К ним относятся хвостатое ядро, чечевицеобразное, ограда и миндалевидное ядро. Между ядрами расположены капсулы белого вещества ( , ). Первые три из перечисленных ядер относятся к полосатому телу (corpus striatum). Они получают топографически упорядоченные проекции от всех полей коры и через таламус оказывают влияние на обширные фронтальные области. Таким образом, полосатое тело обеспечивает подготовку движений, а моторная кора - их точность и экономичность.

ХВОСТАТОЕ ЯДРО (nuklei caudatus) лежит вперед головкой, которая образует наружную стенку переднего рога бокового желудочка. Суживаясь кзади, головка переходит в тело, а затем в хвост, который достигает миндалевидное ядро, расположенное в височном полюсе ( , ).

ЧЕЧЕВИЦЕОБРАЗНОЕ ЯДРО (nukleus lentiformis) по форме сходно с чечевичным зерном. Оно отделено от таламуса внутренней капсулой, а спереди связано с хвостатым ядром. Небольшие прослойки белого вещества делят его на три ядра: скорлупу, медиальный и латералный бледный шар (). Головка хвостатого ядра и скорлупа являются филогенетически более новыми образованиями, относятся к neostriatum. В их структуре различают многочисленные пятна - "стриосомы", которые функционально связаны с лимбической системой. Между "стриосоами" находится так называемый "матрикс", состоящий преимущественно из приходящих волокон и связан с экстрапирамидной моторной системой.

БЛЕДНЫЙ ШАР (globus pallidus) является филогенетически более старым образованием (paleostriatum). Своим углом оно обращено к колену внутренней капсулы (), имеет более светлую окраску, чем скорлупа. Его дорсальная часть вовлечена в "экстрапирамидный моторный цикл" управления позой и инициации движений. хикъ

Рис. 32. Базальные ядра


1. таламус
2. концевая полоска
3. III желудочек
4. лобный рог I желудочка
5. височный рог Iж.
6. затылочный рог Iж.
7. сосудистое сплетение
8. гиппокамп
9. бахромка
10. зубчатая извилина
11. головка хвостатого ядра
12. хвост
13. тело
14. столбы свода
15. передняя спайка
16. прозрачные перегородки
17. полость прозрачной перегородки

Рис. 33. Базальные ядра и капсулы полушария (горизонтальный срез)


18. скорлупа
19. бледные шары
20. ограда
21. кора островка
22. самая наружная капсула
23. наружная капсула
24. внутренняя капсула:
25. колено
26. корково-ядерный путь
27. корково-спинномозговой
28. корково-красноядерный
29. височно-теменно-затылочный
30. слуховой
31. зрительный
32. таламус
33. лобно-мостовой
34. передняя таламическая лучистость
35. затылочная лучистость

Рис. 34. Базальные ядра конечного мозга (полусхематично)


А -- вид сверху
B -- вид изнутри
C -- вид снаружи

1. хвостатое ядро
2. головка
3. тело
4. хвост
5. таламус
6. подушка таламуса
7. миндалевидное ядро
8. скорлупа
9. наружный бледный шар
10. внутренний бледный шар
11. чечевицеобразное ядро
12. ограда
13. передняя спайка мозга
14. перемычки

ОГРАДА (claustrum) - тонкая пластинка серого вещества, расположена латеральнее от скорлупы и отделена от нее наружной капсулой. По своему происхождению является как бы частью коры. В эту структуру входят волокна из амигдалоидного комплекса концевой полоски, поясной извилины, передней спайки. Свои волокна ограда направляет в ядра переднего продырявленного вещества,

дорсомедиального таламуса и латеральную часть миндалевидного тела ( , ).

МИНДАЛЕВИДНОЕ ТЕЛО (corpus amigdoloideum), располагается в толще височного полюса. Различают базально-латеральную часть- это большая группа ядер, имеющих отношение к формированию памяти, интеграции вегетативных реакций при стрессе и др.

Подкорковыми или базальными ядрами называют скопления серого вещества в толще нижней и боковых стенок больших полушарий. К ним относятся полосатое тело, бледный шар и ограда .

