1. Какие органические вещества вы знаете?

Органические вещества: белки, нуклеиновые кислоты, углеводы, жиры (липиды), витамины.

2. Какие витамины вам известны? Какова их роль?

Выделяют водорастворимые (C, B1, B2, B6, PP, B12 и B5), жирорастворимые (А, В, Е и К) витамины.

3. Какие виды энергии вам известны?

Магнитная, тепловая, световая, химическая, электрическая, механическая, ядерная и др.

4. Почему для жизнедеятельности любого организма необходима энергия?

Энергия необходима для синтеза всех специфических веществ организма, поддержания его высокоупорядоченной организации, активного транспорта веществ внутри клеток, из одних клеток в другие, из одной части организма в другую, для передачи нервных импульсов, передвижения организмов, поддержания постоянной температуры тела и для других целей.

Вопросы

1. Какое строение имеет молекула АТФ?

Аденозинтрифосфат (АТФ) - нуклеотид, состоящий из азотистого основания аденина, углевода рибозы и трёх остатков фосфорной кислоты.

2. Какую функцию выполняет АТФ?

АТФ - универсальный источник энергии для всех реакций, протекающих в клетке.

3. Какие связи называются макроэргическими?

Связь между остатками фосфорной кислоты называют макроэргической (она обозначается символом ~), так как при её разрыве выделяется почти в четыре раза больше энергии, чем при расщеплении других химических связей.

4. Какую роль выполняют в организме витамины?

Витамины - сложные оль органические соединения, необходимые в малых количествах для нормальной жизнедеятельности организмов. В отличие от других органических веществ, витамины не используются в качестве источника энергии или строительного материала.

Биологическое действие витаминов в организме человека заключается в активном участии этих веществ в обменных процессах. В обмене белков, жиров и углеводов витамины принимают участие либо непосредственно, либо входя в состав сложных ферментных систем. Витамины участвуют в окислительных процессах, в результате которых из углеводов и жиров образуются многочисленные вещества, используемые организмом, как энергетический и пластический материал. Витамины способствуют нормальному росту клеток и развитию всего организма. Важную роль играют витамины в поддержании иммунных реакций организма, обеспечивающих его устойчивость к неблагоприятным факторам окружающей среды.

Задания

Обобщив имеющиеся у вас знания, подготовьте сообщение о роли витаминов в нормальном функционировании организма человека. Обсудите с одноклассниками вопрос: каким образом человек может обеспечить свой организм необходимым количеством витаминов?

Своевременное и сбалансированное получение необходимого количества витаминов способствует нормальной жизнедеятельности человека. Основное их количество поступает в организм с пищей, поэтому важно правильно питаться (чтобы пища содержала витамины в нужном количестве, она должна быть разнообразной и сбалансированной).

Роль витаминов в организме человека

Витамины – жизненно важные вещества, необходимые нашему организму для поддержания многих его функций. Поэтому достаточное и постоянное поступление витаминов в организм с пищей крайне важно.

Биологическое действие витаминов в организме человека заключается в активном участии этих веществ в обменных процессах. В обмене белков, жиров и углеводов витамины принимают участие либо непосредственно, либо входя в состав сложных ферментных систем. Витамины участвуют в окислительных процессах, в результате которых из углеводов и жиров образуются многочисленные вещества, используемые организмом, как энергетический и пластический материал. Витамины способствуют нормальному росту клеток и развитию всего организма. Важную роль играют витамины в поддержании иммунных реакций организма, обеспечивающих его устойчивость к неблагоприятным факторам окружающей среды. Это имеет существенное значение в профилактике инфекционных заболеваний.

Витамины смягчают или устраняют неблагоприятное действие на организм человека многих лекарственных препаратов. Недостаток витаминов сказывается на состоянии отдельных органов и тканей, а также на важнейших функциях: рост, продолжение рода, интеллектуальные и физические возможности, защитные функции организма. Длительный недостаток витаминов ведет сначала к снижению трудоспособности, затем к ухудшению здоровья, а в самых крайних, тяжелых случаях это может закончиться смертью.

Только в некоторых случаях наш организм может синтезировать в небольших количествах отдельные витамины. Так, например, аминокислота триптофан может преобразовываться в организме в никотиновую кислоту. Витамины необходимы для синтеза гормонов – особых биологически активных веществ, которые регулируют самые разные функции организма.

