Мы определили окрестности этой точки как внешности кругов с центром в начале координат: U (∞, ε ) = {z ∈ | | z | > ε}. Точка z = ∞ является изолированной особой точкой аналитической функции w = f (z ), если в некоторой окрестности этой точки нет других особых точек этой функции. Для определения типа этой особой точки сделаем замену переменной , при этом точка z = ∞ переходит в точку z 1 = 0, функция w = f (z ) примет вид . Типом особой точки z = ∞ функции w = f (z ) будем называть тип особой точки z 1 = 0 функции w = φ (z 1). Если разложение функции w = f (z ) по степеням z в окрестности точки z = ∞, т.е. при достаточно больших по модулю значениях z , имеет вид , то, заменив z на , получим . Таким образом, при такой замене переменной главная и правильная части ряда Лорана меняются местами, и тип особой точки z = ∞ определяется количеством слагаемых в правильной части разложения функции в ряд Лорана по степеням z в окрестности точки z = 0. Поэтому
1. Точка z = ∞ - устранимая особая точка, если в этом разложении правильная часть отсутствует (за исключением, возможно, члена A 0);
2. Точка z = ∞ - полюс n -го порядка, если правильная часть заканчивается слагаемым A n ·z n ;
3. Точка z = ∞ - существенно особая точка, если правильная часть содержит бесконечно много членов.

При этом остаются справедливыми признаки типов особых точек по значению : если z = ∞ - устранимая особая точка, то этот предел существует и конечен, если z = ∞ - полюс, то этот предел бесконечен, если z = ∞ - существенно особая точка, то этот предел не существует (ни конечный, ни бесконечный) .

Примеры: 1. f (z ) = -5 + 3 z 2 - z 6 . Функция уже является многочленом по степеням z , старшая степень - шестая, поэтому z
Этот же результат можно получить по-другому. Заменим z на , тогда . Для функции φ (z 1) точка z 1 = 0 - полюс шестого порядка, поэтому для f (z ) точка z = ∞ - полюс шестого порядка.
2. . Для этой функции получить разложение по степеням z затруднительно, поэтому найдём : ; предел существует и конечен, поэтому точка z
3. . Правильная часть разложения по степеням z содержит бесконечно много слагаемых, поэтому z = ∞ - существенно особая точка. По другому этот факт можно установить исходя из того, что не существует.

Вычет функции в бесконечно удалённой особой точке .

Для конечной особой точки a , где γ - контур, не содержащий других, кроме a , особых точек, проходимый так, что область, им ограниченная и содержащая особую точку, остаётся слева (против часовой стрелке).



Определим аналогичным образом: , где Γ − - контур, ограничивающий такую окрестность U (∞, r ) точки z = ∞, которая не содержит других особых точек, и проходимый так, что эта окрестность остаётся слева (т.е. по часовой стрелке). Таким образом, все остальные (конечные) особые точки функции должны находиться внутри контура Γ − . Изменим направление обхода контура Γ − : . По основной теореме о вычетах , где суммирование ведётся по всем конечным особым точкам. Поэтому, окончательно,

,

т.е. вычет в бесконечно удалённой особой точке равен сумме вычетов по всем конечным особым точкам, взятой с противоположным знаком .

Как следствие, имеет место теорема о полной сумме вычетов : если функция w = f (z ) аналитична всюду в плоскости С , за исключением конечного числа особых точек z 1 , z 2 , z 3 , …, z k , то сумма вычетов во всех конечных особых точках и вычета в бесконечности равна нулю.

Отметим, что если z = ∞ - устранимая особая точка, то вычет в ней может быть отличен от нуля. Так для функции , очевидно, ; z = 0 - единственная конечная особая точка этой функции, поэтому , несмотря на то, что , т.е. z = ∞ - устранимая особая точка.

Определение
Последовательность { β n } называется бесконечно большой последовательностью , если для любого, сколь угодно большого числа M , существует такое натуральное число N M , зависящее от M , что для всех натуральных n > N M выполняется неравенство
|β n | > M .
В этом случае пишут
.
Или при .
Говорят, что стремится к бесконечности, или сходится к бесконечности .

