Развивать мыслительные способности учащихся, умение анализировать, выделять общие и отличительные свойства; развивать умение применять теоретические знания на практике при решении задач на нахождение средней скорости неравномерного движения.

Скачать:


Предварительный просмотр:

Урок в 9 классе по теме: «Средняя и мгновенная скорости неравномерного движения»

Учитель – Малышев М.Е.

Дата -17.10.2013

Цели урока:

Образовательная цель:

  • Повторить понятие – средняя и мгновенная скорости,
  • научиться находить среднюю скорость при различных условиях, используя задачи из материалов ГИА и ЕГЭ прошлых лет.

Развивающая цель:

  • развивать мыслительные способности учащихся, умение анализировать, выделять общие и отличительные свойства; развивать умение применять теоретические знания на практике; развивать память, внимание, наблюдательность.

Воспитательная цель:

  • воспитывать устойчивый интерес к изучению математики и физики через реализацию межпредметных связей;

Тип урока:

  • урок обобщения и систематизации знаний, умений по данной теме.

Оборудование:

  • компьютер, мультимедийный проектор;
  • тетради;
  • набор оборудования L- микро по разделу «Механика»

Ход урока

1. Организационный момент

Взаимное приветствие; проверка готовности учащихся к уроку, организация внимания.

2. Сообщение темы и целей урока

Слайд на экране : “ Практика рождается только из тесного соединения физики и математики ” Бэкон Ф.

Сообщается тема и цели урока.

3. Входной контроль (повторение теоретического материала) (10 мин)

Организация устной фронтальной работы с классом по повторению.

Учитель физики:

1. Какой простейший вид движения вам известен? (равномерное движение)

2. Как найти скорость при равномерном движении? (перемещение разделить на время v = s / t )? Равномерное движение встречается нечасто.

Обычно механическое движение - это движение с изменяющейся скоростью. Движение, при котором скорость тела с течением времени изменяется, называют неравномерным. Например, неравномерно движется транспорт. Автобус, начиная движение, увеличивает свою скорость; при торможении его скорость уменьшается. Падающие на поверхность Земли тела также движутся неравномерно: их скорость с течением времени возрастает.

3. Как найти скорость при неравномерном движении? Как она называется? (Средняя скорость, v ср = s/ t)

На практике при определении средней скорости пользуются величиной, равной отношению пути s ко времени t, за которое этот путь пройден: v ср = s/t . Ее часто называют средней путевой скоростью .

4. Какие особенности есть у средней скорости? (Средняя скорость является векторной величиной. Для определения модуля средней скорости в практических целях этой формулой можно воспользоваться лишь в том случае, когда тело движется вдоль прямой в одну сторону. Во всех остальных случаях эта формула непригодна).

5. Что такое мгновенная скорость? Как направлен вектор мгновенной скорости? (Мгновенная скорость – это скорость тела в данный момент времени или в данной точке траектории. Вектор мгновенной скорости в каждой точке совпадает с направлением движения в данной точке.)

6. Чем отличается мгновенная скорость при равномерном прямолинейном движении от мгновенной скорости при неравномерном движении? (В случае равномерного прямолинейного движения мгновенная скорость в любой точке и в любой момент времени одинакова; в случае неравномерного прямолинейного движения мгновенная скорость различна).

7. Можно ли определить положение тела в любой момент времени зная среднюю скорость его движения на каком-либо участке траектории? (нельзя определить его положение в любой момент времени).

Предположим, что автомобиль проехал путь 300 км за 6 ч. Чему равна средняя скорость движения? Средняя скорость движения автомобиля равна 50 км/ч. Однако при этом он мог какое-то время стоять, какое - то время двигаться со скоростью 70 км/ч, какое - то время - со скоростью 20 км/ч и т. п.

Очевидно, что, зная среднюю скорость движения автомобиля за 6 ч, мы не можем определить его положение через 1 ч, через 2 ч, через 3 ч и т. д. времени”.

1. Устно найдите скорость автомобиля, если путь в 180 км он проехал за 3 часа.

