Из того факта, что спектры излучения атомных ядер возникают подобно спектрам излучения атомов и молекул, казалось почти очевидным, что атомные ядра, излучающие при переходе из возбужденного состояния в нормальное гамма-кванты с некоторой частотой должны в нормальном состоянии избирательно поглощать такие же кванты. Резонансное поглощение гамма-кванта должно переводить ядро в возбужденное состояние подобно тому, как поглощение света переводит в возбужденное состояние атом или молекулу. Однако попытки

экспериментального обнаружения резонансного поглощения гамма-квантов такими же атомными ядрами, какими эти кванты излучались, долгое время были безрезультатными.

Отрицательные результаты опытов по обнаружению резонансного поглощения гамма-квантов имеют простое объяснение. Если переход ядра из возбужденного состояния в нормальное состояние происходит путем излучения гамма-кванта, то энергия этого кванта не равна в точности разности энергий По закону сохранения импульса при излучении гамма-кванта атомное ядро приобретает импульс, равный импульсу излученного гамма-кванта и направленный в противоположную сторону. Ядро испытывает при излучении фотона отдачу подобно орудию при выстреле. В связи с этим освобожденная энергия распределяется между гамма-квантом и ядром. Следовательно, энергия фотона меньше разности на величину кинетической энергии ядра, испытавшего отдачу:

Понятно, что энергия этого гамма-кванта меньше энергии, необходимой для перевода такого же ядра из нормального состояния в возбужденное:

Немецкий физик Р. Мессбауэр в 1958 г. показал, что в некоторых кристаллах можно создать такие условия, при которых импульс отдачи при излучении гамма-кванта сообщается не отдельному ядру, а всему кристаллу в целом. При этом изменение кинетической энергии кристалла из-за большой его массы (по сравнению с массой одного ядра) приближается к нулю, а энергия излученного гамма-кванта оказывается почти в точности равной разности При пропускании пучка таких гамма-квантов через образец, содержащий атомные ядра того же изотопа, наблюдается резонансное поглощение.

Замечательной особенностью эффекта Мессбауэра является необычайно малая ширина спектральной линии поглощения, т. е. узость резонансного пика поглощения. Например, при использовании изотопа железа резонанс нарушается при изменении частоты гамма-кванта на величину составляющую от его частоты

Это значит, что появляется возможность зарегистрировать изменение энергии гамма-кванта на величину, составляющую от ее первоначального значения!

Использование эффекта Мессбауэра позволило осуществить один из самых тонких экспериментов современной физики - обнаружение гравитационного красного смещения спектральных

линий. Существование гравитационного красного смещения предсказано общей теорией относительности. Приводим здесь упрощенное объяснение этого эффекта, основанное на использовании закона взаимосвязи массы и энергии.

Гамма-фотон с энергией обладает массой.

СОДЕРЖАНИЕ: История открытия Ядерное резонансное поглощение гамма излучения Техника месбауэровского эксперимента Сверхтонкие взаимодействия и мессбауэровские параметры Практические применения метода: - Фазовый анализ в материаловедении и геохимии - Анализ поверхности - Динамические эффекты

История открытия ядерного гамма резонанса (эффекта Мессбауэра) Атомный резонансный процесс в оптическом диапазоне длин волн хорошо известен. Он был предсказан Д. Релеем и нашел свое экспериментальное подтверждение в 1904 г. в известном опыте Роберта Вуда, в котором Вуд использовал желтый свет, испускаемый атомами натрия (так называемые D-линии натрия), который можно получить, поместив в пламя небольшое количество поваренной соли. Каждой D – линии соответствует собственная частота колебаний атома натрия, или, более точно, внешних электронов этого атома. Чтобы наблюдать резонанс, необходимо иметь другие атомы натрия, не находящиеся в пламени. Вуд использовал откачанный стеклянный баллон, содержащий небольшое количество металлического натрия. Давление паров натрия таково, что при нагревании выше комнатной температуры количество паров натрия в баллоне было достаточным для проведения опыта. Если свет от натриевого пламени сфокусировать на баллон, то можно наблюдать появление слабого желтого свечения. Атомы натрия в колбе действуют аналогично настроенному камертону. Они поглощают энергию падающего пучка желтого света, а затем высвечивают ее в разные стороны.