Если , начиная с некоторого номера N 0 , то
( сходится к плюс бесконечности ).
Если же , то
( сходится к минус бесконечности ).

Запишем эти определения с помощью логических символов существования и всеобщности:
(1) .
(2) .
(3) .

Последовательности с пределами (2) и (3) являются частными случаями бесконечно большой последовательности (1). Из этих определений следует, что если предел последовательности равен плюс или минус бесконечности, то он также равен и бесконечности:
.
Обратное, естественно, не верно. Члены последовательности могут иметь чередующиеся знаки. При этом предел может равняться бесконечности, но без определенного знака.

Заметим также, что если какое-то свойство выполняется для произвольной последовательности с пределом равным бесконечности, то это же свойство выполняется и для последовательности, чей предел равен плюс или минус бесконечности.

Во многих учебниках по математическому анализу, в определении бесконечно большой последовательности указывается, что число M является положительным: M > 0 . Однако это требование является лишним. Если его отменить, то никаких противоречий не возникает. Просто малые или отрицательные значения для нас не представляют никакого интереса. Нас интересует поведение последовательности при сколь угодно больших положительных значениях M . Поэтому, если возникнет необходимость, то M можно ограничить снизу любым, наперед заданным числом a , то есть считать, что M > a .

Когда же мы определяли ε - окрестность конечной точки, то требование ε > 0 является важным. При отрицательных значениях, неравенство вообще не может выполняться.

Окрестности бесконечно удаленных точек

Когда мы рассматривали конечные пределы, то ввели понятие окрестности точки. Напомним, что окрестностью конечной точки является открытый интервал, содержащий эту точку. Также мы можем ввести понятия окрестностей бесконечно удаленных точек.

Пусть M - произвольное число.
Окрестностью точки "бесконечность" , , называется множество .
Окрестностью точки "плюс бесконечность" , , называется множество .
Окрестностью точки "минус бесконечность" , , называется множество .

Строго говоря, окрестностью точки "бесконечность" является множество
(4) ,
где M 1 и M 2 - произвольные положительные числа. Мы будем использовать первое определение, , поскольку оно проще. Хотя, все сказанное ниже, также справедливо и при использовании определения (4).

Теперь мы можем дать единое определение предела последовательности, которое относится как к конечным, так и к бесконечным пределам.

Универсальное определение предела последовательности .
Точка a (конечная или бесконечно удаленная) является пределом последовательности , если для любой окрестности этой точки существует такое натуральное число N , что все элементы последовательности с номерами принадлежат этой окрестности.

Таким образом, если предел существует, то за пределами окрестности точки a может находиться только конечное число членов последовательности, или пустое множество. Это условие является необходимым и достаточным. Доказательство этого свойства, точно такое, как для конечных пределов.

Свойство окрестности сходящейся последовательности
Для того, чтобы точка a (конечная или бесконечно удаленная) являлась пределом последовательности , необходимо и достаточно, чтобы за пределами любой окрестности этой точки находилось конечное число членов последовательности или пустое множество.
Доказательство .

Также иногда вводят понятия ε - окрестностей бесконечно удаленных точек.
Напомним, что ε - окрестностью конечной точки a называется множество .
Введем следующее обозначение. Пусть обозначает ε - окрестность точки a . Тогда для конечной точки,
.
Для бесконечно удаленных точек:
;
;
.
Используя понятия ε - окрестностей, можно дать еще одно универсальное определение предела последовательности:

Точка a (конечная или бесконечно удаленная) является пределом последовательности , если для любого положительного числа ε > 0 существует такое натуральное число N ε , зависящее от ε , что для всех номеров n > N ε члены x n принадлежат ε - окрестности точки a :
.

С помощью логических символов существования и всеобщности, это определение запишется так:
.

Примеры бесконечно больших последовательностей

Сначала мы рассмотрим три простых похожих примера, а затем решим более сложный.

Пример 1


.


.
Выпишем определение бесконечно большой последовательности:
(1) .
В нашем случае
.

Вводим числа и , связав их неравенствами:
.
По свойствам неравенств , если и , то
.
Заметим, что при это неравенство выполняется для любых n . Поэтому можно выбрать и так:
при ;
при .