2. Автомобиль ехал 1 час со скоростью 80 км /ч и 1 час со скоростью 60 км/ч. Найдите среднюю скорость. Действительно, средняя скорость равна(80+60)/2=70 км/ч. В данном случае средняя скорость равна среднему арифметическому скоростей.

3. Изменим условие. Автомобиль ехал 2 часа со скоростью 60 км /ч и 3 часа со скоростью 80 км/ч. Какова средняя скорость на всем пути?

(60 2+80 3)/5=72 км /ч. Скажите, а сейчас средняя скорость равна среднему арифметическому скоростей? Нет.

Самое главное, что нужно помнить, при нахождении средней скорости - это то, что она средняя, а не средняя арифметическая скорость. Конечно, услышав задачу, сразу хочется сложить скорости и разделить на 2.Это самая распространенная ошибка.

Средняя скорость равна среднему арифметическому от скоростей тела во время движения только в том случае, когда тело с этими скоростями проходит весь путь за одинаковые промежутки времени.

4. Решение задач (15 мин)

Задача №1. Скорость лодки по течению 24 км в час, против течения 16 км в час. Найти среднюю скорость. (Проверка выполнения заданий у доски.)

Решение. Пусть S - путь от начального до конечного пунктов, тогда время, затраченное на путь по течению S/24, а против течения - S/16, общее время движения - 5S/48. Так как весь путь, туда и обратно составляет 2S, следовательно, средняя скорость равна2S/(5S/48)=19,2 км в час.

Экспериментальное исследование “Равноускоренное движение, начальная скорость равна нолю” (Эксперимент проводится учащимися)

Прежде чем приступить к выполнению практической работы вспомним правила ТБ:

  1. Перед началом работы : внимательно изучить содержание и порядок проведения лабораторного практикума, подготовить рабочее место и убрать посторонние предметы, приборы и оборудование разместить таким образом, чтобы исключить их падение и опрокидывание, проверить исправность оборудования и приборов.
  2. Во время работы : точно выполнять все указания учителя, без его разрешения не выполнять самостоятельно никаких работ, следить за исправностью всех креплений в приборах и приспособлениях.
  3. По окончании работы : привести в порядок рабочее место, сдать учителю приборы и оборудование.

Исследование зависимости скорости от времени при равноускоренном движении (начальная скорость равна нулю).

Цель: изучение равноускоренного движения, построение графика зависимости v=at на основе экспериментальных данных.

Из определения ускорения следует, что скорость тела v , двигающегося прямолинейно с постоянным ускорением, спустя некоторое время t после начала движения может быть определена из уравнения: v = v 0 +аt . Если тело начало двигаться, не имея начальной скорости, то есть при v 0 = 0, это уравнение становится более простым: v = а t. (1)

Скорость в заданной точке траектории можно определить, зная перемещение тела из состояния покоя до этой точки и время движения. Действительно, при движении из состояния покоя (v 0 = 0 ) с постоянным ускорением перемещение определяется по формуле S= at 2 /2, откуда, а=2S/ t 2 (2). После подстановки формулы (2) в (1):v=2 S/t (3)

Для выполнения работы направляющую рейки устанавливают с помощью штатива в наклонном положении.

Её верхний край должен находиться на высоте 18-20 см от поверхности стола. Под нижний край подкладывают пластиковый коврик. Каретку устанавливают на направляющей в крайнем верхнем положении, причём её выступ с магнитом должен быть обращен в сторону датчиков. Первый датчик размещают вблизи магнита каретки так, чтобы он запускал секундомер, как только каретка начнёт двигаться. Второй датчик устанавливают на удалении 20-25 см от первого. Далее работу выполняют в таком порядке:

  1. Измеряют перемещение, которое каретка совершит, двигаясь между датчиками – S 1
  2. Производят пуск каретки и измеряют время её движения между датчиками t 1
  3. По формуле (3) определяют скорость, с которой двигалась каретка в конце первого участка v 1 =2S 1 /t 1
  4. Увеличивают расстояние между датчиками на 5см и повторяют серию опытов для измерения скорости тела в конце второго участка: v 2 =2 S 2 /t 2 Каретку в этой серии опытов, как и в первой, пускают из крайнего верхнего положения.
  5. Проводят ещё две серии опытов, увеличивая в каждой серии расстояние между датчиками на 5 см. Так находят значения скорости v з и v 4
  6. По полученным данным строят график зависимости скорости от времени движения.
  7. Подведение итогов урока

Домашнее задание с комментариями: Выберите любые три задачи:

1. Велосипедист, проехав 4 км со скоростью 12 км/ч, остановился и отдыхал в течении 40 мин. Оставшиеся 8 км пути он проехал со скоростью 8 км/ч. Найдите среднюю скорость (в км/ч) велосипедиста на всем пути?