Полосатое тело состоит из хвостатого ядра и скорлупы . К нему идут афферентные нервные волокна от двигательных и ассоциативных зон коры, таламуса, черной субстанции среднего мозга. Связь с черной субстанцией осуществляется с помощью дофаминергических синапсов. Выделяющийся в них дофамин тормозит нейроны полосатого тела. Кроме того, сигналы от полосатого тела поступают от мозжечка, красных и вестибулярных ядер. От него аксоны нейронов идут к бледному шару. В свою очередь, от бледного шара эфферентные пути идут к таламусу и двигательным ядрам среднего мозга, т.е. красному ядру и черной субстанции. Полосатое тело оказывает на нейроны бледного шара преимущественно тормозящее влияние. Основная функция подкорковых ядер – регуляция движения. Кора посредством подкорковых ядер организует и регулирует дополнительные, вспомогательные движения, необходимые для правильного выполнения основного двигательного акта или облегчающие его. Это, например, определенное положение туловища и ног при выполнении работы руками. При нарушении функции подкорковых ядер вспомогательные движения становятся либо чрезмерными, либо полностью отсутствуют. В частности, при болезни Паркинсона или дрожательном параличе , полностью исчезает мимика, и лицо становится маскообразным, ходьба осуществляется мелкими шажками. Больные с рудом начинают и оканчивают движения, выражен тремор конечностей. Тонус мышц повышается. Возникновение болезни Паркинсона обусловлено нарушением проведения нервных импульсов от черной субстанции к полосатому телу через дофаминергические синапсы, обеспечивающие эту передачу (L-DCFA).

С поражением полосатого тела и гиперактивностью бледного шара связаны заболевания с избыточными движениями, т.е. гиперкинезы. Это подергивания мышц лица, шеи, туловища, конечностей. А также двигательная гиперактивность в виде бесцельного перемещения. Например, она наблюдается при хорее .

Кроме этого, полосатое тело принимает участие в организации условных рефлексов, процессах памяти, регуляции пищевого поведения.

Общий принцип организации движения.

Таким образом, за счет центров спинного, продолговатого, среднего мозга, мозжечка, подкорковых ядер организуются бессознательные движения. Сознательные осуществляются тремя путями:

    С помощью пирамидных клеток коры и нисходящих пирамидных трактов. Значение этого механизма небольшое.

    Через мозжечок.

    Посредством базальных ядер.

Для организации движений особое значение имеют афферентные импульсы спинальной двигательной системы. Восприятие напряжения мышц осуществляется мышечными веретенами и сухожильными рецепторами. Во всех мышцах имеются короткие клетки веретенообразной формы. Несколько таких веретен заключены в соединительно-тканную капсулу. Поэтому их называют интрафузальными . Существует два типа интрафузальных волокон: волокна с ядерной цепочкой и волокна с ядерной сумкой . Последние толще и длиннее первых. Эти волокна выполняют различные функции. Через капсулу к мышечным веретенам проходит толстое афферентное нервное волокно, относящее к группе 1А. После входа в капсулу оно разветвляется, и каждая веточка образует спираль вокруг центра ядерной сумки интрафузальных волокон. Поэтому такое окончание называется аннулоспиральным . На периферии веретена, т.е. его дистальный отделах находятся вторичные афферентные окончания. Кроме того, к веретенам подходят эфферентные волокна от мотонейронов спинного мозга. При их возбуждении происходит укорочение веретен. Это необходимо для регуляции чувствительности веретен к растяжению. Вторичные афферентные окончания также являются рецепторами растяжения, но их чувствительность меньше чем аннулоспиральных. В основном их функция заключается в контроле степени напряжения мышц при постоянном тонусе экстрафузальных мышечных клеток.

В сухожилиях находятся сухожильные органы Гольджи . Они образованы сухожильными нитями, отходящими от нескольких экстрафузальных, т.е. рабочих мышечных клеток. На этих нитях располагаются разветвления миелиновых афферентных нервов группы 1Б.

Мышечных веретен относительно больше в мышцах отвечающих за тонкие движения. Рецепторов Гольджи меньше чем веретен.

Мышечные веретена воспринимают в основном изменение длины мышцы. Рецепторы сухожилий – ее напряжение. Импульсы от этих рецепторов по афферентным нервам поступают в двигательные центры спинного мозга, а по восходящим путям – к мозжечку и коре. В результате анализа пропреорецепторных сигналов в мозжечке происходит непроизвольная координация сокращений отдельных мышц и мышечных групп. Она осуществляется при посредстве центров среднего и продолговатого мозга. Обработка сигналов корой приводит к возникновению мышечного чувства и организации произвольных движений через пирамидные тракты, мозжечок и подкорковые ядра.

