3. Цели моделирования.

1. Познание окружающего мира.

Зачем человек создает модели? Чтобы ответить на этот вопрос, надо заглянуть в далекое прошлое. Несколько миллионов лет назад, на заре человечества, первобыт­ные люди изучали окружающую природу, чтобы научиться противостоять природ­ным стихиям, пользоваться природными благами, просто выживать.

Накопленные знания передавались из поколения в поколение устно, позже пись­менно, наконец с помощью предметных моделей. Так родилась, к примеру, модель земного шара - глобус, - позволяющая получить наглядное представление о фор­ме нашей планеты, ее вращении вокруг собственной оси и расположении матери­ков. Такие модели позволяют понять, как устроен конкретный объект, узнать его основные свойства, установить законы его развития и взаимодействия с окружаю­щим миром моделей.

2. Создание объектов с заданными свойствами (задача типа «Как сделать, чтобы...»).

Накопив достаточно знаний, человек задал себе вопрос: «Нельзя ли создать объект с заданными свойствами и возможностями, чтобы противодействовать стихиям или ставить себе на службу природные явления?» Человек стал строить модели еще не существующих объектов. Так родились идеи создания ветряных мельниц, различ­ных механизмов, даже обыкновенного зонтика. Многие из этих моделей стали в настоящее время реальностью. Это объекты, созданные руками человека.

3. Определение последствий воздействия на объект и принятие правильного решения (задача типа «Что будет, если...»: что будет, если увеличить плату за про­езд в транспорте, или что произойдет, если закопать ядерные отходы в такой-то местности?)

Например, для спасения Петербурга от постоянных наводнений, приносящих огромный ущерб, решено было возвести дамбу. При ее проектировании было по­строено множество моделей, в том числе и натурных, именно для того, чтобы пред­сказать последствия вмешательства в природу.

4. Эффективность управления объектом (или процессом).

Поскольку критерии управления бывают весьма противоречивыми, то эффек­тивным оно окажется только при условии, если будут «и волки сыты, и овцы целы».

Например, нужно наладить питание в школьной столовой. С одной стороны, оно должно отвечать возрастным требованиям (калорийное, содержащее витамины и минеральные соли), с другой - нравиться большинству ребят и к тому же быть «по карману» родителям, а с третьей - технология приготовления должна соответ­ствовать возможностям школьных столовых. Как совместить несовместимое? Построение модели поможет найти приемлемое решение.

Анализ объекта.

На этом этапе четко выделяют моделируемый объект, его оснбвные свойства, его элементы и связи между ними.

Простой пример подчиненных связей объектов - разбор предложения. Сначала выделяются главные члены (подлежащее, сказуемое), затем второстепенные чле­ны, относящиеся к главным, затем слова, относящиеся к второстепенным, и т. д.Этап П. Разработка модели

Информационная модель.

На этом этапе выясняются свойства, состояния, действия и другие характерис­тики элементарных объектов в любой форме: устно, в виде схем, таблиц. Форми­руется представление об элементарных объектах, составляющих исходный объект, т. е. информационная модель.

Модели должны отражать наиболее существенные признаки, свойства, состоя­ния и отношения объектов предметного мира. Именно они дают полную информа­цию об объекте.

Пример. Представьте себе, что нужно отгадать загадку. Вам предлагают пере­чень свойств реального предмета: круглое, зеленое, глянцевое, прохладное, полосатое, звонкое, зрелое, ароматное, сладкое, сочное, тяжелое, крупное, с сухим хвостиком...

Список можно продолжать, но вы, наверное, уже догадались, что речь идет об арбузе. Информация о нем дана самая разнообразная: и цвет, и запах, и вкус, и даже звук... Очевидно, ее гораздо больше, чем требуется для решения этой задачи. Попробуйте выбрать из всех перечисленных признаков и свойств минимум, по­зволяющий безошибочно определить объект. В русском фольклоре давно найдено решение: «Сам алый, сахарный, кафтан зеленый, бархатный».

Если бы информация предназначалась художнику для написания натюрморта, можно было ограничиться следующими свойствами объекта: круглый, большой, зеленый, полосатый. Чтобы вызвать аппетит у сладкоежки, выбрали бы другие свойства: зрелый, сочный, ароматный, сладкий. Для человека, выбирающего арбуз на бахче, можно было бы предложить следующую модель: крупный, звонкий, с сухим хвостиком.

Этот пример показывает, что информации не обязательно должно быть мно­го. Важно, чтобы она была «по существу вопроса», т. е. соответствовала цели, для которой используется.

Например, в школе учащиеся знакомятся с информационной моделью кровооб­ращения. Предлагаемой в учебнике анатомии информации достаточно для школь­ника, но мало для тех, кто проводит операции на сосудах в больницах.

Информационные модели играют очень важную роль в жизни человека.

Знания, получаемые вами в школе, имеют вид информационной модели, цель которой - изучение предметов и явлений.

Уроки истории дают возможность построить модель развития общества, а зна­ние этой модели позволяет строить собственную жизнь, либо повторяя ошибки пред­ков, либо учитывая их.

На уроках географии вам сообщают информацию о географических объектах: горах, реках, странах и др. Это тоже информационные модели. Многое, о чем рас­сказывается на занятиях по географии, вы никогда не увидите в реальности.

На уроках химии информация о свойствах разных веществ и законах их взаи­модействия подкрепляется опытами, которые есть не что иное, как реальные моде­ли химических процессов.

Информационная модель никогда не характеризует объект полностью. Для одного и того же объекта можно построить различные информационные модели.

Пример. Выберем для моделирования объект «человек». Человека можно рассмот­реть с различных точек зрения: как отдельного индивида и как человека вообще.

