• N – натуральные числа (1, 2, 3, …);
  • Z – целые числа (0, ±1, ±2, ±3, …);
  • Q – рациональные числа, их можно представить в виде дроби \frac{m}{n} , где mцелое число, а п – натуральное (3,\frac{2}{3} , -\frac{4}{3} );
  • R – действительные числа (3, \sqrt{7} , 0, -\frac{2}{3} );
  • Иррациональные числа – это действительные числа, которые не являются рациональными (\sqrt{7} ).
  • C - комплексные числа (a+i⋅b , где i - мнимая единица и i 2 =−1). Любое действительное число является комплексным.
  • Положительные числа - больше нуля. Например, 4, \sqrt{5} , 213. Но не 0 и не −5.
  • Неотрицательные числа - не меньше нуля. Например, 6, 0, 32. Но не −3.
  • Отрицательные числа. Числа, которые меньше нуля. Например, −4, -\sqrt{5} . Но не 0 и не 5.
  • Неположительные числа. Числа, которые не больше нуля. Например, 0, −\sqrt{3} . Но не 6, не \sqrt{7} .

Свойства сложение и умножения натуральных чисел:

  • a + b = b + a – переместительное свойство сложения
  • (a + b) + с = a + (b + c) –
  • a∙b = b∙a – переместительное свойство умножения
  • (a∙b)∙c = a∙(b∙c) – сочетательное свойство сложения
  • a(b ± с) = ab ± ac распределительное свойство умножения относительно сложения/вычитания

Если m, n, k натуральные числа, то при m – n = k говорят, что m – уменьшаемое, n – вычитаемое, k – разность; m: n = k говорят, что m – делимое, n – делитель, k – частное.

Наименьшим общим кратным (НОК) двух и более натуральных чисел называется наименьшее натуральное число, которое само делится нацело на каждое из этих чисел.

Наибольший общий делитель (НОД) двух данных чисел a и b – это наибольшее число, на которое оба числа a и b делятся без остатка.

Среднее арифметическое множества чисел – сумма всех чисел, делённое на их количество

Арифметическая прогрессия – это числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с постоянным для этой последовательности числом d .

Формула вычисления арифметической прогрессии : а п = а 1 + d(n – 1).

Геометрическая прогрессия – это числовая последовательность задаваемая двумя параметрами b, q (q ≠ 0) и законом b 1 = b, b n = b n-1 ∙q, n = 2, 3, … .

Формула вычисления геометрической прогрессии: b n = b 1 ∙q n-1 .

Формула знаменателя геометрической прогрессии: q = b n+1 / b n

Формула суммы n -первых членов геометрической прогрессии:

S n = b 1 (1 - q n)/(1 - q)

S n = (b 1 - b n q)/(1 - q), где q ≠ 1

Тема: Теория чисел в заданиях С6 из ЕГЭ XII Межрайонная научно-практическая конференция «Шаг в будущее» Секция: математика Выполнили: Ильдар Гарифуллин, Роман Синицкий 11 а класс, МОУ Лицей 6 Руководитель: Мунтян Е.М. учитель математики МОУ Лицей 6 г. Северобайкальск 2012 г.


Актуальность Сдать ЕГЭ – вот главная задача всех выпускников, причём желательно набрать больше баллов. От результатов ЕГЭ зависит кол-во и престиж ВУЗов, куда выпускник сможет поступить. Безусловно, на ЕГЭ нужно решать столько, сколько можешь. Задание С6 в ЕГЭ по математике оценивается самым высоким балом, но к сожалению очень маленький процент выпускников приступают к решению этого задания, считая его сложность запредельной. Мы хотим развеять этот миф и показать как решаются некоторые из этих заданий. Дальше приведена статистика выполнения задания С6 выпускниками школ, сдающих ЕГЭ по математике.