Пятьдесят лет назад, в 1958 году, немецкий физик 1958 года Рудольф Людвиг Мёссбауэр, работая над диссертацией доктора философии в Институте им. М. Планка в Гейдельберге, представил в немецкий физический журнал статью с названием «Ядерная резонансная флуоресценция гамма излучения в Ir 191» , которая была опубликована в середине того же года. А уже осенью 1958 года, выполнил первые эксперименты, в которых для сканирования резонансных линий использовал эффект Доплера. В конце 1958 года, он опубликовал полученные экспериментальные данные, заложившие основу нового экспериментального метода – ядерной гамма-резонансной спектроскопии, которая часто называется Мёссбауэровской спектроскопией (МС). В 1961 году за открытие и теоретическое обоснование этого явления Рудольфу Мессбауэру была присуждена Нобелевская премия по физике.

Влияние эффекта отдачи при поглощении и испускании гамма излучения ядрами Энергия отдачи: 57 Fe Энергия Допплера: : ET = 14. 4 кэ. В, t 1/2 = 98 нс, Г = 4. 6· 10 -9 э. В, → ER~ 2· 10 -3 э. В

Распределение испускаемых поглощаемых гамма квантов по энергиям Для ядер свободных атомов Для ядер атомов в кристаллической решетке при низких температурах

Сравнение основных параметров между электронными и ядерными переходами Параметры переходов Энергия перехода, ЕТ (э. В) Среднее время жизни возбужденного состояния, (сек) Естественная ширина резонансной линии, Γ=ħ/τ (э. В) Энергетическое разрешение, Г/ЕТ Энергия отдачи, ЕR (э. В) Отношение ЕR/Г Электронный переход для D-линии Na Ядерный переход 57 Fe Ядерный переход 119 Sn 2. 1 14 413 23 800 1. 5× 10 -8 1. 4× 10 -7 2. 8× 10 -8 4. 4× 10 -8 4. 6× 10 -9 2. 4× 10 -8 2. 1× 10 -8 3. 1× 10 -13 1× 10 -12 ~10 -10 1. 9× 10 -3 2. 5× 10 -3 ~2. 3× 10 -3 4. 1× 105 1. 4× 105

Ядерные параметры основных Мессбауэровских изотопов Изотоп 57 Fe 61 Ni 119 Sn 121 Sb 125 Te 127 I 129 I 149 Sm 151 Eu 161 Dy 193 Ir 197 Au 237 Np Eγ, кэ. В Гr/(ммс-1) =2 Гест Ig Ie 14. 41 67. 40 23. 87 37. 15 35. 48 57. 60 27. 72 22. 5 21. 6 26. 65 73. 0 77. 34 59. 54 0. 192 0. 78 0. 626 2. 1 5. 02 2. 54 0. 59 1. 60 1. 44 0. 37 0. 60 1. 87 0. 0067 1/23/21/2+ 5/2+ 7/2+ 7/25/2+ 3/2+ 5/2+ 3/25/23/2+ 7/2+ 5/2+ 5/27/2+ 5/21/2+ 5/2 - α 8. 17 0. 12 5. 12 ~10 12. 7 3. 70 5. 3 ~12 29 ~2. 5 ~6 4. 0 1. 06 Природное содержание % 2. 17 1. 25 8. 58 57. 25 6. 99 100 nil 13. 9 47. 8 18. 88 61. 5 100 nil Распад ядра 57 Co (EC 270 d) 61 Co (ß-99 m) 119 m. Sn (IT 50 d) 121 m. Sn (ß-76 y) 125 I (EC 60 d) 127 m. Te (ß-109 d) 129 m. Te (ß-33 d) 149 Eu (EC 106 d) 151 Gd (EC 120 d) 161 Tb (ß-6. 9 d) 193 Os (ß-31 h) 197 Pt (ß-18 h) 237 Am (α 458 y) ЕС-электронный захват, ß –бета распад, IT- изомерный переход, α- альфа распад

Схемы радиоактивного распада, в результате которых возникает заселенность мессбауэровского уровня на ядрах 57 Fe и 119 m. Sn