Если иметь в виду конкретного человека, то можно построить модели, которые представлены в таблицах.

(Информационная модель ученика.)

(Информационная модель посетителя школьного медкабинета.)

(работника предприятия.)

Другой пример различных информационных моделей для одного и того же объек­та. Многочисленные свидетели преступления сообщили разнообразную информацию о предполагаемом злоумышленнике - это их информационные модели. Представи­телю милиции следует выбрать из потока сведений наиболее существенные, которые помогут найти преступника и задержать его. У представителя закона может сло­житься не одна информационная модель бандита. От того, насколько правильно будут выбраны существенные черты и отброшены второстепенные, зависит успех дела.

Выбор наиболее существенной информации при создании информационной мо­дели и сложность этой модели обусловлены целью моделирования.

Построение информационной модели является отправным пунктом этапа разра­ботки модели. Все входные параметры объектов, выделенные при анализе, распо­лагают в порядке убывания значимости и проводят упрощение модели в соответ­ствии с целью моделирования.

Знаковая модель.

Прежде чем приступить к процессу моделирования, человек делает предва­рительные наброски чертежей либо схем на бумаге, выводит расчетные форму­лы, т. е. составляет информационную модель в той или иной знаковой форме, которая может быть либо компьютерной, либо некомпьютерной.

Компьютерная модель.

Компьютерная модель - это модель, реализованная средствами программной среды.

Существует множество программных комплексов, которые позволяют прово­дить исследование (моделирование) информационных моделей. Каждая программ­ная среда имеет свой инструментарий и позволяет работать с определенными вида­ми информационных объектов.

Человек уже знает, какова будет модель, и использует компьютер для придания ей знаковой формы. Например, для построения геометрических моделей, схем ис­пользуются графические среды, для словесных или табличных описаний - среда текстового редактора.

Этап III. Компьютерный эксперимент

Чтобы дать жизнь новым конструкторским разработкам, внедрить новые тех­нические решения в производство или проверить новые идеи, нужен эксперимент. В недалеком прошлом такой эксперимент можно было провести либо в лаборатор­ных условиях на специально создаваемых для него установках, либо на натуре, т. е. на настоящем образце изделия, подвергая его всяческим испытаниям.

С развитием вычислительной техники появился новый уникальный метод ис­следования - компьютерный эксперимент. Компьютерный эксперимент включа­ет некоторую последовательность работы с моделью, совокупность целенаправлен­ных действий пользователя над компьютерной моделью.

Этап IV. Анализ результатов моделирования

Конечная цель моделирования - принятие решения, которое должно быть вы­работано на основе всестороннего анализа полученных результатов. Этот этап ре­шающий - либо вы продолжаете исследование, либо заканчиваете. Возможно, вам известен ожидаемый результат, тогда необходимо сравнить полученный и ожидае­мый результаты. В случае совпадения вы сможете принять решение.

| Информационная модель объекта

Урок 7
Тема 7. Информационная модель объекта








Изучив эту тему, вы узнаете:

Что такое модель объекта и зачем она создается;
- какие бывают модели;
- какую роль играет информация при создании модели;
- что такое информационная модель;
- какие формы представления информационных моделей существуют.

7.1. Понятие модели

Объекты окружающего нас мира , даже те, которые кажутся самыми простыми, на самом деле необычайно сложны . Чтобы понять, как действует тот или иной объект, иногда приходится вместо реальных объектов рассматривать их упрощенные представления - модели . При построении модели сам объект часто называют оригиналом или прототипом .

Дети с младенчества окружены игрушками: куклами, зверушками, машинками. Каждая игрушка представляет реальный объект окружающего мира. Кукла не умеет дышать, двигаться. Эта игрушка отражает только одно свойство человека - внешний облик. Но это свойство настолько существенно, что никто не ошибается, называя куклу игрушечным человечком.

Вы, наверное, знаете, что такое робот. Он может быть совсем непохож на человека, но умеет выполнять некоторые свойственные человеку действия. Роботы не устают и могут заменять людей при выполнении утомительной физической работы. Роботы способны работать в опасных для жизни человека средах: в космосе, под водой на большой глубине. Робот-луноход собирал на Луне образцы грунта, исследовал рельеф, фотографировал и выполнял многое другое. Робот-художник, робот-футболист, робот-прислуга - это примеры моделей человека, которые отражают разные его функции и предназначены для разных целей. Любой робот - не человек, а лишь его аналог.

Для любого объекта может существовать множество моделей, различных по сложности и степени сходства с оригиналом. Таблица 7.1 показывает, что модели могут отражать некоторые характеристики объекта - свойства, действия, а иногда и среду.

Таблица 7.1. Объекты и их модели

Подводя итоги вышесказанному, определим, что такое модель.

Модель - аналог (заместитель) оригинала, отражающий некоторые его характеристики.

Этот аналог служит для хранения и расширения знания об оригинале.

Разнообразие моделей определяется разнообразием целей, поставленных при их создании.

Цель создания детских игрушек - познание окружающего мира.

Вы никогда не задумывались, почему поигравший с плюшевым мишкой ребенок, впервые увидев в зоопарке настоящего медведя, узнает в нем прототип (оригинал) своей игрушки? 

Происходит удивительное: в образе живого медведя он видит знакомые «игрушечные» черты. Психологи считают, что умение распознавать образы, сопоставлять информацию и делать выводы формируется у детей до 3 лет. Так, играя с моделями реальных объектов и исследуя их, дети познают окружающий мир. При этом модели, как правило, усложняются и несут в себе новые черты исходного объекта.