ПроцентКол-во Не приступили к выполнению задания С6 90.3% Решили С6 на 1 балл %1236 Решили С6 на 2 балла %269 Решили С6 на 3 балла 0.097%727 Решили С6 на 4 балла %123 Оценка в тестовых баллах (2011 г.) 4 балла в первичном виде 24 баллов в тестовом виде






Признак делимости на 11 (теория) Для того чтобы натуральное число делилось на 11, необходимо и достаточно, чтобы алгебраическая сумма его цифр, взятых со знаком «+», если цифры находятся на нечётных местах (начиная с цифры единиц), и взятых со знаком «-», если цифры находятся на чётных местах, делилась на 11.


Применение признака делимости на 11 Число делится на 11 тогда и только тогда, когда разность между суммами его цифр, стоящих на нечётных и на чётных местах, делится на 11. Запишем все цифры подряд: В написанном числе указанная разность сумм равна 5. Цифры 0, 2, 4, 6, 8 – стоят на нечётных местах Цифры 1, 3, 5, 7, 9 – стоят на чётных местах ()+()=5


Меняя местами цифры, допусти 1 и 4, мы увеличиваем обе скобки на 3. А так как у нас 2 скобки то общая сумма увеличивается на 6 Получается число с на У нас было ()+()=5 После замены ()+()=11 Применение признака делимости на 11


Чтобы получить другие числа по заданию, достаточно поменять местами одну из пар чисел. При перестановки пар сумма в скобках не меняется, так как чётные числа остаются на чётных местах, а нечётные на нечётных Нас не просят найти все числа, поэтому достаточно 3: (; ;)


Задача 2 (применение знаний о рациональных числах) Бесконечная десятичная дробь устроена следующим образом. Перед десятичной запятой стоит нуль. После запятой подряд выписаны члены арифметической прогрессии (d – целое). Из полученной записи удалены минусы, если они есть. В результате получается рациональное число. Найдите это число.


Рациональные числа (теория) Рациональное число – число, которое может быть представлено в виде дроби, где и – целые числа (m 0) Рациональные числа могут быть представлены лишь конечными десятичными или бесконечными периодическими дробями. Периодическая дробь – бесконечная десятичная дробь, в которой, начиная с некоторого места, стоит только периодически повторяющаяся определённая группа цифр.








Задача 4 последовательность Все члены конечной последовательности являются натуральными числами. Каждый член этой последовательности, начиная со второго, либо в 14 раз больше, либо в 14 раз меньше предыдущего. Сумма всех членов последовательности равна А) Может ли последовательность состоять из двух членов? Б) Может ли последовательность состоять из трёх членов? В) Какое наибольшее количество членов может быть в последовательности?



В) Какое наибольшее количество членов может быть в последовательности? чтобы найти наибольшее количество членов, нужно чтобы элементы были наименьшие из возможных, тесть числа 1 и 14. Возможны четыре варианта. 1)(14+1)+(14+1)…+(14+1)=7424 –количество элементов четно, первый элемент 14 2)14+(1+14)+(1+14)…+(1+14)=7424 –количество элементов нечетно, первый элемент 14 3) (1+14)+(1+14)…+(1+14)=7424 -количество элементов четно, первый элемент 1 4)1+(14+1)+(14+1)…+(14+1)=7424 -количество элементов нечетно, первый элемент 1 1,3)(14+1)n=7424 2) 14+(1+14)n= (14+1)n=7424 Очевидно, что 1,3,4- варианты 15n= n= n=7423 не подходят. n=494.9(3) n=494 n=494.8(6) 2)Во-втором случае у нас 494 пары (1+14) и первый элемент 14. Ответ.989


Задача 5 минимумы и максимумы Перед каждым из чисел 3, 4, 5, и 14, 15, произвольным образом ставят знак плюс или минус, после чего к каждому из образовавшихся чисел первого набора прибавляют каждое из образовавшихся чисел второго набора, а затем все 45 полученных результатов складывают. Какую наименьшую по модулю сумму и какую наибольшую сумму можно получить в итоге?