Лимбическая система .

К лимбической системе относятся такие образования древней и старой коры, как обонятельные луковицы, гиппокамп, поясная извилина, зубчатая фасция, парагиппокампальная извилина, а также подкорковое миндалевидное ядро и переднее таламическое ядро. Лимбической эта система структур мозга называется, потому что они образуют кольцо (лимб) на границе ствола мозга и новой коры. Структуры лимбической системы имеют многочисленные двусторонние связи между собой, а также с лобными, височными долями коры и гипоталамусом.

Благодаря этим связям она регулирует и выполняет следующие функции:

    Регуляция вегетативных функций и поддержание гомеостаза . Лимбическую систему называют висцеральным мозгом , так как она осуществляет тонкую регуляцию функций органов кровообращения, дыхания, пищеварения, обмен веществ и т.д. Особое значение лимбической системы состоит в том, что она реагирует на небольшие отклонения параметров гомеостаза. Она влияет на эти функции через вегетативные центры гипоталамуса и гипофиз.

    Формирование эмоций . При операциях на мозге было установлено, что раздражение миндалевидного ядра вызывает появление у пациентов беспричинных эмоций страха, гнева, ярости. При удалении миндалевидного ядра у животных, полностью исчезает агрессивное поведение (психохирургия). Раздражение некоторых зон поясной извилины ведет к возникновению немотивированной радости или грусти. А так как лимбическая система участвует и в регуляции функций висцеральных систем, то все вегетативные реакции, возникающие при эмоциях (изменение работы сердца, кровяного давления, потоотделения), также осуществляются ею.

    Формирование мотиваций. Лимбическая система участвует в возникновении и организации направленности мотиваций. Миндалевидное ядро регулирует пищевую мотивацию. Некоторые его области тормозят активность центра насыщения и стимулируют центр голода гипоталамуса. Другие действуют противоположным образом. За счет этих центров пищевой мотивации миндалевидного ядра формируется поведение на вкусную и невкусную пищу. В нем же есть отделы, регулирующие половую мотивацию. При их раздражении возникает гиперсексуальность и выраженная половая мотивация.

    Участие в механизмах памяти. В механизмах запоминания особая роль принадлежит гиппокампу. Во-первых, он классифицирует и кодирует всю информацию, которая должна быть заложена в долговременной памяти. Во-вторых, обеспечивает извлечение и воспроизведение нужной информации в конкретный момент. Предполагают, что способность к обучению определяется врожденной активностью соответствующих нейронов гиппокампа.

В связи с тем, что лимбической системе принадлежит важная роль в формировании мотиваций и эмоций, при нарушениях ее функций возникают изменения психоэмоциональной сферы. В частности, состояние тревожности и двигательного возбуждения. В этом случае назначают транквилизаторы , тормозящие образование и выделение в межнейронных синапсах лимбической системы серотонина. При депрессии применяются антидепрессанты , усиливающие образование и накопление норадреналина. Предполагают, что шизофрения, проявляющаяся патологией мышления, бредом, галлюцинациями, обусловлена изменениями нормальных связей между корой и лимбической системой. Это объясняется усилением образования дофина в пресинаптических окончаниях дофаминергических нейронов. Аминазин и другие нейролептики блокируют синтез дофамина и вызывают ремиссию. Амфетамины (фенамин) усиливают образование дофамина и могут вызвать возникновение психозов.

Базальные, или подкорковые, ядра представляют собой структуры переднего мозга, к которым относятся: хвостатое ядро, скорлупа, бледный шар и субталамическое ядро. Они располагаются под .

Развитие и клеточное строение хвостатого ядра и скорлупы одинаковы, поэтому их рассматривают как единое образование — полосатое тело. Базальные ядра имеют множественные афферентные и эфферентные связи с корой, промежуточным и средним мозгом, лимбической системой и мозжечком. В связи с этим они принимают участие в регуляции двигательной активности и, в частности, медленных или червеобразных движений. Примером таких двигательных актов является медленная ходьба, перешагивание через препятствия и т.д.

Опыты с разрушением полосатого тела доказали его важную роль в организации поведения животных.

Бледный шар является центром сложных двигательных реакций и участвует в обеспечении правильного распределения мышечного тонуса.

Свои функции бледный шар осуществляет опосредованно через образования — красное ядро и черную субстанцию.