2.Велосипедист за первые 5 с проехал 35 м, за последующие 10 с-100 м и за последние 5 с-25 м. Найдите среднюю скорость движения на всем пути.

3. Первые 3/4 времени своего движения поезд шел со скоростью 80 км/ч, остальное время - со скоростью 40 км/ч. Какова средняя скорость (в км/ч) движения поезда на всем пути?

4. Первую половину пути автомобиль прошел со скоростью 40 км/ч, вторую – со скоростью 60 км/ч. Найдите среднюю скорость(в км/ч) автомобиля на всем пути?

5. Автомобиль проехал первую половину пути со скоростью 60 км/ч. Оставшуюся часть пути он ехал со скоростью 35 км/ч, а последний участок – со скоростью 45 км/ч. Найдите среднюю скорость (в км/ч) автомобиля на всем пути.

“ Практика рождается только из тесного соединения физики и математики ” Бэкон Ф.

а) “Разгон” (начальная скорость меньше конечной) б) “Торможение” (конечная скорость меньше начальной)

Устно 1. Найдите скорость автомобиля, если путь в 180 км он проехал за 3 часа. 2. Автомобиль ехал 1 час со скоростью 80 км /ч и 1 час со скоростью 60 км/ч. Найдите среднюю скорость. Действительно, средняя скорость равна(80+60)/2=70 км/ч. В данном случае средняя скорость равна среднему арифметическому скоростей. 3. Изменим условие. Автомобиль ехал 2 часа со скоростью 60 км /ч и 3 часа со скоростью 80 км/ч. Какова средняя скорость на всем пути?

(60* 2+80* 3)/5=72 км /ч. Скажите, а сейчас средняя скорость равна среднему арифметическому скоростей?

Задача Скорость лодки по течению 24 км в час, против течения 16 км в час. Найти среднюю скорость лодки.

Решение. Пусть S- путь от начального до конечного пунктов, тогда время, затраченное на путь по течению S/24, а против течения - S/16, общее время движения - 5S/48. Так как весь путь, туда и обратно составляет 2S, следовательно, средняя скорость равна2S/(5S/48)=19,2 км в час.

Решение. V ср = 2s / t 1 + t 2 t 1 = s / V 1 и t 2 = s / V 2 V ср = 2s / V 1 + s / V 2 = 2 V 1 V 2 / V 1 + V 2 V ср = 19,2 км/ч

На дом: Первую треть трассы велосипедист ехал со скоростью 12 км в час, вторую треть - со скоростью 16 км в час, а последнюю треть - со скоростью 24 км в час. Найдите среднюю скорость велосипеда на протяжении всего пути. Ответ дайте в км в час.


К примеру, автомобиль, который трогается с места, движется ускоренно, так как наращивает скорость движения. В точке начала движения скорость автомобиля равняется нулю. Начав движение, автомобиль разгоняется до некоторой скорости. При необходимости затормозить, автомобиль не сможет остановиться мгновенно, а за какое-то время. То есть скорость автомобиля будет стремиться к нулю - автомобиль начнет двигаться замедленно до тех пор, пока не остановится полностью. Но физика не имеет термина «замедление». Если тело двигается, уменьшая скорость, этот процесс тоже называется ускорением , но со знаком «-».

Средним ускорением называется отношение изменения скорости к промежутку времени, за который это изменении произошло. Вычисляют среднее ускорение при помощи формулы:

где - это . Направление вектора ускорения такое же, как у направления изменения скорости Δ = - 0

где 0 является начальной скоростью. В момент времени t 1 (см. рис. ниже) у тела 0 . В момент времени t 2 тело имеет скорость . Исходя из правила вычитания векторов, определим вектор изменения скорости Δ = - 0 . Отсюда вычисляем ускорение:

.