0, т.е Целые y: -2;-1;0. При y=-2, второе уравнение не имеет решения. При y=-1, x=-7 или х=4. Но при х=-7, первое неравенство не выполняется. При y=0, x=2 или" title="Решение: Рассмотрим I нер-во. Оно является квадратным относительно x, и имеет решение при D>0, т.е Целые y: -2;-1;0. При y=-2, второе уравнение не имеет решения. При y=-1, x=-7 или х=4. Но при х=-7, первое неравенство не выполняется. При y=0, x=2 или" class="link_thumb"> 23 Решение: Рассмотрим I нер-во. Оно является квадратным относительно x, и имеет решение при D>0, т.е Целые y: -2;-1;0. При y=-2, второе уравнение не имеет решения. При y=-1, x=-7 или х=4. Но при х=-7, первое неравенство не выполняется. При y=0, x=2 или х=-2. Но при этих значениях первое не неравенство не выполняется. Ответ: (4;-1). 0, т.е Целые y: -2;-1;0. При y=-2, второе уравнение не имеет решения. При y=-1, x=-7 или х=4. Но при х=-7, первое неравенство не выполняется. При y=0, x=2 или"> 0, т.е Целые y: -2;-1;0. При y=-2, второе уравнение не имеет решения. При y=-1, x=-7 или х=4. Но при х=-7, первое неравенство не выполняется. При y=0, x=2 или х=-2. Но при этих значениях первое не неравенство не выполняется. Ответ: (4;-1)."> 0, т.е Целые y: -2;-1;0. При y=-2, второе уравнение не имеет решения. При y=-1, x=-7 или х=4. Но при х=-7, первое неравенство не выполняется. При y=0, x=2 или" title="Решение: Рассмотрим I нер-во. Оно является квадратным относительно x, и имеет решение при D>0, т.е Целые y: -2;-1;0. При y=-2, второе уравнение не имеет решения. При y=-1, x=-7 или х=4. Но при х=-7, первое неравенство не выполняется. При y=0, x=2 или"> title="Решение: Рассмотрим I нер-во. Оно является квадратным относительно x, и имеет решение при D>0, т.е Целые y: -2;-1;0. При y=-2, второе уравнение не имеет решения. При y=-1, x=-7 или х=4. Но при х=-7, первое неравенство не выполняется. При y=0, x=2 или">

19 задание в профильном уровне ЕГЭ по математике направлено на выявление у учеников способности оперировать числами, а именно их свойствами. Это задание наиболее сложное и требует нестандартного подхода и хорошего знания свойств чисел. Перейдем к рассмотрению типового задания.

Разбор типовых вариантов заданий №19 ЕГЭ по математике профильного уровня

Первый вариант задания (демонстрационный вариант 2018)

На доске написано более 40, но менее 48 целых чисел. Среднее арифметическое этих чисел равно –3, среднее арифметическое всех положительных из них равно 4, а среднее арифметическое всех отрицательных из них равно –8.

а) Сколько чисел написано на доске?

б) Каких чисел написано больше: положительных или отрицательных?

в) Какое наибольшее количество положительных чисел может быть среди них?

Алгоритм решения:
  1. Вводим переменные k, l , m.
  2. Находим сумму набора чисел.
  3. Отвечаем на пункт а).
  4. Определяем, каких чисел больше (пункт б)).
  5. Определяем, сколько положительных чисел.
Решение:

1. Пусть среди записанных на доске чисел положительных k. Отрицательных чисел l и нулевых m.

2. Сумма выписанных чисел равна их количеству в данной записи на доске, умноженному на среднее арифметическое. Определяем сумму:

4k −8l + 0⋅m = − 3(k + l +m)

3. Заметим, что слева в приведенном только что равенстве каждое из слагаемых делится на 4, потому сумма количества каждого типа чисел k + l + m тоже делится на 4. По условию общее число записанных чисел удовлетворяет неравенству:

40 < k + l + m < 48

Тогда k + l + m = 44, потому что 44 единственное между 40 и 48 натуральное число, которое делится на 4.

Значит, написано на доске всего 44 числа.

4. Определяем, чисел какого вида больше: положительных или отрицательных. Для этого приведем равенство 4k −8l = − 3(k + l +m) к более упрощенному виду: 5l = 7k + 3m.