Получается, что витамины – это вещества, относящиеся к незаменимым факторам питания человека, и имеют огромное значение для жизнедеятельности организма. Они необходимы для гормональной системы и ферментной системы нашего организма. Также регулируют наш обмен веществ, делая организм человека здоровым, бодрым и красивым.

Основное их количество поступает в организм с пищей, и только некоторые синтезируются в кишечнике обитающими в нём полезными микроорганизмами, однако в этом случае их бывает не всегда достаточно. Многие витамины быстро разрушаются и не накапливаются в организме в нужных количествах, поэтому человек нуждается в постоянном поступлении их с пищей.

Применение витаминов с лечебной целью (витаминотерапия) первоначально было целиком связано с воздействием на различные формы их недостаточности. С середины XX века витамины стали широко использовать для витаминизации пищи, а так же кормов в животноводстве.

Ряд витаминов представлен не одним, а несколькими родственными соединениями. Знание химического строения витаминов позволило получать их путем химического синтеза; наряду с микробиологическим синтезом это основной способ производства витаминов в промышленных масштабах.

Первоисточником витаминов являются растения, в которых витамины накапливаются. В организм витамины поступают в основном с пищей. Некоторые из них синтезируются в кишечнике под влиянием жизнедеятельности микроорганизмов, но образующиеся количества витаминов не всегда полностью удовлетворяют потребности организма.

Вывод: Витамины влияют на усвоение питательных веществ, способствуют нормальному росту клеток и развитию всего организма. Являясь составной частью ферментов, витамины определяют их нормальную функцию и активность. Недостаток, а тем более отсутствие в организме какого-либо витамина ведет к нарушению обмена веществ. При недостатке их в пище снижается работоспособность человека, сопротивляемость организма к заболеваниям, к действию неблагоприятных факторов окружающей среды. В результате дефицита или отсутствия витаминов, развивается витаминная недостаточность.

Работа добавлена на сайт сайт: 2016-06-09

">Лекция № 2

">Нуклеиновые кислоты, АТФ и другие органические соединения клетки

"> ">Типы нуклеиновых кислот ">. В клетках имеется два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Эти биополимеры состоят из мономеров, называемых нуклеотидами. Нуклеотиды ДНК и РНК сходны в основных чертах строения. Каждый нуклеотид состоит из трех компонентов, оторые соединены прочными химическими связями.

"> Каждый из нуклеотидов, входящих в состав РНК, содержит пятиуглеродный сахар – рибозу; одно из 4 азотистых оснований: аденин, гуанин, цитозин, тимин (А, Г, Ц, Т); остаток фосфорной кислоты.

"> Нуклеотиды, входящие в состав ДНК, содержат пятиуглеродный сахар – дезоксирибозу; одно из 4 азотистых оснований: аденин, цитозин, гуанин, тимин (А, Г, Ц, Т); остаток фосфорной кислоты.

"> В составе нуклеотидов к молекуле рибозы (или дезоксирибозы) с одной стороны присоединено азотистое основание, а с другой – остаток фосфорной кислоты. Нуклеотиды соединяются между собой в длинные цепи. Остов такой цепи образуют регулярно чередующиеся остатки сахара и фосфорной кислоты, а боковые группы этой цепи – 4 типа нерегулярно чередующихся азотистых оснований.

"> Молекула ДНК представляет собой структуру, состоящую из 2 нитей, которые по всей длине соединены друг с другом водородными связями.

"> Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью. Особенностью структуры ДНК является то, что против азотистого основания А в одной цепи лежит азотистое основание Т в другой цепи, а против азотистого основания Г всегда расположено азотистое основание Ц. Схематически сказанное можно выразить следующим образом:

">А (аденин) – Т (тимин)

">Т (тимин) – А (аденин)

">Г (гуанин) – Ц (цитозин)

">Ц (цитозин) – Г (гуанин)

"> Эти пары оснований называют комплементарными основаниями (дополняющими друг друга). Нити ДНК, в которых основания расположены комплементарно друг другу, называют комплементарными нитями.