Бледный шар также имеет связь с ретикулярной формацией. Он обеспечивает сложные двигательные реакции организма и некоторые вегетативные реакции. Стимуляция бледного шара вызывает активацию центра голода и пищевого поведения. Разрушение бледного шара способствует развитию сонливости и затруднению выработки новых условных рефлексов.

При поражении базальных ядер у животных и человека могут возникать разнообразные неконтролируемые двигательные реакции.

В целом базальные ядра принимают участие в регуляции не только моторной деятельности организма, но и ряда вегетативных функций.

Базальные ядра и их строение

Подкорковые (базальные) ядра относятся к подкорковым образованиям, которые имеют общее происхождение с большими полушариями и располагаются внутри их белого вещества, между лобными долями и промежуточным мозгом. К ним относятся хвостатое ядро и скорлупа , объединяемые общим названием «полосатое тело», поскольку скопление нервных клеток, образующих серое вещество, чередуется с прослойками белого вещества. Вместе с бледным шаром они образуют стриопаллидарную систему подкорковых ядер. К стриопаллидарной системе также относится ограда, субталамическое (под- бугорное) ядро и черная субстанция (рис. 1).

Рис. 1. Базальные ядра мозга и их связи с другими системами: А — анатомия базальных ядер; Б — связи базальных ядер с кортикоспинальной и мозжечковой системами, контролирующими движения

Стриопаллидарная система — это связующее звено между корой и стволом мозга. К этой системе подходят афферентные и эфферентные пути.

Функционально базальные ядра являются надстройкой над красными ядрами среднего мозга и обеспечивают пластический тонус, т.е. способность удерживать длительное время врожденную или выученную позу, — например, поза кошки, которая стережет мышь, или длительное удержание позы балериной, выполняющей какое-либо па. При удалении коры мозга наблюдается «восковая ригидность», которая является выражением пластического тонуса без регулирующего влияния коры головного мозга. Животное, лишенное коры головного мозга, надолго застывает в одной позе.

Подкорковые ядра обеспечивают осуществление медленных, стереотипных, рассчитанных движений, а центры базальных ганглиев — регуляцию врожденных и приобретенных программ движения, а также регуляцию мышечного тонуса.

Нарушение различных структур подкорковых ядер сопровождается многочисленными двигательными и тоническими сдвигами. Так, у новорожденных неполное созревание базальных ядер приводит к резким судорожным сгибательным движениям. По мерс развития этих структур появляется плавность, рассчитанность движений.

Одна из главных задач базальных ядер при осуществлении двигательного контроля — контроль комплексных стереотипов моторной деятельности (например, написание букв алфавита). Когда имеется серьезное повреждение базальных ядер, кора больших полушарий не может обеспечить нормальное поддержание этого комплексного стереотипа. Вместо этого воспроизведение уже однажды написанного становится затруднительным, как будто приходится учиться писать в первый раз. Примером других стереотипов, которые обеспечиваются базальными ядрами, являются разрезание бумаги ножницами, забивание гвоздя, копание лопатой земли, контроль движений глаз и голоса и другие хорошо отработанные движения.

Хвостатое ядро играет важную роль в сознательном (когнитивном) контроле двигательной активности. Большинство наших двигательных актов возникает в результате их обдумывания и сопоставления с информацией, имеющейся в памяти.

Нарушение функций хвостатого ядра сопровождается развитием гиперкинезов типа непроизвольных мимических реакций, тремора, атетоза, хореи (подергивание конечностей, туловища, как при некоординированном танце), двигательной гиперактивностью в форме бесцельного перемещения с места на место.

Хвостатое ядро принимает участие в речевых, двигательных актах. Так, при расстройстве передней части хвостатого ядра нарушается речь, возникают затруднения в повороте головы и глаз в сторону звука, а повреждение задней части хвостатого ядра сопровождается потерей словарного запаса, снижением кратковременной памяти, прекращением произвольных дыханий, задержкой речи.

Раздражение полосатого тела у животного приводит к наступлению сна. Этот эффект объясняется тем, что полосатое тело вызывает торможение активирующих влияний неспецифических ядер таламуса на кору. Полосатое тело регулирует ряд вегетативных функций: сосудистые реакции, обмен веществ, теплообразование и тепловыделение.

Бледный шар регулирует сложные двигательные акты. При его раздражении наблюдается сокращение мышц конечностей. Повреждение бледного шара вызывает маскообразность лица, тремор головы, конечностей, монотонность речи, нарушаются сочетанные движения рук и ног при ходьбе.