В системе СИ единицей ускорения называется 1 метр в секунду за секунду (либо метр на секунду в квадрате):

.

Метр на секунду в квадрате - это ускорение прямолинейно движущейся точки, при котором за 1 с скорость этой точки растет на 1 м/с. Другими словами, ускорение определяет степень изменения скорости тела за 1 с. К примеру, если ускорение составляет 5 м/с 2 , значит, скорость тела ежесекундно растет на 5 м/с.

Мгновенное ускорение тела (материальной точки) в данный момент времени - это физическая величина , которая равна пределу, к которому стремится среднее ускорение при стремлении промежутка времени к 0. Другими словами - это ускорение, развиваемое телом за очень маленький отрезок времени:

.

Ускорение имеет такое же направление, как и изменение скорости Δ в крайне маленьких промежутках времени, за которые скорость изменяется. Вектор ускорения можно задать при помощи проекций на соответствующие оси координат в заданной системе отсчета (проекциями а Х, a Y , a Z).

При ускоренном прямолинейном движении скорость тела увеличивается по модулю, т.е. v 2 > v 1 , а вектор ускорения имеет такое же направление, как и у вектора скорости 2 .

Если скорость тела по модулю уменьшается (v 2 < v 1), значит, у вектора ускорения направление противоположно направлению вектора скорости 2 . Другими словами, в таком случае наблюдаем замедление движения (ускорение отрицательно, а < 0). На рисунке ниже изображено направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Если происходит движение по криволинейной траектории, то изменяется модуль и направление скорости. Значит, вектор ускорения изображают в виде 2х составляющих.

Тангенциальным (касательным) ускорением называют ту составляющую вектора ускорения, которая направлена по касательной к траектории в данной точке траектории движения. Тангенциальное ускорение описывает степень изменения скорости по модулю при совершении криволинейного движения.


У вектора тангенциального ускорения τ (см. рис. выше) направление такое же, как и у линейной скорости либо противоположно ему. Т.е. вектор тангенциального ускорения находится в одной оси с касательной окружности, являющейся траекторией движения тела.

«Физика - 10 класс»

Какую скорость показывает спидометр?
Может ли городской транспорт двигаться равномерно и прямолинейно?

Реальные тела (человек, автомобиль, ракета, теплоход и т. д.), как правило, не движутся с постоянной скоростью. Они начинают двигаться из состояния покоя, и их скорость увеличивается постепенно, при остановке скорость уменьшается также постепенно, таким образом, реальные тела движутся неравномерно.

Неравномерное движение может быть как прямолинейным, так и криволинейным.

Чтобы полностью описать неравномерное движение точки, надо знать её положение и скорость в каждый момент времени.

Скорость точки в данный момент времени называется мгновенной скоростью .

Что же понимают под мгновенной скоростью?

Пусть точка, двигаясь неравномерно и по кривой линии, в некоторый момент времени t занимает положение М (рис. 1.24). По прошествии времени Δt 1 от этого момента точка займёт положение М 1 , совершив перемещение Δ 1 . Поделив вектор Δ 1 на промежуток времени Δt 1 найдём такую скорость равномерного прямолинейного движения с которой должна была бы двигаться точка, чтобы за время Δt попасть из положения М в положение М 1 . Эту скорость называют средней скоростью перемещения точки за время Δt 1 .

Обозначив её через ср1 , запишем: Средняя скорость направлена вдоль секущей ММ 1 . По той же формуле мы находим скорость точки при равномерном прямолинейном движении.

Скорость, с которой должна равномерно и прямолинейно двигаться точка, чтобы попасть из начального положения в конечное за определённый промежуток времени, называется средней скоростью перемещения.

Для того чтобы определить скорость в данный момент времени, когда точка занимает положение М, найдём средние скорости за всё меньшие и меньшие промежутки времени:

Интересно, верно ли следующее определение мгновенной скорости: «Скорость тела в данной точке траектории называется мгновенной скоростью»?