"> Модель строения молекулы ДНК предложили Дж. Уотсон и Ф. Крик в 1953 г. Она полностью подтверждена экспериментально и сыграла важную роль в развитии молекулярной биологии и генетики. Порядок расположения нуклеотидов в молекулах ДНК определяет порядок расположения аминокислот в линейных молекулах белков, т.е. их первичную структуру. Набор белков определяет свойства клетки и организма. Молекулы ДНК хранят сведения об этих свойствах и передают их поколениям потомков, т.е. являются носителями наследственной информации. Молекулы ДНК в основном находятся в ядрах клеток и в небольшом количестве в митохондриях и хлоропластах.

"> ">Основные виды РНК ">. Наследственная информация, хранящаяся в молекулах ДНК, реализуется через молекулы белков. Информация о строении белка передается в цитоплазму особыми белками РНК, которые называются информационными (иРНК). Информационная РНК переносится в цитоплазму, где с помощью специальных органоидов – рибосом идет синтез белка. Именно информационная РНК, которая строится комплементарно одной из нитей ДНК, определяет порядок расположения аминокислот в белковых молекулах.

"> В синтезе белка принимает участие и другой вид РНК – транспортная (тРНК), которая подносит аминокислоты к месту образования белковых молекул – рибосомам.

"> Каждая молекула РНК в отличие от молекулы ДНК представлена одной нитью; вместо дезоксирибозы она содержит рибозу и вместо тимина – урацил.

">Итак, нуклеиновые кислоты выполняют в клетке важнейшие биологические функции. В ДНК хранится наследственная информация о всех свойствах клетки и организма в целом. Различные виды РНК принимают участие в реализации наследственной информации через синтез белка.

">АТФ ">.

"> В любой клетке, кроме белков, жиров, полисахаридов и нуклеиновых кислот, насчитывается несколько тысяч других органических соединений. Их можно условно разделить на конечные и промежуточные продукты биосинтеза и распада.

"> Конечными продуктами биосинтеза называют органические соединения, которые играют самостоятельную роль в организме или служат мономерами для синтеза биополимеров.К числу конечных продуктов биосинтеза относятся аминокислоты, из которых в клетках синтезируются белки; нуклеотиды – мономеры, из которых синтезируются нуклеиновые кислоты (РНК и ДНК); глюкоза, которая служит мономером для синтеза гликогена, крахмала, целлюлозы.

"> ">Аденозинфосфорные кислоты ">. Особо важную роль в биоэнергетике клетки играет адениловый нуклеотид, к которому присоединены еще 2 остатка фосфорной кислоты. Такое вещество называют аденозинтрифосфорной кислотой (АТФ). Энергию АТФ все клетки используют для процессов биосинтеза, движения, производства тепла, передачи нервных импульсов, свечений, т.е. для всех процессов жизнедеятельности.

"> Витамины. К конечным продуктам биосинтеза принадлежат витамины. К ним относят жизненно важные соединения, которые организмы данного вида не способны синтезировать сами, а должны получать в готовом виде извне. Например, витамин С (аскорбиновая кислота) синтезируется в клетках большинства животных. Недостаток ряда витаминов в организме человека и животных ведет к нарушению работы ферментов и является причиной тяжелых заболеваний – авитаминозов.

«Органическая шерсть» - Комплект для новорожденного. Содержите малыша в комфортном тепле и не сковывает движения. Энергетика шерсти похожа на энергетику мамы. Поглощает влагу. Рост 86, 1-2 года Вкладыши для груди. Одежда Organic & Natural ™ Baby из органической шерсти: Нежная и мягкая. Нежная шерсть и наружный шов не раздражает кожу малыша.

«Уроки по органической химии» - Качественная и количественная Фактическая. Термин «органические вещества» введен в науку Й.Я.Берцелиусом в 1807 году. Phosphorus. М.Бертло синтезирует жиры (1854 г.). Классификация органических веществ. А.М.Бутлеров синтезирует сахаристое вещество (1861 г.). Вопросы. А.Кольбе синтезирует уксусную кислоту (1845 г.).

«Эволюция органического мира» - Копчик человека. Гоацин - современная птица, некоторыми признаками сходная с археоптериксом. Интернет источники. Эволюция. Ехидна. Казуар – австралийский страус. Утконос. Изучив материал темы «Доказательства эволюции органического мира» Вы должны уметь: Доказательства эволюции органического мира. Одиннадцатилетний Прутвирай Патил из деревни Сангливади в индийском штате Махараштра.