С участием бледного шара осуществляется регуляция ориентировочных и оборонительных рефлексов. При нарушении бледного шара изменяются пищевые реакции, например, крыса отказывается от пищи. Это объясняется потерей связи бледного шара с гипоталамусом. У кошек и крыс наблюдается полное исчезновение пищедобывательных рефлексов после двустороннего разрушения бледного шара.

В толще белого вещества полушарий мозга, в области их основания, латеральнее и несколько книзу от боковых желудочков, располагается серое вещество. Оно образует скопления различной формы, называемые подкорковыми ядрами (базальные ядра), или центральными узлами основания конечного мозга.

К базальным ядрам мозга в каждом полушарии относятся четыре ядра: хвостатое ядро (nucleus caudatus), чечевицеобразное ядро (nucleus lentiformis), ограду (claustrum), и миндалевидное тело (corpus amygdaloideum).

1. Хвостатое ядро (nucleus caudatus) состоит из головки хвостатого ядра (caput nuclei caudati), образующей латеральную стенку переднего рога бокового желудочка. В области центральной части бокового желудочка головка переходит в хвост хвостатого ядра (cauda nuclei caudati), спускающегося в височную долю, где он принимает участие в образовании верхней стенки нижнего рога бокового желудочка.

2. Чечевицеобразное ядро (nucleus lentiformis) находится кнаружи от хвостатого ядра (nucleus caudatus). Небольшими прослойками белого вещества оно делится на три части (ядра). Ядро, залегающее латеральнее, называется скорлупой (putamen), а остальные два ядра носят вместе название бледного шара (globus pallidus). Они отделяются одно от другого медиальной и боковой мозговыми пластинками (laminae medullares medialis et lateralis).

3. Ограда (claustrum) находится кнаружи от чечевицеобразного ядра, между скорлупой и островком (insula). Она представляет собой вытянутой формы пластинку толщиной до 2 мм, передняя часть которой утолщается. Медиальный край пластинки ровный, а по латеральному краю идут небольшие выпячивания серого вещества.

4. Миндалевидрое тело (corpus amygdaloideum) располагается в толще височной доли, в переднем её конце, впереди от верхушки нижнего рога. Ряд авторов описывают его как утолщение коры височной доли. В нем оканчивается идущий из обонятельной доли коры пучок волокон, так что по-видимому миндалевидное тело относится к подкорковым обонятельным центрам.

Указанные ядра основания конечного мозга отделяются одно от другого прослойками белого вещества - капсулами, capsulae, представляющими собой системы проводящих путей головного мозга. Прослойка белого вещества, расположенная между thalamus и nucleus caudatus, с одной стороны, и nucleus lentiformis - с другой, носит название внутренней капсулы, capsula inlerna. Прослойка белого вещества, залегающая между чечевицеобразным ядром, nucleus lentiformis, и оградой, claustrum, называется наружной капсулой, capsula externa.

Между claustrum и корой островка также имеется небольшая прослойка белого вещества, так называемая самая наружная капсула, capsula extrema.

Кора головного мозга

Кора головного мозга (плащ), corlex cerebri (pallium), является наиболее высокодифференцированным отделом нервной системы. Плащ образован равномерным слоем серого вещества толщиной от 1,5 до 5 мм. Наиболее развита кора в районе центральной извилины. Площадь поверхности коры увеличивается за счет множества борозд. Площадь поверхности обоих полушарий около 1650 см 2.

В коре головного мозга выделяют 11 цитоархитектонических областей, включающих 52 поля. Эти поля различаются составом нейронов и разной волокнистой структурой (миелоархитектоникой).

Кора головного мозга состоит из огромного количества нервных клеток, которые по морфологическим особенностям можно разделить на шесть слоев:

I. молекулярный слой (lamina zonalis);

II. наружный зернистый слой (lamina granularis externa);

III. наружный пирамидный слой (lamina pyramidalis);

IV. внутренний зернистый слой (lamina granularis interns);

V. внутренний пирамидный (ганглиозный) слой (lamina ganglionaris);

VI. полиморфный слой (lamina multiformis).

Наружный молекулярный слой - светлый, содержит мало клеточных элементов, сильно варьирует по ширине. Состоит в основном из апикальных дендритов пирамидных слоев и разбросанных между ними нейронов веретенообразной формы.