Вероятность резонансного процесса без отдачи. Фактор Лэмба-Мессбауэра f – вероятность процесса поглощения или испускания гамма квантов без отдачи f – зависит от колебательных свойств кристаллической решетки, т. е. от вероятности возбуждения фонов в твердом теле - средний квадрат амплитуды колебаний в направлении излучения гамма кванта, усредненный за время жизни ядра в возбужденном состоянии λ– длина волны гамма кванта

Влияние фононных процессы на поглощение или рассеяние без отдачи а б в Колебательные спектры решеток твердого тела а – модель Эйнштейна, б-модель Дебая, в- модель Борна-Кармана

СВЕРХТОНКИЕ ВЗАИМОДЕЙСТВИЯ МЕССБАУЭРОВСКИЕ ПАРАМЕТРЫ Мессбауэровский Тип взаимодействия параметр Изомерный сдвиг Электрическое монопольное (кулоновское) между ядрами и δ(мм/с) протонами Извлекаемая информация Спиновое состояние атома (HS, LS, IS) Электроотрицательность лигандов Степень окисления Электронная плотность Квадрупольное расщепление ΔЕQ(мм/с) Электрическое квадрупольное взаимодействие между квадрупольным моментом ядра и неоднородным электрическим полем Молекулярная симметрия Характеристика зонной структуры Спиновое состояние атома (HS, LS, IS) Магнитное расщепление ΔЕМ(мм/с) Магнитное дипольное взаимодействие между магнитным моментом ядра и магнитным полем Характер и величина магнитного взаимодействия (ферромагнетизм, антиферромагнетизм и т. д.

Изомерный сдвиг в железосодержащих соединениях При экспериментальном измерении изомерных химических сдвигов всегда важно, какой используется стандарт, относительно которого будут определяться эти сдвиги. Так для измерений на 57 Fe официальным стандартом является соединение этого изотопа Na 2 или металлическое железо. Для 119 m. Sn общепринятым стандартом является Sn. O 2.

Электрическое квадрупольное взаимодействие Квадрупольное расщепление ΔЕQ ΔEQ где: m. I=+I, +I-1, …, -I Для 57 Fe Iв=3/2 , Io=1/2 при η=0

Комбинированное магнитное дипольное и электрическое квадрупольное взаимодействие Обычно Для 57 Fe и осевой симметрии (η=0) :

Процесс разрядки ядра 57 Fe после резонансного возбуждения. Тип испускаемого излучения E кэ. В Интенсивность (отн. един.) Глубина выхода Мессбауэровское излучение 14, 4 0, 10 20 мкм Рентгеновское Излучение К-оболочки 6, 4 0, 28 20 мкм К-конверсионные электроны 7, 3 0, 79 10 нм 400 нм L-конверсионные электроны 13, 6 0, 08 20 нм 1, 3 мкм М-конверсионные электроны …………… 14, 3 0, 01 20 нм 1, 5 мкм K – LL – Оже электроны 5, 5 0, 63 7 нм 400 нм L – MM – Оже электроны 0, 53 0, 60 1 нм 2 нм

Динамика сверхтонких взаимодействий и релаксация Среди методов исследования железосодержащих магнитных свойств наночастиц, одним из наиболее информативных является мессбауэровская спектроскопия. В отличие от магнитных измерений, мессбауэровская спектроскопия может выявить магнитную динамику наночастиц в частотном диапазоне 107 – 1010 с-1, характерных для мессбауэровского «окна» . Форма экспериментальных мессбауэровских спектров низкоразмерных объектов сильно усложняется по сравнению со спектрами для массивных объектов. Причинами этого могут быть: либо суперпозиция статического набора сверхтонких структур, обусловленная различием в локальном окружении резонансных атомов, либо влиянием различного рода динамических процессов (например, диффузия, парамагнитная, спин-спиновая, спин-решеточная релаксации и т. п.

Форма мессбауэровских спектров магнитоупорядоченных материалов 1. Случай хорошо разрешенной сверхтонкой структуры: 2. Случай суперпозиции большого набора сверхтонких структур: 3. Случай суперпарамагнитной релаксации: здесь- p-вероятность переориентации магнитного момента атома на угол /2 между осями легкого намагничивания, q-вероятность его переворота в единицу времени

Селективное возбуждение подуровней магнитной сверхтонкой структуры а) - схема переходов между ядерными подуровнями основного и возбужденного состояний -Fe, б) - экспериментальный КЭМ спектр для тонкой пленки -Fe, в) - энергетический спектр рассеянного излучения при возбуждении уровня -3/2, г) энергетический спектр рассеянного излучения при возбуждении уровня +1/2.