«Органические вещества клетки» - Спасибо за внимание. Каковы функции углеводов и липидов? Органические вещества, входящие в состав клетки. Вывод. Липиды. Перечислите функции белков. Закрепление. Сделать вывод. Повторить домашнее задание Изучить новую тему. Углеводы состоят из атомов углерода и молекул воды. Какие органические вещества входят в состав клеток?

«Шиповые соединения» - Для упрочнения соединений применяют нагели. Косую стамеску для чистового точения затачивают с двух сторон. Рабочая часть долота имеет форму клина с углом 35 . В зависимости от вида клея изделие выдерживают в сжатом состоянии до 24 ч. Долото предназначено для долбления гнезд и проушин. Характерным элементом фасонных деталей являются галтели.

«Биологически активные соединения» - Мировое производство важнейших жиров и масел. Латанопрост (Ксалатан) – антиглаукомное средство (на основе синтетического простагландина группы F2a). Каскад арахидоновой к-ты. Простые липиды – воски. Первичная классификация липидов биологических мембран. Биологически активные соединения живых организмов.

Жиров, полисахаридов и нуклеиновых кислот, насчитывается несколько тысяч других органических соединений. Их можно условно разделить на конечные и промежуточные продукты биосинтеза и распада.

Конечными продуктами биосинтеза называют органические соединения, которые играют самостоятельную роль в организме или служат мономерами для синтеза биополимеров. К числу конечных продуктов биосинтеза относятся аминокислоты, из которых в клетках синтезируются белки; нуклеотиды — мономеры, из которых синтезируются нуклеиновые кислоты (РНК и ДНК); глюкоза, которая служит мономером для синтеза гликогена, крахмала, целлюлозы.

Путь к синтезу каждого из конечных продуктов лежит через ряд промежуточных соединений. Многие вещества подвергаются в клетках ферментативному расщеплению, распаду.

Рассмотрим некоторые конечные органические соединения.

Аденозинфосфорные кислоты. Особо важную роль в биоэнергетике клетки играет адениловый нуклеотид, к которому присоединены еще два остатка фосфорной кислоты. Такое вещество называют аденозинтрифосфорной кислотой (АТФ). В химических связях между остатками фосфорной кислоты молекулы АТФ запасена энергия (Е), которая освобождается при отщеплении фосфата:

АТФ - АДФ+Ф+Е

В этой реакции образуется аденозиндифосфорная кислота (АДФ) и фосфорная кислота (фосфат, Ф).

Энергию АТФ все клетки используют для процессов биосинтеза, движения, производства тепла, передачи нервных импульсов, свечений (например, у люминесцентных бактерий), т. е. для всех процессов жизнедеятельности.

АТФ — универсальный биологический аккумулятор энергии. Световая энергия Солнца и энергия, заключенная в потребляемой пище, запасаются в молекулах АТФ.

Регуляторные и сигнальные вещества. Конечными продуктами биосинтеза являются вещества, играющие важную роль в регуляции физиологических процессов и развитии организма. К числу их относятся многие гормоны животных. Наряду с белковыми гормонами, о которых сказано в § 4, известны гормоны небелковой природы. Некоторые из них регулируют содержание ионов натрия и воды в организме животных, другие обеспечивают половое созревание и играют важную роль в воспроизведении животных. Гормоны тревоги или стресса (например, адреналин) в условиях напряжения усиливают выход глюкозы в кровь, что в конечном счете приводит к увеличению синтеза АТФ и активному использованию энергии, запасенной организмом.

Насекомые производят ряд особых пахучих веществ, которые играют роль сигналов, сообщающих о нахождении пищи, об опасности, привлекающих самок к самцам (и наоборот).

У растений имеются свои гормоны. Под действием некоторых гормонов значительно ускоряется созревание растений, увеличивается их урожайность.

Растения производят сотни разнообразных летучих и нелетучих соединений, которые привлекают насекомых, переносящих пыльцу; отпугивают или отравляют насекомых, питающихся растениями; подавляют иногда развитие растений других видов, растущих рядом и конкурирующих за минеральные вещества в почве.

Витамины. К конечным продуктам биосинтеза принадлежат витамины. К ним относят жизненно важные соединения, которые организмы данного вида не способны синтезировать сами, а должны получать в готовом виде извне. Например, витамин С (аскорбиновая кислота) синтезируется в клетках большинства животных, а также в клетках растений и микроорганизмов. Клетки человека, человекообразных обезьян, морских свинок, некоторых видов летучих мышей утратили способность синтезировать аскорбиновую кислоту. Поэтому она является витамином только для человека и перечисленных животных. Витамин РР (никотиновую кислоту) животные не способны синтезировать, но его синтезируют все растения и многие бактерии.