Поступив в школу, вы изучаете на уроках разнообразные объекты с помощью их моделей. На уроках изобразительного искусства всевозможные муляжи позволяют исследовать форму, игру света и тени, фактуру прототипа, прежде чем его рисовать. Чучела птиц и зверей помогают вам представить и изучить облик животных, которых вы, возможно, не увидите в реальной жизни.

Рассмотрим несколько примеров моделей, созданных с разной целью:

◊ уменьшенная и упрощенная модель корабля, помещенная в бассейн, позволяет изучить его поведение при качке;
◊ велотренажер используется для тренировки;
◊ искусственное сердце спасает жизнь больного и помогает ему почувствовать себя полноценным членом общества.

Для рассмотренных здесь моделей характерно, что все они являются материальными объектами. Поэтому подобные модели называются материальными (предметными) моделями. Это одна из форм представления модели.

Моделью может быть не только материальный объект , передающий свойства и действия реального объекта, но и математическая формула, чертеж, таблица, текст и т. д. Это нематериальные (абстрактные) модели. В них используется другая форма представления.

Рассмотрим несколько примеров нематериальных моделей .

Представьте себе железнодорожного диспетчера. Сидя у пульта управления, он следит за перемещением на экране цветных прямоугольников, условно обозначающих поезда и вагоны. Это модель реальной железнодорожной сортировочной станции.

При решении задач по физике, химии, геометрии, биологии используются формулы. И это тоже модели. Они называются математическими. Например, уравнение S vt описывает способ нахождения расстояния при равномерном прямолинейном движении реального объекта.

Еще в древности было известно, что математическая модель незаменима при строительных работах. Например, в VI веке до н. э. античный архитектор Эвпалин построил водопровод на острове Самос, сохранившийся до наших дней. Ему необходимо было проложить тоннель длиной 1 км, шириной и высотой 2 м сквозь гору Кастро. Для решения этой задачи Эвпалин использовал чертеж и математические знания о подобии треугольников, на основе которых построил математическую модель.

Другой пример нематериальной модели из истории человечества связан с представлением о нашей планете и Солнечной системе. В древности люди считали, что Земля является плоской и окружена океаном. Древние поэты и философы сочинили об этом мифы. Именно такое описание объекта «Земля» является одной из первых дошедших до нас моделей. Во II веке н. э. древнегреческий ученый Птолемей разработал геоцентрическую модель Солнечной системы, согласно которой все планеты и Солнце вращаются вокруг неподвижной Земли. В 1543 году Коперник совершил открытие, изменившее наше представление о Солнечной системе. Он построил и доказал гелиоцентрическую модель мира, в ко торой планеты движутся вокруг Солнца по определенным орбитам. Эта модель позволила более точно вычислять движения планет по небесной сфере и объяснила многие астрономические явления. На основании этой модели было предсказано существование планеты Плутон, которая ранее не наблюдалась при помощи оптических приборов. Используя эту модель Солнечной системы, ученые сегодня вычисляют массы планет, изучают законы их движения и получают еще очень много важной информации.

Человеческое общество в зависимости от цели исследования тоже можно представить разными моделями.

Другая модель описывает ситуацию, когда племенем управляет совет старейшин, подчиняющийся вождю:

Например , изучая на уроках истории общинно-родовые отношения, вы представляли их в виде схем. Одна из возможных моделей отражает единоличное управление вождя племенем:

Как видно из примеров, человек постоянно создает модели объектов. Они помогают решать и житейские проблемы, и задачи любой сложности, изобретать новые объекты. Собираетесь ли вы строить дом, перейти дорогу или сделать покупки в магазине, вы непременно сначала представляете себе все это в уме и только потом действуете. То есть любой деятельности предшествует процесс создания мысленной модели.

Прежде чем построить и изучить модель, надо сначала собрать информацию об объекте. Поэтому особое место среди нематериальных моделей занимают информационные, содержащие существенные для исследователя сведения об объекте.

Модель – это упрощенное представление о реальном объекте, процессе или явлении.

Моделирование – это посторенние моделей для исследования объектов, процессов, явлений.

В моделировании есть два заметно разных пути. Модель может быть похожей копией объекта, выполненной из другого материала, в другом масштабе, с отсутствием деталей. Например, это игрушечный кораблик, самолет и т.д. Модель может отображать реальность более абстрактно – словесным описанием в свободной форме, описанием, формализованным по каким-то правилам, математическими соотношениями и т.д.

1) традиционное математическое моделирование без какой-либо привязки к техническим средствам информатики.

2) Информационные модели и моделирование, имеющие приложения в информационных системах.

3) Вербальные (компьютерные) технологии, которые надо делить:

На инструментальное использование базовых универсальных программных средств (текстовых редакторов, СУБД, табличных процессоров и т.д.);

На компьютерное моделирование, приставляющее собой:

Вычислительное (имитационное) моделирование;

- «визуализацию явлений и процессов»;

- «высшие» технологии, понимаемые как специализированы прикладные технологии, использующие компьютер в сочетании с измерительной аппаратурой, датчиками, сенсорами и т.д.

Укрупненная классификация абстрактных моделей (идеальных) такова:

1) Вербальные (текстовые) модели. Эти модели используют последовательности предложений на формализованных диалектах естественного языка для описания той или иной области действительности.

2) Математические модели. Очень широкий класс знаковых моделей, широко использующие те или иные математические методы.

3) Информационные модели. Класс знакомых моделей, описывающие информационные процессы в системах самой разнообразной природы.

Цели моделирования:

1. Модель нужна для того, чтобы узнать, как устроен конкретный объект, каковы его законы развития и взаимодействие с окружающим миром.