Итак, для любого можно найти натуральное число , удовлетворяющее неравенству . Тогда для всех ,
.
Это означает, что . То есть последовательность является бесконечно большой.

Пример 2

Пользуясь определением бесконечно большой последовательности показать, что
.


(2) .
Общий член заданной последовательности имеет вид:
.

Вводим числа и :
.
.

Тогда для любого можно найти натуральное число, удовлетворяющее неравенству , так что для всех ,
.
Это означает, что .


.

Пример 3

Пользуясь определением бесконечно большой последовательности показать, что
.

Выпишем определение предела последовательности, равному минус бесконечности:
(3) .
Общий член заданной последовательности имеет вид:
.

Вводим числа и :
.
Отсюда видно, что если и , то
.

Поскольку для любого можно найти натуральное число, удовлетворяющее неравенству , то
.

При заданном , в качестве N можно взять любое натуральное число, удовлетворяющее следующему неравенству:
.

Пример 4

Пользуясь определением бесконечно большой последовательности показать, что
.

Выпишем общий член последовательности:
.
Выпишем определение предела последовательности, равному плюс бесконечности:
(2) .

Поскольку n есть натуральное число, n = 1, 2, 3, ... , то
;
;
.

Вводим числа и M , связав их неравенствами:
.
Отсюда видно, что если и , то
.

Итак, для любого числа M можно найти натуральное число, удовлетворяющее неравенству . Тогда для всех ,
.
Это означает, что .

Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Прежде всего отметим, что проективная плоскость в отличие от евклидовой плоскости не имеет бесконечной протяженности. Давайте выясним, в чем же различие между ними, а с другой стороны, как они между собой связаны? Для этого давайте уточним, какие положения евклидовой плоскости используются в проективной геометрии. В основе проективной геометрии лежит своя система аксиом. И хотя логические построения на аксиоматическом фундаменте являются замечательной иллюстрацией математического метода, однако, будучи при этом оторванным от евклидовой геометрии, такое изложение проективной геометрии излишне абстрактно. Поэтому для большей конкретности и наглядности целесообразно исходить из модели евклидовой плоскости.

Известно, что прямая на евклидовой плоскости продолжается в обе стороны бесконечно и что между точками прямой и всеми действительными числами можно установить взаимно однозначное соответствие, при котором естественной упорядоченности точек на прямой отвечает упорядоченность чисел но их величине.

Дополним теперь прямую «слева и справа» одной и той же условной точкой которую назовем бесконечно удаленной точкой.

Понятно, что возникает сомнение - а можно ли говорить о реальности несуществующих точек? Однако в современных теориях это встречается часто. Так, например, хотя среди действительных чисел нет бесконечно больших чисел, в математическом анализе применяется символ правда не в качестве числа, а для обозначения неограниченного роста. (В этом же смысле символ употребляется по отношению к тригонометрическим функциям.) После добавления к обычной прямой бесконечно удаленной точки «пополненная» прямая становится замкнутой. Давайте теперь прибавим к: каждой обычной прямой по бесконечно удаленной точке, причем условимся, что когда прямые параллельны, то добавляемые к ним точки совпадают, когда же прямые не параллельны, то их бесконечно удаленные точки различны.

Две пересекающиеся на евклидовой плоскости прямые пересекаются в обычной точке, причем бесконечно удаленные точки этих прямых не совпадают. Следовательно, в этой новой геометрии параллельных прямых не существует, каждые две прямые обязательно

пересекаются в одной точке. Семейство параллельных между собой в обычной геометрии прямых имеет одну общую бесконечно удаленную точку, разнонаправленные же прямые имеют разные бесконечно удаленные точки. В связи с этим бесконечно удаленных точек бесконечно много.

Множество этих бесконечно удаленных точек, опять-таки по определению, составляет одну так называемую бесконечно удаленную прямую

Таким образом мы получаем геометрию, в которой к евклидовой плоскости добавляется одна бесконечно удаленная прямая.

По существу, эта геометрия пока не очень отличается от евклидовой геометрии. Вместо положения о параллельности двух прямых вводится положение об их пересечении в бесконечно удаленной точке.