При уменьшении промежутка времени Δt перемещения точки уменьшаются по модулю и меняются по направлению. Соответственно этому средние скорости также меняются как по модулю, так и по направлению. Но по мере приближения промежутка времени Δt к нулю средние скорости всё меньше и меньше будут отличаться друг от друга. А это означает, что при стремлении промежутка времени Δt к нулю отношение стремится к определённому вектору как к своему предельному значению. В механике такую величину называют скоростью точки в данный момент времени или просто мгновенной скоростью и обозначают

Мгновенная скорость точки есть величина, равная пределу отношения перемещения Δ к промежутку времени Δt, в течение которого это перемещение произошло, при стремлении промежутка Δt к нулю.

Выясним теперь, как направлен вектор мгновенной скорости. В любой точке траектории вектор мгновенной скорости направлен так, как в пределе, при стремлении промежутка времени Δt к нулю, направлена средняя скорость перемещения. Эта средняя скорость в течение промежутка времени Δt направлена так, как направлен вектор перемещения Δ Из рисунка 1.24 видно, что при уменьшении промежутка времени Δt вектор Δ уменьшая свою длину, одновременно поворачивается. Чем короче становится вектор Δ, тем ближе он к касательной, проведённой к траектории в данной точке М, т. е. секущая переходит в касательную. Следовательно,

мгновенная скорость направлена по касательной к траектории (см. рис. 1.24).

В частности, скорость точки, движущейся по окружности, направлена по касательной к этой окружности. В этом нетрудно убедиться. Если маленькие частички отделяются от вращающегося диска, то они летят по касательной, так как имеют в момент отрыва скорость, равную скорости точек на окружности диска. Вот почему грязь из-под колёс буксующей автомашины летит по касательной к окружности колёс (рис. 1.25).

Понятие мгновенной скорости - одно из основных понятий кинематики. Это понятие относится к точке. Поэтому в дальнейшем, говоря о скорости движения тела, которое нельзя считать точкой, мы можем говорить о скорости какой-нибудь его точки.

Помимо средней скорости перемещения, для описания движения чаще пользуются средней путевой скоростью cps .

Средняя путевая скорость определяется отношением пути к промежутку времени, за который этот путь пройден:

Когда мы говорим, что путь от Москвы до Санкт-Петербурга поезд прошёл со скоростью 80 км/ч, мы имеем в виду именно среднюю путевую скорость движения поезда между этими городами. Модуль средней скорости перемещения при этом будет меньше средней путевой скорости, так как s > |Δ|.

Для неравномерного движения также справедлив закон сложения скоростей. В этом случае складываются мгновенные скорости.