а) - спектр на поглощение алюмозамещенного гетита (8 мол. %) и спектры селективного возбуждения (сверху вниз). в) - с спектр на поглощение алюмозамещенного гетита (2 мол. %) и спектры селективного возбуждения (сверху вниз). Стрелкой показаны энергии возбуждающего излучения.

то же, что Мессбауэра эффект.


Смотреть значение Ядерный Гамма-резонанс в других словарях

Гамма — ж. итал. нотная азбука, лестница, скала в музыке, ряд, порядок звуков. | Таблица нот, с означением аппликатуры.
Толковый словарь Даля

Гамма — гаммы. Третья буква греческого алфавита. - лучи, гамма-лучей, ед. нет (физ.) - то же, что рентгеновские.
Толковый словарь Ушакова

Резонанс — м. франц. зык, гул, рай, отзвук, отгул, гул, отдача, наголосок; звучность голоса, по местности, по размерам комнаты; звучность, звонкость музыкального орудия, по устройству........
Толковый словарь Даля

Ядерный — ядерная, ядерное (спец.). 1. Прил. к ядро в 1 и 5 знач. сок. вес. 2. Прил., по знач. связанное с атомным ядром или с ядром клетки (физ., биол.). Ядерная физика. Ядерная структура бацилл.
Толковый словарь Ушакова

Гамма- — 1. Первая часть сложных слов, вносящая значение: связанный с электромагнитным излучением, испускаемым радиоактивными веществами (гамма-лучи, гамма-спектрометр, гамма-терапия и т.п.).
Толковый словарь Ефремовой

Гамма-глобулин М. — 1. Один из белков плазмы крови, содержащий антитела и применяемый как лечебно-профилактический препарат при некоторых инфекционных заболеваниях.
Толковый словарь Ефремовой

Гамма-излучение Ср. — 1. Коротковолновое электромагнитное излучение, испускаемое радиоактивными веществами.
Толковый словарь Ефремовой

Гамма-квант М. — 1. Квант гамма-излучения.
Толковый словарь Ефремовой

Гамма-лучи Мн. — 1. То же, что: гамма-излучение.
Толковый словарь Ефремовой

Гамма-установка Ж. — 1. Аппарат для применения направленного, регулируемого пучка гамма-излучения.
Толковый словарь Ефремовой

Резонанс М. — 1. Возбуждение колебаний одного тела колебаниями другого той же частоты, а также ответное звучание одного из двух тел, настроенных в унисон. 2. Способность усиливать........
Толковый словарь Ефремовой

Гамма- — Первая часть сложных слов. Вносит зн.: связанный с электромагнитным излучением (гамма-излучением), испускаемым радиоактивным веществами. Гамма-анализ, гамма-вспышка,........
Толковый словарь Кузнецова

Гамма-астрономия — } -и; ж. Раздел астрономии, связанный с исследованиями космических тел по их гамма-излучению.
Толковый словарь Кузнецова

Гамма-всплеск — } -а; м. Кратковременное усиление космического гамма-излучения. Наблюдать гамма-всплески.
Толковый словарь Кузнецова

Гамма-глобулин — } -а; м. Один из белков плазмы крови, содержащий антитела (применяется как лечебно-профилактический препарат при некоторых инфекционных заболеваниях).
Толковый словарь Кузнецова

Гамма-дефектоскопия — } -и; ж. Метод проверки материалов и изделий, основанный на измерении поглощения гамма-лучей, испускаемых радиоактивными изотопами металлов (применяется для обнаружения скрытых дефектов).
Толковый словарь Кузнецова

Гамма-излучение — -я; ср. Физ. Коротковолновое электромагнитное излучение, испускаемое радиоактивными веществами. Г. радия.
Толковый словарь Кузнецова

Гамма-квант — -а; м. Квант гамма-излучения. Поток гамма-квантов. Поглощение гамма-квантов атомными ядрами.
Толковый словарь Кузнецова

Гамма-лазер — -а; м. Генератор индукционного гамма-излучения; газер. Создать г.
Толковый словарь Кузнецова