2. Модель нужна для того, чтобы научиться управлять объектом и определить наилучшие способы управления при заданных целях и критериях.

3. Модель нужна для того, чтобы прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект.

Рассмотрим основные этапы моделирования подробнее.

Этап 1. Постановка задачи.

Под задачей понимается некая проблема, которую надо решить. На этапе постановки задачи необходимо:

описать задачу, определить цели моделирования, проанализировать объект или процесс.

Описание задачи.

Задача формулируется на обычном языке, и описание должно быть понятным. Главное здесь - определить объект моделирования и понять, что должен представлять собой результат.



Цели моделирования.

Познание окружающего мира.

Зачем человек создает модели? Чтобы ответить на этот вопрос, надо заглянуть в далекое прошлое. Несколько миллионов лет назад, на заре человечества, первобытные люди изучали окружающую природу, чтобы научиться противостоять природным стихиям, пользоваться природными благами, просто выживать. Накопленные знания передавались из поколения в поколение устно, позже письменно, наконец с помощью предметных моделей. Так родилась, к примеру, модель земного шара - глобус, - позволяющая получить наглядное представление о форме нашей планеты, ее вращении вокруг собственной оси и расположении материков. Такие модели позволяют понять, как устроен конкретный объект, узнать его основные свойства, установить законы его развития и взаимодействия с окружающим миром моделей.

Создание объектов с заданными свойствами (задача типа «Как сделать, чтобы...»).

Накопив достаточно знаний, человек задал себе вопрос: «Нельзя ли создать объект с заданными свойствами и возможностями, чтобы противодействовать стихиям или ставить себе на службу природные явления?» Человек стал строить модели еще не существующих объектов. Так родились идеи создания ветряных мельниц, различных механизмов, даже обыкновенного зонтика. Многие из этих моделей стали в настоящее время реальностью. Это объекты, созданные руками человека.

Определение последствий воздействия на объект и принятие правильного решения (задача типа «Что будет, если...»: что будет, если увеличить плату за проезд в транспорте, или что произойдет, если закопать ядерные отходы в такой-то местности?)

Например, для спасения Петербурга от постоянных наводнений, приносящих огромный ущерб, решено было возвести дамбу. При ее проектировании было построено множество моделей, в том числе и натурных, именно для того, чтобы предсказать последствия вмешательства в природу.

Эффективность управления объектом (или процессом).

Поскольку критерии управления бывают весьма противоречивыми, то эффективным оно окажется только при условии, если будут «и волки сыты, и овцы целы». Например, нужно наладить питание в школьной столовой. С одной стороны, оно должно отвечать возрастным требованиям (калорийное, содержащее витамины и минеральные соли), с другой - нравиться большинству ребят и к тому же быть «по карману» родителям, а с третьей - технология приготовления должна соответствовать возможностям школьных столовых. Как совместить несовместимое? Построение модели поможет найти приемлемое решение.

Анализ объекта.

На этом этапе четко выделяют моделируемый объект, его основные свойства, его элементы и связи между ними. Простой пример подчиненных связей объектов - разбор предложения. Сначала выделяются главные члены (подлежащее, сказуемое), затем второстепенные члены, относящиеся к главным, затем слова, относящиеся к второстепенным, и т. д.

Этап 2. Разработка модели.

Информационная модель.

На этом этапе выясняются свойства, состояния, действия и другие характеристики элементарных объектов в любой форме: устно, в виде схем, таблиц. Формируется представление об элементарных объектах, составляющих исходный объект, т. е. информационная модель. Модели должны отражать наиболее существенные признаки, свойства, состояния и отношения объектов предметного мира. Именно они дают полную информацию об объекте.

Знаковая модель.

Прежде чем приступить к процессу моделирования, человек делает предварительные наброски чертежей либо схем на бумаге, выводит расчетные формулы, т. е. составляет информационную модель в той или иной знаковой форме, которая может быть либо компьютерной, либо некомпьютерной.

Компьютерная модель

Это модель, реализованная средствами программной среды.

Существует множество программных комплексов, которые позволяют проводить исследование (моделирование) информационных моделей. Каждая программная среда имеет свой инструментарий и позволяет работать с определенными видами информационных объектов.

Человек уже знает, какова будет модель, и использует компьютер для придания ей знаковой формы. Например, для построения геометрических моделей, схем используются графические среды, для словесных или табличных описаний - среда текстового редактора.

Основные функции компьютера при моделировании систем:

исполнение роли вспомогательного средства для решения задач, решаемых и обычными вычислительными средствами, алгоритмами, технологиями;

исполнение роли средства постановки и решения новых задач, не решаемых традиционными средствами, алгоритмами, технологиями;

исполнение роли средства конструирования компьютерных обучающих и моделирующих сред типа: «обучаемый - компьютер - обучающий», «обучающий - компьютер - обучаемый», «обучающий - компьютер - группа обучаемых», «группа обучаемых - компьютер - обучающий», «компьютер - обучаемый - компьютер»;

исполнение роли средства моделирования для получения новых знаний;

«обучение» новых моделей (самообучение моделей).

Этап 3. Компьютерный эксперимент.

Компьютерное моделирование - основа представления знаний в ЭВМ. Компьютерное моделирование для рождения новой информации использует любую информацию, которую можно актуализировать с помощью ЭВМ. Прогресс моделирования связан с разработкой систем компьютерного моделирования, а прогресс в информационной технологии - с актуализацией опыта моделирования на компьютере, с созданием банков моделей, методов и программных систем, позволяющих собирать новые модели из моделей банка.