Наружный зернистый слой - обычно сравнительно узкий, состоит из множества мелких веретенообразных и пирамидных нейронов, напоминающих зерна, отсюда и название. Содержит мало волокон.

Наружный пирамидный слой - сильно варьирует по ширине, размерам нейронов, состоит из пирамидных нейронов. Размеры нейронов увеличиваются в глубину, располагаясь в виде колонок, разделенных радиальными пучками волокон. Особенно хорошо развит в прецентральной извилине.

Внутренний зернистый слой - состоит из мелких звездчатых нейронов. Варьирует по ширине и четкости границ. Для него характерно большое количество тангенциальных волокон.

Внутренний пирамидный слой - состоит из крупных редко расположенных пирамидных нейронов, содержит много радиальных и тангенциальных волокон. В четвертом двигательном поле в нем находятся гигантские пирамидные клетки Беца.

Полиморфный слой - состоит из нейронов разнообразной, преимущественно веретенообразной формы. Варьирует по величине нервных элементов, ширине слоя, степени плотности нейронов, выраженности радиальной исчерченности, четкости границы с белым веществом. Нейриты клеток уходят в белое вещество в составе эфферентных путей, а дендриты достигают молекулярного слоя коры.

Поверхность полушария - плащ (pallium) образована серым веществом толщиной 1,3 - 4,5 мм. Плащ подразделяют на главные доли, которые различаются как по расположению, так и по функциям:

· лобная доля, lobus frontalis; это участок полушария, расположенный ростральнее центральной (роландовой) борозды. Нижний край лобной доли ограничен передним краем сильвиевой борозды;

· теменная доля, lobus parientalis; расположена каудальнее центральной борозды. Нижний край теменной доли ограничен задним краем сильвиевой борозды. Границей между теменной и затылочной долями условно считается линия, проведенная от точки пересечения дорсального края полушария верхним концом теменно-затылочной борозды до переднего края мозжечка;

· затылочная доля, lobus occipitalis; располагается позади теменно-затылочной борозды и её условного продолжения на верхнелатеральной поверхности полушария. Борозды и извилины наружной поверхности затылочной доли очень вариабельны;

· височная доля, lobus temporalis; ростро-дорсально ограничена сильвиевой бороздой, а каудальная граница проводится по тем же принципам, что и у теменной доли;

· островковая доля, lobus insularis (insula); находится под крышкой островка (operculum). В состав крышки входят небольшие участки височной, теменной и лобной долей.

Основную поверхность долей плаща составляют борозды и извилины. Борозды - это глубокие складки плаща, содержащие стратифицировано расположенные тела нейронов - кору (серое вещество плаща) и отростки клеток (белое вещество плаща). Между этими бороздами находятся валики плаща, которые принято называть извилинами (gyri). они содержат такие же компоненты, что и борозды. Каждый отдел имеет собственные постоянные борозды и извилины.

Борозды плаща конечного мозга разделяются на 3 основные категории, которые отражают их глубину, встречаемость и стабильность очертаний.

Постоянные борозды (I порядка). У человека их 10. Это наиболее глубокие складки на поверхности мозга, которые менее всего изменяются у разных людей. Борозды I порядка возникают в процессе раннего развития и являются видовым признаком.

Непостоянные борозды II порядка. Они имеют характерное место и направление, но могут индивидуально варьировать в очень широких пределах или даже отсутствовать. Глубина этих борозд довольно велика, но значительно меньше, чем у борозд I порядка.

Непостоянные борозды III порядка называют бороздками. Они редко достигают значительных размеров, их очертания изменчивы, а топология имеет этнические или индивидуальные особенности. Как правило, бороздки III порядка не наследуются.

На каждой доле полушария выделяют свои наиболее постоянные борозды и извилины.

В заднем отделе наружной поверхности лобной доли проходит sulcus precentralis почти параллельно направлению sulcus centralis. От нее в продольном направлении проходят две борозды: sulcus frontalis superior et sulcus frontalis inferior. Благодаря этому лобная доля разделяется на четыре извилины. Вертикальная извилина, gyrus precentralis, находится между центральной и прецентральной бороздами. Горизонтальными извилинами лобной доли являются: верхняя лобная (gyrus frontalis superior), средняя лобная (gyrus frontalis medius), и нижняя лобная (gyrus frontalis inferior).