Гамма-лучи — } -е́й; мн. Физ. = Га́мма-излуче́ние.
Толковый словарь Кузнецова

Гамма-плотномер — } -а; м. Прибор для измерения плотности вещества с помощью гамма-излучения.
Толковый словарь Кузнецова

Гамма-поле — } -я; ср.
Толковый словарь Кузнецова

Гамма-спектрометр — } -а; м. Прибор для измерения энергии (энергетического спектра) гамма-излучения.
Толковый словарь Кузнецова

Гамма-спектроскопия — } -и; ж. Раздел ядерной физики, связанный с изучением спектров гамма-излучения и различных свойств возбуждённых состояний атомных ядер.
Толковый словарь Кузнецова

Cтраница 1


Ядерный гамма-резонанс (ЯГР) - излучение или поглощение гамма-квантов твердым телом без рождения в нем фононов - не относится к числу магнитных резонансов.  

Ядерный гамма-резонанс (эффект Мессбауэра) позволяет получать ценную информацию о строении электронных оболочек атомов, содержащих мессбауэровские ядра. Существенным недостатком метода является ограниченность числа элементов, практически доступных для исследования. В настоящей работе сделана попытка преодолеть это ограничение, используя результаты мессбауэровских измерений на ядрах Sn119 и Sb121 атомов олова и сурьмы, входящих в состав соединений, а также на ядрах Fe57 примесных атомов железа в качестве критерия применимости различных подходов при теоретическом расчете эффективных зарядов атомов в соединениях рассматриваемого типа.  

Спектроскопия ядерного гамма-резонанса (мессбауэровская спектроскопия) позволяет обнаружить слабые возмущения энергетических уровней ядер железа окружающими электронами. Этот эффект представляет собой явление испускания или поглощения мягкого v-излучения без отдачи ядер. Интересующий нас ядерный переход с энергией 14 36 кэВ - происходит между состояниями / 3 / 2 и / 1 / 2 мессбауэровского изотопа 57Fe, где / - ядерное спиновое квантовое число. Для белка с молекулярным весом 50 000, который связывает 1 атом железа на молекулу, и в отсутствие изотопного обогащения это соответствует весу образца 2 5 г. Рассматриваемые здесь многоядерные белки содержат гораздо больше железа и вполне подходят для исследования методом ядерной гамма-резонансной спектроскопии. Широко исследуются четыре возможных типа взаимодействия между ядром 57Fe и его электронным окружением: изомерный сдвиг, квадрупольное расщепление, ядерные магнитные сверхтонкие взаимодействия, ядерные зеемановские взаимодействия.  

Суть ядерного гамма-резонанса, или так называемого эффекта Мессбауэра, состоит в том, что у кванты испущенные при переходе возбужденного ядра в основное состояние, могут равновесно поглощаться невозбужденными ядрами с переходом последних в возбужденное состояние. Аналогичное явление хорошо известно в обычной оптике; существенно лишь то, что при сравнительно большом импульсе у-квантов следовало бы ожидать сильной отдачи как у испускающего; так и у поглощающего ядра и тем самым невозможности резонансного поглощения из-за эффекта Допплера. Мессбауэр показал, что по крайней мере в значительной доле случаев отдачу принимает на себя кристалл (или тяжелая молекула) как жесткое целое, и явлением отдачи при этом, естественно, можно пренебречь.  

Явление ядерного гамма-резонанса на атомных ядрах заключается в резком возрастании вероятности поглощения или рассеяния у-кван-тов с энергией, соответствующей возбуждению ядерных переходов.  

Исследование с помощью ядерного гамма-резонанса показало, что изучаемые частицы железа не окислены.  

Методом рентгеноструктурного анализа и ядерного гамма-резонанса было установлено, что данное изменение кристаллической структуры не связано с изменением концентрации углерода в твердом растворе, а обусловлено обратимыми переходами атомов внедрения (углерода) из октаэдрических междоузлий к радиационным дефектам. Для таких переходов не требуется диффузии углерода на значительные расстояния - она совершается в пределах элементарной ячейки. Повышенная концентрация точечных дефектов, созданных облучением в кристаллической решетке мартенсита, стимулирует переходы атомов внедрения с одних позиций на другие, энергетически более выгодные при данных температурах.  