Разновидность компьютерного моделирования - вычислительный эксперимент, т. е. эксперимент, осуществляемый экспериментатором над исследуемой системой или процессом с помощью орудия эксперимента - компьютера, компьютерной среды, технологии.

Вычислительный эксперимент становится новым инструментом, методом научного познания, новой технологией также из-за возрастающей необходимости перехода от исследования линейных математических моделей систем (для которых достаточно хорошо известны или разработаны методы исследования, теория) к исследованию сложных и нелинейных математических моделей систем (анализ которых гораздо сложнее). Грубо говоря, наши знания об окружающем мире линейны, а процессы в окружающем мире нелинейны.

Вычислительный эксперимент позволяет находить новые закономерности, проверять гипотезы, визуализировать ход событий и т. д.

Чтобы дать жизнь новым конструкторским разработкам, внедрить новые технические решения в производство или проверить новые идеи, нужен эксперимент. В недалеком прошлом такой эксперимент можно было провести либо в лабораторных условиях на специально создаваемых для него установках, либо на натуре, т. е. на настоящем образце изделия, подвергая его всяческим испытаниям.

С развитием вычислительной техники появился новый уникальный метод исследования - компьютерный эксперимент. Компьютерный эксперимент включает некоторую последовательность работы с моделью, совокупность целенаправленных действий пользователя над компьютерной моделью.

Этап 4. Анализ результатов моделирования.

Конечная цель моделирования - принятие решения, которое должно быть выработано на основе всестороннего анализа полученных результатов. Этот этап решающий - либо вы продолжаете исследование, либо заканчиваете. Возможно, вам известен ожидаемый результат, тогда необходимо сравнить полученный и ожидаемый результаты. В случае совпадения вы сможете принять решение.

Основой для выработки решения служат результаты тестирования и экспериментов. Если результаты не соответствуют целям поставленной задачи, значит, допущены ошибки на предыдущих этапах. Это может быть либо слишком упрощенное построение информационной модели, либо неудачный выбор метода или среды моделирования, либо нарушение технологических приемов при построении модели. Если такие ошибки выявлены, то требуется корректировка модели, т. е. возврат к одному из предыдущих этапов. Процесс повторяется до тех пор, пока результаты эксперимента не будут отвечать целям моделирования. Главное, надо всегда помнить: выявленная ошибка - тоже результат.

Виды моделей.

В прикладных областях различают следующие виды абстрактных моделей:

традиционное (прежде всего для теоретической физики, а также механики, химии, биологии, ряда других наук) математическое моделирование без какой-либо привязки к техническим средствам информатики;

информационные модели и моделирование, имеющие приложения в информационных системах;

вербальные (т.е. словесные, текстовые) языковые модели.

информационные (компьютерные) технологии, которые надо делить

а) на инструментальное использование базовых универсальных программных средств (текстовых редакторах, СУБД, табличных процессоров, телекоммуникационных пакетов);

б) на компьютерное моделирование, представляющее собойвычислительное (имитационное) моделирование; "визуализацию явлений и процессов" (графическое моделирование);

"высокие" технологии, понимаемые как специализированные прикладные технологии, использующие компьютер (как правило, в режиме реального времени) в сочетании с измерительной аппаратурой, датчиками, сенсорами и т.д.

Итак, укрупненная классификация абстрактных (идеальных) моделей такова.

ербальные модели. Эти модели используют последовательности предложений на формализованных диалектах естественного языка для описания той или иной области действительности.

Математические модели - очень широкий класс знаковых моделей (основанных на формальных языках над конечными алфавитами), широко использующих те или иные математические методы. Например, можно рассмотреть математическую модель звезды. Эта модель будет представлять собой сложную систему уравнений, описывающих физические процессы, происходящие в недрах звезды.

Информационные модели - класс знаковых моделей, описывающих информационные процессы (возникновение, передачу, преобразование и использование информации) в системах самой разнообразной природы.

К основным этапам компьютерного моделирования относятся:

постановка задачи, определение объекта моделирования;

разработка концептуальной модели, выявление основных элементов системы и элементарных актов взаимодействия;

формализация, то есть переход к математической модели; создание алгоритма и написание программы;

планирование и проведение компьютерных экспериментов;

анализ и интерпретация результатов.

Вычислительный (или компьютерный) эксперимент во многом аналогичен обычному (натурному). Это и планирование экспериментов, и создание экспериментальной установки, и выполнение контрольных испытаний. Затем следует проведение серийных опытов, обработка экспериментальных данных, их интерпретация и т. д. Однако вычислительный эксперимент проводится не над реальным объектом, а над его математической моделью, и роль экспериментальной установки играет оснащенная специально разработанной программой ЭВМ.

Широкое применение ЭВМ в математическом моделировании, на основе хорошо разработанной теории, позволяет получать значительные практические результаты. И можно говорить о вычислительном эксперименте как о новой технологии и методологии научных и прикладных исследований.

Создание эффективного программного обеспечения, наряду с техническим развитием ЭВМ позволяет проводить расчеты, когда достоверность прогноза достигает более 90 %. Причем прогноз делается столь быстро, что за время реализации одного натурного эксперимента можно много раз проварьировать его вычислительный аналог.

Достоинства вычислительного эксперимента очевидны. Вычислительный эксперимент, как правило, дешевле физического. В этот эксперимент можно легко и безопасно вмешиваться. Его можно повторить и прервать в любой момент. В ходе этого эксперимента можно смоделировать условия, которые не получается воссоздать в лаборатории.

