, вдоль кровеносных и лимфатических сосудов и через мышцы.
Причиной высокого сопротивления биологических тканей постоянному электрическому току – наличие статической ёмкости вследствие изоляционных свойств мембран и явления поляризации, происходящие в клетках, в результате которых возникает встречная эдс, препятствующая прохождению через ткань тока. Причём при малых значениях силы тока он не проходит через ткань вследствие влияния этой ЭДС, а при больших – происходит дезинтеграция (разрушение) клеточных структур, в результате чего сопротивление падает, однако дальнейшие исследования не имеют смысла.
Поляризация – разделение положительных и отрицательных зарядов. многие полагают, что явление поляризации связано с наличием полупроницаемых мембран. Под действием электрического поля ионы начинают перемещаться, но не могут проникнуть через мембрану, в результате у внутренней поверхности мембраны возникает разделение зарядов. Внутри клетки образуется поляризационное поле. Как только его напряженность компенсирует внешнее поле перемещение ионов прекращается. Соответственно этому на внешней стороне мембраны концентрируются противоположно заряженные частицы.
Другие, рассматривая клетки как слоистый диэлектрик, рассматривают явления поляризации как результат гетерогенности клеточных элементов по электропроводности, а также поляризацию связывают с дипольными молекулами (ориентация диполей вдоль силовых линий поля).
Постоянный ток используют в медицинской практике, для реализации двух методов – гальванизации и лекарственного электрофореза.

Переменный ток. Полное сопротивление

Электрические цепи переменного тока включают такие основные электрические компоненты как резисторы, конденсаторы и индукторы. Их специфические свойства - сопротивление, емкость и индуктивность.

Емкость. Если два проводника (пластины металла) разделены посредине изоляцией, они способны накапливать некоторое количество электрического заряда. Величина, равная отношению суммарного заряда, накопленного на пластинах, к разности потенциалов между пластинами называется емкостью (измеряется в Фарадах (F) : C = q/U (13).

Индуктивность. Индуктивность L связана с наличием магнитного поля вокруг провода или катушки, через которые проходит электрический ток. Переменное магнитное поле порождает эдс (электродвижущую силу) самоиндукции, которая препятствует изменению силы тока в проводнике:
ε = -L·dl/dt (14), где ε - электродвижущая сила, dl/dt - мгновенная скорость изменения силы тока, L - индуктивность, которая зависит от геометрии цепи и от магнитных свойств вещества проводника и среды. Индуктивность измеряется в Генри (Г) .

Реактанс (или реактивное сопротивление). Ранее упоминалось, что сопротивление является свойством электрической цепи препятствовать прохождению через нее электрического тока и что электрическая энергия при этом превращается в тепловую. Реактанс - мера сопротивления переменному электрическому току. Реактанс связан с емкостью и индуктивностью некоторых частей цепи. Он не превращает электрическую энергию в энергию тепла. Реактанс присутствует дополнительно к сопротивлению, если через проводники протекает переменный ток. Когда в цепи течет постоянный электрический ток, то он подвергается только активному сопротивлению , но не реактансу. Реактанс бывает двух типов: индуктивный и емкостной.

Емкостной реактанс X C является обратной величиной произведения угловой (циклической) частоты тока и емкости этой части цепи: X C = 1/(ω·C)(15).

Индуктивный реактанс X L равен произведению угловой частоты переменного тока на индуктивность проводника: X L = ωL (16).

Доказано, что индуктивный реактанс приводит к тому, что изменения напряжения в электрической цепи опережают изменения силы тока на четверть периода (π/2). Это можно объяснить тем, эдс самоиндукции препятствует нарастанию силы тока в цепи.
Наоборот, емкостной реактанс приводит к тому, что изменения напряжения в электрической цепи отстают от изменения силы тока на четверть цикла (π/2). На рис. 3. проиллюстрировано данное явление.
Поэтому общий реактанс X представляет собой разность индуктивного и емкостного реактансов: X = X L - X C .
Если суммировать активное сопротивление и общий реактанс, который препятствует прохождению переменного тока в электрической цепи, получим величину, которая называется полным сопротивлением Z – импедансом :