Нами были проведены наблюдения ядерного гамма-резонанса в образцах различных массивных многокомпонентных оловосодержащих стекол и стекловолокнах того же химического состава. Составы стекол приведены в таблице.  

Нами было проведено изучение ядерного гамма-резонанса в комплексных соединениях железа с анионами 4-бутироил - и 4-бензоил - 1 2 3-три-азола. Спектры получены на спектрометре ЯГР механического типа, источник Со57 в хроме.  

Обработка экспериментальных данных по ядерному гамма-резонансу возможна только в том случае, если проведена калибровка ЯГР спектрометра по скоростям и определены положения линий поглощения каких-либо веществ, выбранных в виде стандарта. Обычно в качестве стандарта используют вещества, которые могут быть достаточно легко изготовлены и воспроизведены в идентичных условиях. Они должны быть стабильны, должны иметь достаточно большую величину вероятности поглощения - у-квантов без потери энергии на отдачу, их мессбауэровские спектры должны представлять собой узкую линию, характеризующуюся малым температурным сдвигом.  

Хотя квадруполыюе расщепление усложняет вид спектров ядерного гамма-резонанса (ЯГР) (рис. 111 6), но оно помогает вывести ряд важных заключений о структуре и симметрии исследуемых соединений. Это соединение (служившее поглотителем) было синтезировано с применением изотопа 1291 - долгоживущего продукта реакции деления. Сложный вид спектра обусловлен как квадрупольным расщеплением, так и тем, что иод находится в этом соединении в двух различных позициях.  

Нами было предпринято систематическое исследование методом ядерного гамма-резонанса (ЯГР) соединений олова с элементами пятой и шестой групп, а также халькогенидных полупроводниковых стекол в системе мышьяк - селен - олово с целью получения информации о химической связи и внутренних кристаллических полях в этих соединениях.  


Изучение узких линий проводят с помощью метода ядерного гамма-резонанса, который принято называть мессбауэровской спектроскопией. На рис. 8.14 показана типичная схема экспериментальной установки.  

Метод мессбауэровской спектроскопии, называемой иногда спектроскопией ядерного гамма-резонанса (ЯГР), основан на изучении поглощения у-излучения какого-то ядра-источника ядром того же изотопа, находящимся в исследуемом образце. Условия резонанса соблюдаются только тогда, когда устранен также эффект отдачи ядер при испускании и поглощении у-квантов, а также скомпенсирован каким-то образом эффект Допплера. Метод получил свое развитие именно с того момента, когда это было понято, а еще раньше экспериментально был найден простой и едва ли не единственно возможный путь ликвидации потерь на отдачу.  

Наименование параметра Значение
Тема статьи: Мёссбауэра эффект (ядерный гамма резонанс)
Рубрика (тематическая категория) Технологии

Мёссбауэра эффект (ЯГР - ядерный гамма резонанс)-испускание или поглощение гамма- квантов атомными ядрами в твердом телœе, ĸᴏᴛᴏᴩᴏᴇ не сопровождается испусканием или поглощением фононов. Открыт в 1958 ᴦ. Рудольфом Мёссбауэром в ФРГ. Стоит сказать, что для наблюдения эффекта используются низколежащие долгоживущие ядерные уровни с энергией не более 200 кэв и временами жизни . -естественная ширина уровня. Для ядра желœеза энергия -гамма квантов .

Эффект наблюдается для 73 изотопов 41 элемента. Стоит сказать, что для наблюдения резонансного поглощения и получения спектров необходима одинаковость состояний мёссбауэровских атомов в излучателœе и поглотителœе. Настройка в резонанс происходит движением источника или поглотителя со скоростью V . Изменение энергии за счёт эффекта Доплера . Для ядра ширина уровня и рабочие скорости .

В адсорбционном варианте ЯГР источником излучения являются ядра , которые при захвате собственного электрона с К-оболочки превращаются в ядра желœеза в воздужденном состоянии с энергией 136,4 Кэв. Это состояние образует метастабильное состояние с энергией 14,4 кэв, ĸᴏᴛᴏᴩᴏᴇ используется в мёссбауэровской спектроскопии желœеза. Мёссбауэровские спектры позволяют определить размеры нанокластеров в области 1-10 нм при известной константе анизотропии вещества. На рис показаны суперпарамагнитные мёссбауэровские спектры нанокластеров оксида желœеза при разных температурах измерения. Нанокластеры были получены твердотельной химической реакцией разложения оксалата желœеза при температуре разложения .