В ряде случаев проведение натурного эксперимента бывает затруднено или простоневозможно, так как изучаются быстропротекающие процессы, исследуются труднодоступные или вообще недоступные (пока) объекты и т.д. и т.п. Часто проведение полномасштабного натурного эксперимента сопряжено с губительными или непредсказуемыми последствиями, с опасностью для жизни и здоровья человека (ядерная зима, поворот сибирских рек, генетическая модификация растений и животных). Нередко требуется исследование и прогнозирование результатов катастрофических явлений (глобальное потепление климата, землетрясение, авария ядерного реактора АЭС). В таких случаях вычислительный эксперимент может (и должен!) стать основным средством исследования. Заметим, что с его помощью оказывается возможным прогнозировать свойства новых, еще не созданных конструкций и материалов на стадии их проектирования. Применение вычислительного эксперимента в медицине позволяет изучать и предсказывать влияние медикаментов на состояние пациента, проводить предоперационное моделирование.

В вычислительном как и в натурном эксперименте, чтобы проанализировать влияние K параметров на исход эксперимента, необходимо провести nK испытаний, где n - количество варьируемых значений одного параметра. Уже при задаче средней сложности (K, n = 5-10) число экспериментов может стать просто огромным. Но, как уже говорилось, проведение нужного количества испытаний практически не представляет труда при проведении компьютерного эксперимента. Для сложных задач характерно наличие значительного числа параметров характеризующих используемую модель. Создание нового изделия или технологического процесса предполагает выбор среди большого числа альтернативных вариантов, а также оптимизацию по ряду параметров. Поэтому в ходе вычислительного эксперимента расчеты проводятся многократно с разными значениями входных данных. Для получения нужных результатов с требуемой точностью и в приемлемые сроки необходимо, чтобы на расчет каждого варианта тратилось минимальное время. Именно поэтому при создании программного обеспечения так важно использовать эффективные численные методы.

Разработка программного обеспечения для вычислительного эксперимента в конкретной области деятельности приводит к созданию крупного программного комплекса. Он состоит из связанных между собой прикладных программ и системных средств, включающих средства, предоставляемые пользователю для управления ходом вычислительного эксперимента, обработки и представления его результатов. Такой комплекс программ иногда называют проблемно-ориентированным пакетом прикладных программ.

Современные компьютерные программы обладают высокой сервисностью и дружелюбным интерфейсом, что позволяет легко освоить работу с ними за короткое время.

Дальнейшее развитие в области специального программирования может вообще избавить исследователей от необходимости изучения расчетных методов. В самом деле, ведь пользуются же экспериментаторы сложными высокоавтоматизированными приборами, почти ничего не зная о деталях их конструкций. Отсюда, тем не менее, вовсе нельзя делать вывод, что "коль работает программа, головы совсем не надо".

При проведении исследований важно помнить что вычислительный эксперимент имеет свои ограничения, которые могут привести к неэффективным затратам времени и ресурсов, или даже к получению ошибочных результатов.

Известно, что применимость результатов вычислительного эксперимента ограничена рамками принятой математической модели. Действительно, вычислительный эксперимент не может полностью заменить натурный, и будущее за их разумным сочетанием. Результаты натурного опыта являются фундаментом для построения теории на основе которой создается математическая модель. И надежным критерием, подтверждающим достоверность ее выводов, опять же является практика. Поэтому к результатам численного эксперимента, необходимо подходить с известной осторожностью, особенно, если в его основе лежит новая теория, либо используемые параметры модели находятся на границе области её применимости.

Однако если есть достаточная уверенность, что исследуемая система действительно правильно описывается используемыми уравнениями, и заложенные в них исходные предположения верны, более чем разумно ставить не натурный, а именно компьютерный эксперимент.

Есть у вычислительного эксперимента и ограничения, связанные с математической стороной исследований. Например, с помощью численного подхода нельзя получить общей формулы, позволяющей оценить совместное влияние параметров, входящих в уравнения модели, на решение этих уравнений. Полное представление о таком влиянии дает только аналитическое исследование. Но далеко не всегда, для сложных задач в их полной постановке (без упрощений), аналитическое решение может быть найдено.

Важным моментом на этапе постановки задачи является определение цели моделирования. От выбранной цели зависит, какие характеристики исследуемого объекта считать существенными, а какие отбросить. В соответствии с поставленной целью может быть подобран инструментарий, определены методы решения задачи, формы отображения результатов.

Рассмотрим возможные цели моделирования.

Первобытные люди изучали окружающую природу, чтобы научиться противостоять природным стихиям, пользоваться природными благами, просто выживать.

Накопленные знания передавались из поколения в поколение устно, позже письменно и, наконец, с помощью предметных моделей. Так был создан глобус -- модель Земного шара, позволяющая получить наглядное представление о форме нашей планеты, ее вращении вокруг собственной оси и о расположении материков. Такие модели помогают понять, как устроен конкретный объект, узнать его основные свойства, установить законы его развития и взаимодействия с окружающим миром. В этом случае целью построения модели является познание окружающего мира.

Накопив достаточно знаний, человек задал себе вопрос: «Нельзя ли создать объект с заданными свойствами и возможностями, чтобы противодействовать стихиям и ставить себе на службу природные явления?» Человек стал строить модели еще не существующих объектов. Так родились идеи создания ветряных мельниц, различных механизмов, даже обыкновенного зонтика. Многие из этих моделей стали в настоящее время реальностью. Это объекты, созданные руками человека.

Таким образом, другая важная цель моделирования -- создание объектов с заданными свойствами. Эта цель соответствует постановке задачи «как сделать, чтобы...».

Цель моделирования задач типа «что будет, если...» -- определение последствий воздействия на объект и принятие правильного решения. Подобное моделирование играет важное значение при рассмотрении социальных и экологических вопросов: что будет, если увеличить плату за проезд в транспорте, или что произойдет, если закопать ядерные отходы в некоторой местности?