5. m≥ 0. Отсюда вытекает: 5l ≥ 7k, l > k. Получается, что отрицательных чисел записано больше положительных. Подставляем вместо k + l + m число 44 в равенство

4k −8l = − 3(k + l + m).

4k − 8l = −132, k = 2l − 33

k + l ≤ 44, тогда получается: 3l − 33 ≤ 44; 3l ≤ 77; l ≤ 25; k = 2l − 33 ≤17. Отсюда приходим к выводу, что положительных чисел не более 17.

Если же положительных чисел всего 17, то на доске 17 раз записано число 4, 25 раз – число −8 и 2 раза записано число 0. Такой набор отвечает всем требованиям задачи.

Ответ: а) 44; б) отрицательных; в) 17.

Второй вариант 1 (из Ященко, №1)

На доске написано 35 различных натуральных чисел, каждое из которых либо чётное, либо его десятичная запись оканчивается на цифру 3. Сумма написанных чисел равна 1062.

а) Может ли на доске быть ровно 27 чётных чисел?

б) Могут ли ровно два числа на доске оканчиваться на 3?

в) Какое наименьшее количество чисел, оканчивающихся на 3, может быть на доске?

Алгоритм решения:
  1. Приведем пример набора чисел, который удовлетворяет условию (Это подтверждает возможность набора чисел).
  2. Проверяем вероятность второго условия.
  3. Ищем ответ на третий вопрос, введя переменную n.
  4. Записываем ответы.
Решение:

1. Такой примерный перечень чисел на доске соответствует заданным условиям:

3,13,23,33,43,53,63,73,2,4,6,…,50,52,56

Это дает положительный ответ на вопрос а.

2. Пусть на доске написано ровно два числа, у которых последняя цифра 3. Тогда там записано 33 чётных числа. Их сумма:

Это противоречит тому, что сумма написанных чисел равна 1062, то есть, утвердительного ответа на вопрос б нет.

3. Полагаем, что на доске записано n чисел, которые оканчиваются на 3, и (35 – n)из выписанных чётные. Тогда сумма чисел, которые оканчиваются на 3, равна

а сумма чётных:

2+4+…+2(35 – n)=(35 – n)(36 – n)= n 2 -71 n+1260.

Тогда из условия:

Решаем получившееся неравенство:

Получается, что . Отсюда, зная, что n - натуральное, получаем .

3. Наименьшее число чисел, оканчивающихся на 3, может быть только 5. И добавлено 30 чётных чисел, тогда сумма всех чисел нечётна. Значит, чисел, которые оканчиваются на 3, больше. чем пять, поскольку сумма по условию равна четному числу. Попробуем взять 6 чисел, с последней цифрой 3.

Приведём пример, когда 6 чисел, оканчиваются на три, и 29 чётных чисел. Сумма их равна 1062. Получается такой список:

3, 13, 23, 33, 43, 53, 2, 4, ..., 54, 56, 82.

Ответ: а) да; б) нет; в) 6.

Третий вариант (из Ященко, №4)

Маша и Наташа делали фотографии несколько дней подряд. В первый день Маша сделала m фотографий, а Наташа - n фотографий. В каждый следующий день каждая из девочек делала на одну фотографию больше, чем в предыдущий день. Известно, что Наташа за всё время сделала суммарно на 1173 фотографии больше, чем Маша, и что фотографировали они больше одного дня.

а) Могли ли они фотографировать в течение 17 дней?

б) Могли ли они фотографировать в течение 18 дней?

в) Какое наибольшее суммарное число фотографий могла сделать Наташа за все дни фотографирования, если известно, что в последний день Маша сделала меньше 45 фотографий?

Алгоритм решения:
  1. Ответим на вопрос а).
  2. Найдем ответ на вопрос б).
  3. Найдем суммарное количество фотографий, сделанных Наташей.
  4. Запишем ответ.
Решение:

1. Если Маша сделала m фотографий в 1-й день, то за 17 дней она сфотографировала снимков.