Ни одно тело не движется все время с постоянной скоростью. Трогаясь с места, автомобиль начинает двигаться все быстрее и быстрее. Некоторое время он может двигаться равномерно, но рано или поздно замедляет движение и останавливается. При этом он проходит различные расстояния за одни и те же интервалы времени.
Что же надо понимать под скоростью, если тело движется неравномерно?
Средняя скорость
Введем понятие средней скорости неравномерного движения за интервал времени At.
Средней (по времени) скоростью неравномерного движения точки называется отношение изменения ее координаты Ах к интервалу времени At, в течение которого это изменение произошло:
По форме определение средней скорости неравномерного движения не отличается от определения скорости равномерного движения. Но содержание его будет иным. Теперь отноше- V, м/с
10 8 6 4 2 В А 1 / / / 1 0 5 10 15 Рис. 1.14
20 t, с
2 мин от 2-й
До
Ах „
ние - уже не постоянно. Оно зависит как от значения интервала времени At = t2 - tv так и от выбора начального момента времени tv Например, соглас-но таблице 1 (см. с. 34), средняя ско-рость автомобиля на интервале времени от 2-й до 4-й минуты равна
2130 м- 1050 м,
540 м/мин, на интер-
3-й минуты равна
вале 1840 м - 1050 м = 290 м/мин.
2130 м - 1840 м
ты мы получаем значение
2 мин
Средняя скорость характеризует движение в течение интервала времени At именно в среднем и ничего не говорит о том, как же движется автомобиль в различные моменты времени этого интервала.
"Другой пример. На рисунке 1.14 показан график скорости спринтера при забеге на 200 м. Проанализируем этот забег. Будем считать беговую дорожку прямолинейной. С точки зрения результата нас, конечно, интересует время забега (Ai = 20 с), и поэтому бег спортсмена можно характеризовать средней скоро-стью. Если координатную ось X совместить с беговой дорожкой (за начало отсчета можно принять точку на линии старта), то
Ах = 200 м. Тогда vx = ^ = ^о ™ = М/С- споРтсмена и
его тренера интересуют и детали забега: сколько времени длился разбег, какую скорость развил спортсмен в конце разбега (точка В на графике). Ведь этим и будет определяться время забега. Но скорость спортсмена, соответствующая точке В графика, это уже не средняя скорость, а скорость спортсмена в момент времени t = 4 с.
Мгновенная скорость
Мгновенную скорость естественно было бы определить как скорость тела в данный момент времени или в данной точке траектории. На первый взгляд определение очень простое и понятное. Но так ли это? Как надо, например, понимать следующее утверждение: «Скорость автомобиля в момент начала торможения была 90 км/ч»? Перефразировка этого утверждения«В момент начала торможения автомобиль за 1 ч прошел 90 км » бессмысленна.
Утверждение это, видимо, понимать надо так: если бы начи-ная с указанного момента времени автомобиль не стал бы тор-мозить, а продолжал бы двигаться так же, т. е. с той же быстротой, то за 1 ч он прошел бы 90 км, за 0,5 ч - 45 км, за 1 мин - 1,5 км, за 1 с - 25 м и т. д.
Результат последнего рассуждения весьма важен, ибо показывает, как в принципе можно определить мгновенную скорость автомобиля в момент t начала торможения (или любого другого тела, движущегося прямолинейно и неравномерно). Надо измерить среднюю скорость автомобиля на интервале времени от t до t + At и согласиться, что мгновенная скорость автомобиля в момент времени t приблизительно равна этой средней скорости. Приближение будет тем лучше и, следовательно, мгновенная скорость будет определена тем точнее, чем меньше промежуток времени At. Ведь надо, чтобы на этом промежутке скорость менялась незначительно, а лучше, чтобы этим изменением вообще можно было пренебречь. Последнее замечание заставляет нас брать величину At все меньше и меньше, не ставя ограничения этому уменьшению. В математике это называют «стремление интервала времени At к нулю» и обозначают «At -»0».
За очень малый промежуток времени от t до t + At координата тела изменится также на малую величину Ах. Чтобы найти мгновенную скорость в момент времени t, надо малую величину Ах разделить на малую величину At и посмотреть, чему будет равно частное, если промежуток At неограниченно уменьшать, т. е. стремить к нулю. В математике говорят: «Найти
Ах. .
предел отношения при стремлении At к нулю» и записывают: vr = lim ^ , где знак lim означает «предел».
Af -> 0 А*
Поясним сказанное на примере, когда движение тела описывается аналитически (формулой). Ведь по формуле можно найти положение тела в любой момент времени.
Пусть при движении тела вдоль оси X его координата изменяется согласно уравнению
* = kt ,
где k - постоянный коэффициент.