Например, для избавления Санкт-Петербурга от постоянных наводнений, приносящих огромный ущерб, было решено возвести дамбу. При ее проектировании было построено множество моделей, в том числе и натурных, именно с целью предсказания последствий вмешательства в природу.

Формализация задачи

В повседневной жизни мы постоянно сталкиваемся с проявлением формализма, означающего строгий порядок. И хотя мы часто говорим о формализме с отрицательной оценкой, в некоторых случаях без него не обойтись. Возможно ли организовать учет и хранение лекарств в больнице или диспетчерское управление в авиации, если не подчинить эти процессы строгой формализации? В таких случаях она означает четкие правила и их одинаковое понимание всеми, строгий учет, единые формы отчетности и т. д.

Обычно о формализации говорят и тогда, когда собранные данные предполагают обрабатывать математическими средствами.

Те из вас, кто участвовал в переписи населения, вероятно, обратили внимание, какие формы заполняли инспекторы по результатам беседы с членами семьи. В этих формах не было выделено места для эмоций, они содержали формализованные данные опроса -- единицы в строго определенных графах. Эти данные затем обрабатывались с использованием математических методов. Нельзя не упомянуть и о том, что обработка велась при помощи компьютера. Компьютер является универсальным инструментом для обработки информации, но для решения любой задачи с его использованием надо изложить ее на строгом, формализованном языке. Каким бы чудом техники ни казался компьютер, человеческий язык ему не понятен.

При формализации задачи отталкиваются от ее общего описания. Это позволяет четко выделить прототип моделирования и его основные свойства. Как правило, этих свойств довольно много, причем некоторые невозможно описать количественными соотношениями. Кроме того, в соответствии с поставленной целью необходимо выделить параметры, которые известны (исходные данные) и которые следует найти (результаты).

Как уже упоминалось выше, прототипом моделирования может быть объект, процесс или система. Если моделируется система, производится ее анализ: выявляются составляющие системы (элементарные объекты) и определяются связи между ними. При анализе необходимо также решить вопрос о степени детализации системы.

Формализацию проводят в виде поиска ответов на вопросы, уточняющие общее описание задачи.

В данной работе мы предлагаем как можно подробно разобрать тему моделирования в информатике. Этот раздел имеет большое значение для подготовки будущих специалистов в сфере информационных технологий.

Для решения любой задачи (производственной или научной) информатика использует следующую цепочку:

В ней стоит уделить особое внимание понятию «модель». Без наличия данного звена решение задачи не будет возможным. Зачем же используется модель и что под данным термином понимается? Об этом мы и поговорим в следующем разделе.

Модель

Моделирование в информатике - это составление образа какого-либо реально существующего объекта, который отражает все существенные признаки и свойства. Модель для решения задачи необходима, так как она, собственно, и используется в процессе решения.

В школьном курсе информатики тема моделирования начинает изучаться еще в шестом классе. В самом начале детей необходимо познакомить с понятием модели. Что это такое?

  • Упрощенное подобие объекта;
  • Уменьшенная копия реального объекта;
  • Схема явления или процесса;
  • Изображение явления или процесса;
  • Описание явления или процесса;
  • Физический аналог объекта;
  • Информационный аналог;
  • Объект-заменитель, отражающий свойства реального объекта и так далее.

Модель - это очень широкое понятие, как это уже стало ясно из вышеперечисленного. Важно отметить, что все модели принято делить на группы:

  • материальные;
  • идеальные.

Под материальной моделью понимают предмет, основанный на реально существующем объекте. Это может быть какое-либо тело или процесс. Данную группу принято подразделять еще на два вида:

  • физические;
  • аналоговые.

Такая классификация носит условный характер, ведь четкую границу между двумя этими подвидами провести очень трудно.

Идеальную модель охарактеризовать еще труднее. Она связаны с:

  • мышлением;
  • воображением;
  • восприятием.

К ней можно отнести произведения искусства (театр, живопись, литература и так далее).

Цели моделирования

Моделирование в информатике - это очень важный этап, так как он преследует массу целей. Сейчас предлагаем с ними познакомиться.

В первую очередь моделирование помогает познать окружающий нас мир. Испокон веков люди накапливали полученные знания и передавали их своим потомкам. Таким образом появилась модель нашей планеты (глобус).

В прошлые века осуществлялось моделирование несуществующих объектов, которые сейчас прочно закрепились в нашей жизни (зонт, мельница и так далее). В настоящее время можелирование направлено на:

  • выявление последствий какого-либо процесса (увеличения стоимости проезда или утилизации химических отходов под землей);
  • обеспечение эффективности принимаемых решений.

Задачи моделирования

Информационная модель

Теперь поговорим еще об одном виде моделей, изучаемых в школьном курсе информатики. Компьютерное моделирование, которое необходимо освоить каждому будущему IT-специалисту, включает в себя процесс реализации информационной модели при помощи компьютерных средств. Но что это такое, информационная модель?

Она представляет собой целый перечень информации о каком-либо объекте. Что данная модель описывает, и какую полезную информацию несет:

  • свойства моделируемого объекта;
  • его состояние;
  • связи с окружающим миром;
  • отношения с внешними объектами.

Что может служить информационной моделью:

  • словесное описание;
  • текст;
  • рисунок;
  • таблица;
  • схема;
  • чертеж;
  • формула и так далее.

Отличительная особенность информационной модели заключается в том, что ее нельзя потрогать, попробовать на вкус и так далее. Она не несет материального воплощения, так как представлена в виде информации.