Нижняя поверхность полушария в той ее части, которая лежит кпереди от латеральной ямки, так же относится к лобной доле. Здесь параллельно медиальному краю полушария проходит sulcus olfactorius. На заднем участке базальной поверхности полушария видны две борозды: sulcus occipitotemporalis, проходящая в направлении от затылочного полюса к височному и ограничивающая gyrus occipitotemporalis lateralis, и идущая параллельно ей sulcus collateralis. Между ними располагается gyrus occipitotemporalis medialis. Медиально от коллатеральной борозды расположены две извилины: между задним отделом этой борозды и sulcus calcarinus лежит gyrus lingualis; между передним отделом этой борозды и глубокой sulcus hippocampi лежит gyrus parahippocampalis. Это извилина, примыкающая к стволу мозга, находится уже на медиальной поверхности полушария.

В теменной доле приблизительно параллельно центральной борозде располагается sulcus postcentralis, сливающаяся обычно с sulcus intraparietalis, которая идет в горизонтальном направлении. В зависимости от расположения этих борозд теменная доля разделяется на три извилины. Вертикальная извилина (gyrus postcentralis) идет позади центральной борозды в одном направлении с прецентральной извилиной. Выше межтеменной борозды помещается верхняя теменная извилина, или долька (lobulus parietalis superior), ниже - lobulus parietalis inferior.

Латеральная поверхность височной доли имеет три продольные извилины, отграниченные друг от друга sulcus temporalis superior и sulcus temporalis inferior. Между верхней и нижней височными бороздами протягивается gyrus temporalis medius. Ниже нее проходит gyrus temporalis inferior.

Борозды латеральной поверхности затылочной доли изменчивы. Из них выделяют идущую поперечно sulcus occipitalis transversus, соединяющуюся обычно с концом межтеменной борозды.

Островок имеет форму треугольника. Поверхность островка покрыта короткими извилинами, отличающимися большой вариабельностью. Одна из наиболее стабильных борозд островка - центральная (sulcus centralis insulae), делит островок на две части.

Белое вещество больших полушарий

Белое вещество больших полушарий можно разделить на три системы: проекционные, ассоциативные и комиссурные волокна.

1. Проекционные волокна представляют собой восходящие и нисходящие пути, связывающие полушария с остальными отделами ЦНС. Наиболее крупными нисходящими трактами являются кортико-спинальные (пирамидные), кортико-рубральные (к красному ядру), кортико-нуклеарные (к иядрам черепных нервов), кортико-понтинные (к собственным ядрам моста). Большинство восходящих путей образовано аксонами, идущими к коре из таламуса.

2. Ассоциативные волокна соединяют различные области коры внутри одного полушария. Наиболее заметны среди них затылочно-височные, затылочно-теменные и лобно-теменные скопления.

3. Комиссуральные волокна обеспечивают контакты симметричных отделов правого и левого полушарий. Самая большая комиссура мозга - мозолистое тело (corpus callosum), представляет собой мощную горизонтальную пластину, которая расположена в глубине продольной щели, разделяющей полушария. От этой пластины в толще полушарий расходятся волокна, образующие лучистость мозолистого тела. В мозолистом теле выделяют переднюю часть (колено), среднюю часть (тело) и заднюю часть (валик). Кроме мозолистого тела в состав конечного мозга входит передняя комиссура, которая соединяет обонятельные области правого и левого полушарий.

Выполняющее функцию передатчика информации. Еще в эмбрионе базальные ядра развиваются из ганглиозного бугорка, формируясь затем в зрелые мозговые структуры, выполняющие строго специфические функции в нервной системе.

Базальные ганглии расположены на линии основания головного мозга, находясь сбоку от таламуса. Анатомически высокоспецифичные ядра входят в совокупность переднего мозга, что располагается на грани лобных долей и стволовым отделом мозга. Часто под термином «подкорка » специалисты подразумевают именно набор базальных ядер головного мозга.

Анатомы различают три сосредоточения серого вещества:

  • Полосатое тело . Под этой структурой разумеется набор двух не совсем дифференцированных частей:
    • Хвостатое ядро головного мозга. Имеет утолщенную головку, образующую спереди одну из стенок бокового желудочка мозга. Тонкий же хвост ядра прилегает ко дну латерального желудочка. Также хвостатое ядро граничит с таламусом.
    • Чечевицеобразное ядро . Эта структура идет параллельно предыдущему скоплению серого вещества и ближе к окончанию с ним же и сливается, образуя полосатое тело. Чечевицеобразное ядро состоит из двух белых прослоек, каждая из которых получило свое название (бледный шар, скорлупа).