Примем k = 5 м/с2 и вычислим изменения координаты тела за интервалы времени, равные 0,1, 0,01, 0,001 с..., отсчитываемые, например, с момента времени tt = 1 с:
А*! = 5^ (1,1 с)2-5^ (1с)2 = 1,05 м,
с с
Дх2 = 5^ (1,01 с)2 - 5^ (1 с)2 = 0,1005 м,
с с
Найдем теперь отношения изменений координаты к тем промежуткам времени, за которые эти изменения произошли:
Д*1 1,05 м 1ft _ . А?7 ="0ДТ =10"5м/с"
а*2 0,1005 м 1ПЛС. Щ =-07ГПГ -10,06 м/с,
Еезультаты вычислений приведены в таблице 2.
Таблица 2 At, С Ax, M Ax , ~At " C 0,1 1,05 10,5 0,01 0,1005 10,05 0,001 0,010005 10,005 0,0001 0,00100005 10,0005
Из таблицы видно, что по мере приближения интервала времени At к нулю отношение ~ приближается к определенному
значению (пределу), равному 10 м/с; это и есть скорость в мо-мент времени t1 = 1 с.
Если тело движется по закону х = kt2, то предел ^ при
At -> 0 {lim ^) нетрудно вычислить. В начальный момент
\U-»0 At S
времени t xl = kt2, а в момент t + At х2 = k(t + At)2, следовательно, Ах = х2 - xl = k(t + At)2 - kt2 = 2ktAt + k(At)2.
Тогда для отношения ~ получим:
- = 2kt + kAt.
At
Предел этого отношения при At -> 0 (мгновенная скорость) равен
= lim ~ = 2kt.
х At -> о At
Для данных нашего примера vx = 10 м/с.
Таким образом, для любого момента времени отношение изменения координаты тела к промежутку времени, за который это изменение произошло, стремится к определенному значению при стремлении самого промежутка времени к нулю. Полученный вывод справедлив для любого неравномерного движения.
Мгновенной скоростью при прямолинейном движении называется предел, к которому стремится отношение изменения координаты точки к интервалу времени, за которое это изменение произошло, если интервал времени стремится к нулю.
По определению имеем:
lim^. (1.7.1)
м ->0
т, Ах _ dx
В математике выражение lim - принято обозначать -=- .
ді -»о At dt
Тогда формулу (1.7.1) можно записать так:
... dx = dt ¦
Выражение ^ называется производной координаты по времени.
dx
Иногда производную обозначают иначе: vx(t) = = х" (читается «икс-штрих»).
Когда мы говорим, что скорость в данный момент времени равна 10 м/с, то это означает следующее: если бы начиная с этого момента тело продолжало двигаться равномерно целую секунду, то оно прошло бы 10 м. При равномерном движении средняя скорость за любой момент времени равна мгновенной.
В дальнейшем вы убедитесь, что именно мгновенная, а не средняя скорость играет в механике основную роль.
Как измерить мгновенную скорость І
Измерить мгновенную скорость, осуществив экспериментально предель-
Ах. . „ ныи переход при At -> О, практически невозможно. Используя стробоскопические фотографии (рис. 1.15), можно измерить координаты тела в очень близкие моменты времени и вычислить средние скорости между этими моментами. Но мгновенную скорость так определить нельзя.
Для измерения (разумеется, при-ближенного) используют различные явления, которые зависят от мгновен-ной скорости. Так, в спидометре авто-мобиля гибкий тросик передает вра-щение от ведомого вала коробки пере-дач к маленькому постоянному магниту. Вращение магнита возбуждает электрический ток в катушке, в ре-зультате чего происходит поворот стрелки спидометра.
Чтобы узнать скорость самолета, измеряют давление встречного потока воздуха. В радарах используют изменение частоты радиоволн при отражении от движущихся тел.
При неравномерном движении скорость изменяется. Некоторое представление о движении дает средняя скорость. Но главную роль играет скорость в любой точке в данный момент времени. Это - мгновенная скорость.
Ж
Рис. 1.15
Рисунок с фотографии двух падающих шариков различной массы. Фотографию получили, открывая объектив и чередуя вспышки света каждые 1/30 с. Заметьте, что маленький шарик достигает пола одновременно с большим. Оба шарика начинают падать одновременно.

Еще по теме § 1.7. СРЕДНЯЯ СКОРОСТЬПРИ НЕРАВНОМЕРНОМ ПРЯМОЛИНЕЙНОМДВИЖЕНИИ. МГНОВЕННАЯ СКОРОСТЬ:

  1. 3.2.1 Средняя скорость распространения пламени в основной фазе сгорания.
  2. 3.2.2 Средняя скорость распространения пламени во второй фазе сгорания.
  3. 3.2.3 Средняя скорость распространения пламени в третьей фазе сгорания
  4. 4.2.3 Полуэмпирическая зависимость средней скорости распространения пламени во второй фазе сгорания
  5. 4.2.2 Полуэмпирическая формула средней скорости распространения пламени в основной фазе сгорания
  6. Теорема 27. Третье правило. Если два тела равны по массе, но В движется немного скорее А, то не только А отразится в противоположном направлении, но и В перенесет на А половину своего излишка скорости, и оба будут продолжать движение с равной скоростью в одном направлении.