Основные аксиомы, принятые в проективной геометрии, утверждают, что две точки определяют одну прямую (если обе точки - бесконечно удаленные, то они определяют бесконечно удаленную прямую и что две прямые всегда пересекаются в одной точке. И хотя положения этих двух аксиом весьма важны, но до тех пор пока мы выделяем

некоторые точки в одну бесконечно удаленную прямую, мы практически не меняем сути евклидовой геометрии и не привносим в геометрию ничего нового.

Если некоторая последовательность сходится к конечному числу a , то пишут
.
Ранее мы ввели в рассмотрение бесконечно большие последовательности . Мы приняли, что они являются сходящимися и обозначили их пределы символами и . Эти символы обозначают бесконечно удаленные точки . Они не принадлежат множеству действительных чисел. Но понятие предела позволяет ввести такие точки и дает инструмент для изучения их свойств с помощью действительных чисел.

Определение
Бесконечно удаленная точка , или бесконечность без знака, - это предел, к которому стремится бесконечно большая последовательность.
Бесконечно удаленная точка плюс бесконечность , - это предел, к которому стремится бесконечно большая последовательность с положительными членами.
Бесконечно удаленная точка минус бесконечность , - это предел, к которому стремится бесконечно большая последовательность с отрицательными членами.

Для любого действительного числа a имеют место следующее неравенства:
;
.

Используя действительные числа, мы ввели понятие окрестности бесконечно удаленной точки .
Окрестностью точки является множество .
Наконец, окрестностью точки является множество .
Здесь M - произвольное, сколь угодно большое действительные число.

Таким образом, мы расширили множество действительных чисел, введя в него новые элементы. В связи с этим, имеет место следующее определение:

Расширенной числовой прямой или расширенным множеством действительных чисел называется множество действительных чисел , дополненное элементами и :
.

Вначале мы выпишем свойства, которыми обладают точки и . Далее рассмотрим вопрос строгого математического определения операций для этих точек и доказательства этих свойств.

Свойства бесконечно удаленных точек

Сумма и разность .
; ;
; ;

Произведение и частное .
; ; ;
;
;
; ; .

Связь с действительными числами .
Пусть a - произвольное действительное число. Тогда
; ;
; ; ; .
Пусть a > 0 . Тогда
; ; .
Пусть a < 0 . Тогда
; .

Неопределенные операции .
; ; ; ;
; ; ;
; ;
.

Доказательства свойств бесконечно удаленных точек

Определение математических операций

Мы уже дали определения для бесконечно удаленных точек. Теперь мы должны определить для них математические операции. Поскольку мы определили эти точки посредством последовательностей, то и операции с этими точками также следует определить, используя последовательности.

Итак, суммой двух точек
c = a + b ,
принадлежащих расширенному множеству действительных чисел,
,
мы будем называть предел
,
где и - произвольные последовательности, имеющие пределы
и .

Аналогичным образом определяются операции вычитания, умножения и деления. Только, в случае деления, элементы в знаменателе дроби не должны быть равными нулю.
Тогда разность двух точек:
- это предел: .
Произведение точек:
- это предел: .
Частное:
- это предел: .
Здесь и - произвольные последовательности, чьи пределы равны a и b , соответственно. В последнем случае, .

Доказательства свойств

Для доказательства свойств бесконечно удаленных точек, нам нужно использовать свойства бесконечно больших последовательностей.

Рассмотрим свойство:
.
Для его доказательства, мы должны показать, что
,

Другими словами нам нужно доказать, что сумма двух последовательностей, сходящихся к плюс бесконечности, сходится к плюс бесконечности.

1 выполняются неравенства:
;
.
Тогда при и имеем:
.
Положим . Тогда
при ,
где .
Это и означает, что .

Аналогичным способом доказываются и другие свойства. В качестве примера приведем еще одно доказательство.

Докажем, что:
.
Для этого мы должны показать, что
,
где и - произвольные последовательности, с пределами и .

То есть нам нужно доказать, что произведение двух бесконечно больших последовательностей является бесконечно большой последовательностью.