Системный подход к созданию модели

В каком классе школьной программы изучается моделирование? Информатика 9 класса знакомит учеников с данной темой более подробно. Именно в этом классе ребенок узнает о системном подходе моделирования. Предлагаем об этом поговорить немного подробнее.

Начнем с понятия «система». Это группа взаимосвязанных между собой элементов, которые действуют совместно для выполнения поставленной задачи. Для построения модели часто пользуются системным подходом, так как объект рассматривается как система, функционирующая в некоторой среде. Если моделируется какой-либо сложный объект, то систему принято разбивать на более мелкие части - подсистемы.

Цель использования

Сейчас мы рассмотрим цели моделирования (информатика 11 класс). Ранее говорилось, что все модели делятся на некоторые виды и классы, но границы между ними условны. Есть несколько признаков, по которым принято классифицировать модели: цель, область знаний, фактор времени, способ представления.

Что касается целей, то принято выделять следующие виды:

  • учебные;
  • опытные;
  • имитационные;
  • игровые;
  • научно-технические.

К первому виду относятся учебные материалы. Ко второму уменьшенные или увеличенные копии реальных объектов (модель сооружения, крыла самолета и так далее). позволяет предугадать исход какого-либо события. Имитационное моделирование часто применяется в медицине и социальной сфере. Наример, модель помогает понять, как люди отреагируют на ту или иную реформу? Прежде чем сделать серьезную операцию человеку по пересадке органа, было проведено множество опытов. Другими словами, имитационная модель позволяет решить проблему методом «проб и ошибок». Игровая модель - это своего рода экономическая, деловая или военная игра. С помощью данной модели можно предугадать поведение объекта в разных ситуациях. Научно-техническую модель используют для изучения какого-либо процесса или явления (прибор имитирующий грозовой разряд, модель движения планет Солнечной системы и так далее).

Область знаний

В каком классе учеников более подробно знакомят с моделированием? Информатика 9 класса делает упор на подготовку своих учеников к экзаменам для поступления в высшие учебные заведения. Так как в билетах ЕГЭ и ГИА встречаются вопросы по моделированию, то сейчас необходимо как можно подробнее рассмотреть эту тему. И так, как происходит классификация по области знаний? По данному признаку выделяют следующие виды:

  • биологические (например, искусственно вызванные у животных болезни, генетические нарушения, злокачественные новообразования);
  • поведения фирмы, модель формирования рыночной цены и так далее);
  • исторические (генеалогическое дерево, модели исторических событий, модель римского войска и тому подобное);
  • социологические (модель личного интереса, поведение банкиров при адаптации к новым экономическим условиям) и так далее.

Фактор времени

По данной характеристике различают два вида моделей:

  • динамические;
  • статические.

Уже, судя по одному названию, не трудно догадаться, что первый вид отражает функционирование, развитие и изменение какого-либо объекта во времени. Статическая наоборот способна описать объект в какой-то конкретный момент времени. Этот вид иногда называют структурным, так как модель отражает строение и параметры объекта, то есть дает срез информации о нем.

Примерами являются:

  • набор формул, отражающих движение планет Солнечной системы;
  • график изменения температуры воздуха;
  • видеозапись извержения вулкана и так далее.

Примерами статистической модели служат:

  • перечень планет Солнечной системы;
  • карта местности и так далее.

Способ представления

Для начала очень важно сказать, что все модели имеют вид и форму, они всегда из чего-то делаются, как-то представляются или описываются. По данному признаку принято таким образом:

  • материальные;
  • нематериальные.

К первому виду относятся материальные копии существующих объектов. Их можно потрогать, понюхать и так далее. Они отражают внешние или внутренние свойства, действия какого-либо объекта. Для чего нужны материальные модели? Они используются для экспериментального метода познания (опытного метода).

К нематериальным моделям мы уже тоже обращались ранее. Они используют теоретический метод познания. Такие модели принято называть идеальными либо абстрактными. Эта категория делится еще на несколько подвидов: воображаемые модели и информационные.

Информационные модели приводят перечень различной информации об объекте. В качестве информационной модели могут выступать таблицы, рисунки, словесные описания, схемы и так далее. Почему данную модель называют нематериальной? Все дело в том, что ее нельзя потрогать, так как она не имеет материального воплощения. Среди информационных моделей различают знаковые и наглядные.

Воображаемая модель - это один из Это творческий процесс, проходящий в воображении человека, который предшествует созданию материального объекта.

Этапы моделирования

Тема по информатике 9 класса «Моделирование и формализация» имеет большой вес. Она обязательна к изучению. В 9-11 классе преподаватель обязан познакомить учеников с этапами создания моделей. Этим мы сейчас и займемся. Итак, выделяют следующие этапы моделирования:

  • содержательная постановка задачи;
  • математическая постановка задачи;
  • разработки с использованием ЭВМ;
  • эксплуатация модели;
  • получение результата.

Важно отметить, что при изучении всего, что окружает нас, используется процессы моделирования, формализации. Информатика - это предмет, посвященный современным методам изучения и решения каких-либо проблем. Следовательно, упор делается на модели, которые можно реализовать при помощи ЭВМ. Особое внимание в этой теме следует уделить пункту разработки алгоритма решения при помощи электронно-вычислительных машин.

Связи между объектами

Теперь поговорим немного о связях между объектами. Всего выделяют три вида:

  • один к одному (обозначается такая связь односторонней стрелкой в одну или в другую сторону);
  • один ко многим (множественная связь обозначается двойной стрелкой);
  • многие ко многим (такая связь обозначается двойной стрелкой).

Важно отметить, что связи могут быть условными и безусловными. Безусловная связь предполагает использование каждого экземпляра объекта. А в условной задействованы только отдельные элементы.