Мёссбауэровская спектроскопия – совокупность методов исследования микроскопических объектов ядер, ионов. химических и биологических комплексов в твердых телах.

Наиболее важные применения это сдвиги и сверхтонкие расщепления мёссбауэровских линий связанные с взаимодействием электрических и магнитных моментов ядра с внутрикристаллическими полями вызывающими расщепление ядерных уровней.

Химический (изомерный) сдвиг мёссбауэровской линии наблюдается, когда источник и поглотитель химически не тождественны.

Сдвиг линии испускания и поглощения ,к примеру, при изменении заряда иона и составляет 32 мм/с при точности измерения 0,1 мм/сек. Это позволяет установить корреляцию между величинами и электроотрицательностью ближайших ионов.

Рис Химический изомерный сдвиг мёссбауэровской линии для двух ионов нептуния.

Квадрупольное расщепление ядерных уровней , приводящее к расщеплению линий мёссбауэроского спектра возникает из-за взаимодействия электрического квадрупольного момента ядра с градиентом электрического поля кристалла (при некубической симметрии окружения). Расстояние между расщепленными линиями составляет для ядра со спином 3/2.

где - z -компонета тензора градиента электрического поля (ГЭП) на ядре. -параметр асиметрии тензора ГЭП.

За счёт поляризации собственной электронной оболочки иона содержащего резонансное ядро градиент ГЭП может изменится раз, и даже изменит знак. .

Фактор Штерхаймера –антиэкранирующий фактор зависит от химического состояния резонансного иона.

Измерение спектров квадрупольного расщепления дает сведения о структуре и электронных свойствах матрицы твердого тела. К примеру, в спектре поглощения ядер высокотемпературного сверхпроводника (температура сверхпроводящего перехода 72 К ) наблюдается 3 квадрупольных дублета соответствующих ионам Fe замещающим ионы Cu в структурных позициях с различным кислородным окружением. Химические сдвиги для трех позиций Fe одинаковы и близки к сдвигу в металлическом желœезе, ᴛ.ᴇ. плотность s -электронов приблизительно одинакова во всœех узлах решетки. Это означает, что валентные электроны для данного сверхпроводника делокализованы по кристаллу.

Магнитное сверхтонкое расщепление ядерных уровней и мёссбауэровских линий вызывается взаимодействием магнитного момента ядра и магнитного поля в месте расположения ядра. Энергия магнитного сверхтонкого взаимодействия пропорциональна произведению ядерного магнитного момента на локальное магнитное, ĸᴏᴛᴏᴩᴏᴇ принято называть сверхтонким магнитным полем. Это взаимодействие расщепляет ядерное состояние на 2I+1 зеемановские подуровни расстояние между которыми равно (I -спин ядра). Число компонент сверхтонкой структуры в мёссбауэровском спектре равно числу -переходов между зеемановскими подуровнями возбужденного и основного состояний ядра, разрешенных правилом отбора по магнитному квантовому числу. Для магнитного дипольного -перехода между состояниями () в мёссбауэровском спектре наблюдаются 6 компонент магнитной сверхтонкой структуры.

Сверхтонкая структура линий мёссбауэровского спектра в парамагнениках

Приведен спектр примесных ионов желœеза в нитрате алюминия состоящий из спектров трех крамерсовых дублетов, на которые расщепляется основное состояние иона желœеза Fe 3+

Заключение. Мёссбауэровская спектроскопия позволяет в одном эксперименте определить вероятности эффекта Мёссбауэра, величину температурного смещения,химического сдвига. Квадрупольного и магнитного расщеплений,формы линий отдельных компонент. Это сочетается с возможностью влиять на мёссбауэровские спектры температурой, давлением, магнитным и электрическим полями, ультразвуком и радиочастотным излучением. Возможность исследовать объекты размером от одного тмоносоя до массивного образца делает мёссбауэровскую спектроскопию уникальным методом анализа физических и химических свойств твердых тел.

Мёссбауэра эффект (ядерный гамма резонанс) - понятие и виды. Классификация и особенности категории "Мёссбауэра эффект (ядерный гамма резонанс)" 2017, 2018.