Докажем это. Поскольку и , то имеются некоторые функции и , так что для любого положительного числа M 1 выполняются неравенства:
;
.
Тогда при и имеем:
.
Положим . Тогда
при ,
где .
Это и означает, что .

Неопределенные операции

Часть математических операций с бесконечно удаленными точками не определены. Чтобы показать их неопределенность, нужно привести пару частных случаев, когда результат операции зависит от выбора входящих в них последовательностей.

Рассмотрим такую операцию:
.
Легко показать, что если и , то предел суммы последовательностей зависит от выбора последовательностей и .

Действительно, возьмем . Пределы этих последовательностей равны . Предел суммы

равен бесконечности.

Теперь возьмем . Пределы этих последовательностей также равны . Но предел их суммы

равен нулю.

То есть при условии, что и , значение предела суммы может принимать различные значения. Поэтому операция не определена.

Аналогичным способом можно показать неопределенность остальных операции, представленных выше.

    - (англ. assemblage point) одно из основополагающих понятий, использованное мыслителем эзотерической ориентации и мистиком Карлосом Кастанедой в своих книгах. Одной из самых драматических черт человеческой природы является ужасная связь между … Википедия

    График функции, предел которой при аргументе, стремящемся к бесконечности, равен L. Предел функции одно из основных понятий математического анализа. Функция f(x) имеет предел A в точке x0, если для всех значений x, достаточно близких к x0,… … Википедия

    Указывает сюда. См. также особая точка (дифференциальные уравнения). Особенность или сингулярность в математике это точка, в которой математический объект (обычно функция) не определён или имеет нерегулярное поведение (например, точка в которой… … Википедия

    Особая точка указывает сюда. См. также особая точка (дифференциальные уравнения). Особенность или сингулярность в математике это точка, в которой математический объект (обычно функция) не определён или имеет нерегулярное поведение (например,… … Википедия

    - ∞ Термин бесконечность соответствует нескольким различным понятиям, в зависимости от области применения, будь то математика, физика, философия, теология или повседневная жизнь. Финитизм отрицает понятие Бесконечность. Бесконечность в большинстве… … Википедия

    Температура (около 2,17 K), ниже которой жидкий гелий (гелий I), переходит в состояние сверхтекучести (гелий II). Если быть более точным, существуют нижняя лямбда точка (при 2.172 K и 0.0497 атм) и верхняя лямбда точка (при 1.76 K и 29.8 атм).… … Википедия

    1) К. т. порядка та такая точка акомплексной плоскости, в к рой аналитич. функция f(z) регулярна, а ее производная f (z) имеет нуль порядка m, где т натуральное число. Иными словами, К. т. определяется условиями: Бесконечно удаленная К. т.… … Математическая энциклопедия

    Аналитической функции точка, в к рой нарушаются условия аналитичности. Если аналитическаяфункция f(z)задана в нек рой окрестности точки z0 всюду … Физическая энциклопедия

    В теории дифференциальных уравнений с комплексным временем, точка называется фуксовой особой точкой линейного дифференциального уравнения если матрица системы A(t) имеет в ней полюс первого порядка. Это простейшая возможная особенность… … Википедия

    Несобственная седловая точка, тип расположения траекторий динамич. системы. Говорят, что динамич. система ft (или, иначе, f(, р),. см. ), заданная на, имеет С. в б., если найдутся точки и числа, такие, что последовательности сходящиеся, а … Математическая энциклопедия

    Задача Аполлония построить с помощью циркуля и линейки окружность, касающуюся трех данных окружностей. По легенде, задача сформулирована Аполлонием Пергским примерно в 220 г. до н. э. в книге «Касания», которая была потеряна … Википедия

Книги

  • , Дэвид Дойч. Цитата "... Прогресс вовсе не обязательно должен иметь конец, но у него всегда есть отправная точка - причина, по которой он начался, событие, которое способствовало этому, или необходимое…
  • Начало бесконечности. Объяснения, которые меняют мир , Дэвид Дойч. Цитата `... Прогресс вовсе не обязательно должен иметь конец, но у него всегда есть отправная точка - причина, по которой он начался, событие, которое способствовало этому, или необходимое…