Большинство известных витаминов в клетке становятся составными частями ферментов и участвуют в биохимических реакциях.

Суточная потребность человека в каждом витамине составляет несколько микрограммов. Только витамин С нужен в количестве около 100 мг в сутки.

Недостаток ряда витаминов в организме человека и животных ведет к нарушению работы ферментов и является причиной тяжелых заболеваний — авитаминозов. Например, недостаток витамина С является причиной тяжелого заболевания — цинги, при недостатке витамина D развивается рахит у детей.

Тема: АТФ и другие органические соединения клетки /
Этапы урока Время Ход урока
Деятельность учителя Деятельность ученика
I.Оргмомент Оргмомент
II. Проверка д/з 15­20 мин. 1. ученик у доски сравнительная характеристика ДНК и РНК
2. ученик характеристика ДНК
3. ученик характеристика РНК
4. построение участка молекулы ДНК
5. принцип комплементарности. В чем он заключается. Изобразить на доске.
III.Изучение нового материала 20 мин. АТФ и прочие органические соединения клетки

1. Что такое энергия,Какие виды энергии вам известны?
2. Почему для жизнедеятельности любого организма необходима энергия?
3. Какие витамины вам известны? Какова их роль?
АТФ. Строение. Функции. Нуклеотиды являются структурной основой для целого ряда важных для
жизнедеятельности органических веществ. Наиболее широко распространенными среди них
являются макроэргические соединения (высокоэнергетические соединения, содержащие богатые
энергией, или макроэргические, связи), а среди последних - аденозинтрифосфатп (АТФ).
АТФ состоит из азотистого основания аденина, углевода рибозы и (в отличие от нуклеотидов ДНК и
РНК) трех остатков фосфорной кислоты (рис. 21).
АТФ - универсальный хранитель и переносчик энергии в клетке. Практически все идущие в клетке
биохимические реакции, которые требуют затрат энергии, в качестве ее источника используют АТФ.
При отделении одного остатка фосфорной кислоты АТФ переходит в аденозиндифосфат (АДФ),
если отделяется еще один остаток фосфорной кислоты (что бывает крайне редко), то АДФ
переходит в аденозинмонофосфат (АМФ). При отделении третьего и второго остатков фосфорной
кислоты освобождается большое количество энергии (до 40 кДж). Именно поэтому связь между
этими остатками фосфорной кислоты называют макроэргической (она обозначается символом ~).
Связь между рибозой и первым остатком фосфорной кислоты макроэргической не является, и при ее
расщеплении выделяется всего около 14 кДж энергии.
АТФ + H2O­ АДФ + H3PO4+ 40 кДж,
АДФ + H2O – АМФ + H3PO4 + 40кДж,
Макроэргические соединения могут образовываться и на основе других нуклеотидов. Например,
гуанозинтрифосфат (ГТФ) играет важную роль в ряде биохимических процессов, однако АТФ
является наиболее распространенным и универсальным источником энергии для большинства
биохимических реакций, протекающих в клетке. АТФ содержится в цитоплазме, митохондриях,
пластидах и ядрах.
Витамины. Биологически активные органические соединения - витамины (от лат, vita - жизнь)
совершенно необходимы в малых количествах для нормальной жизнедеятельности организмов. Они
играют важную роль в процессах обмена, часто являясь составной частью ферментов.
Витамины были открыты русским врачом Н. И. Луниным в 1880 г. Термин «витамины» предложен в
1912 г. польским ученым К. Функом. В настоящее время известно около 50 витаминов. Суточная
потребность в витаминах очень мала. Так, для человека меньше всего требуется витамина В12 -
0,003 мг/сут, а больше всего - витамина С - 75 мг/сут.
Витамины обозначают латинскими буквами, хотя у каждого из них есть и название. Например,
витамин С - аскорбиновая кислота, витамин А - ретинол и так далее. Одни витамины
растворяются в жирах, и их называют жирорастворимыми (A, D, Е, К), другие - растворимы в воде
(С, В, РР, Н) и соответственно называются водорастворимыми.
Как недостаток, так и избыток витаминов может привести к серьезным нарушениям многих
физиологических функций в организме.