Corpus striatum получило такое свое название из-за чередования расположения на его сером веществе белых полосок. В последнее время чечевицеобразное ядро утратило свой функциональный смысл, и называют его исключительно в топографическом разумении. Чечевицеобразное ядро, как функциональную компиляцию, называют стриопаллидарной системой.

  • Ограда или claustrum – это малая тонкая серая пластинка, расположенная у скорлупы полосатого тела.
  • Миндалевидное тело . Это ядро расположено под скорлупой. Также эта структура относится . Под миндалиной разумеют, как правило, несколько отдельных функциональных образований, но их объединили по причине близкого расположения. Такая область мозга обладает множественной связной системой с другими структурами мозга, в частности с гипоталамусом, таламусом и черепно-мозговыми нервами.

Сосредоточением из белого вещества является:

  • Внутренняя капсула — белое вещество между таламусом и чечевицеобразным ядром
  • Наружная капсула — белое вещество между чечевицей и оградой
  • Самая наружная капсула — белое вещество между оградой и островком

Внутренняя капсула делится на 3 части и содержит следующие проводящие пути:

Передняя ножка:

  • Фронтоталамический путь — связь между корой лобной доли и медиадерзальным ядром таламуса
  • Фронтомостовой путь — связь между корой лобной доли и мостом головного мозга
  • Корково-ядерный путь — связь между ядрами двигательной коры и ядрами двигательно-черепных нервов

Задняя ножка:

  • Корково-спинномозговой путь — проводит двигательные импульсы от коры большого мозга к ядрам двигательных рогов спинного мозга
  • Таламо-теменные волокна — Аксоны нейронов таламуса связаны с постцентральной извилинной
  • Височно-теменно-затылочно-мостовой пучок — связывает ядра моста с долями головного мозга
  • Слуховая лучистость
  • Зрительная лучистость

Функции базальных ядер

Базальные ядра обеспечивают весь набор функций поддержания базовой жизнедеятельности организма, будь это процессы обмен веществ или основные витальные функции. Как и всякий регуляторный центр в мозгу, набор функций определяется количеством его связей с соседними структурами. Стриопаллидарная система имеет множество таких связей с корковыми отделами и участками стволового отдела мозга. Также система имеет эфферентные и афферентные пути. К функциям базальных ядер относится:

  • контроль двигательной сферы: поддержание врожденной или выученной позы, обеспечение стереотипных движений, паттернов реагирования, регуляция мышечного тонуса в определенных позах и ситуациях, мелкая моторика и интеграция малых двигательных движений (каллиграфическое письмо);
  • речь, словарный запас;
  • наступление периода сна;
  • реакции сосудов на изменения давления, метаболизм;
  • теплорегуляция: теплоотдача и теплообразование.
  • Кроме этого базальные ядра обеспечивают деятельность защищающих и ориентировочных рефлексов.

Симптомы нарушения работы базальных ядер

При повреждении или нарушении функции базальных ядер возникают симптомы, связанные с нарушением координации и точности движений. Такие явления именуются собирательным понятием «дискинезия », которое, в свою очередь, подразделяется на два подвида патологий: гиперкинетические и гипокинетические нарушения. К симптомам нарушения деятельности базальных ганглиев относится:

  • акинезия;
  • обеднение движений;
  • произвольные движения;
  • замедленные движения;
  • повышение и понижение тонуса мышц;
  • тремор мускулов в состоянии относительного покоя;
  • десинхронизация движений, отсутствие между ними координации;
  • обеднение мимики, скандированный язык;
  • беспорядочные и аритмические движения мелких мышц кисти или пальцев, всей конечности или части целого тела;
  • патологические непривычные для больного позы.

В основе большинства проявлений патологической работы базальных ядер лежит нарушения нормального функционирования нейромедиаторных систем мозга, в частности – дофаминэргической модулирующей системы мозга. Кроме этого, однако, причинами возникновения симптомов служат перенесенные инфекции, механические травмы головного мозга или врожденные патологии.

Патологические состояния ядер

Среди патологий базальных ганглиев чаще всего встречаются следующие:

Корковый паралич . Эта патология образуется вследствие поражения бледного шара и стриопаллидарной системы в целом. Паралич сопровождается тоническими судорогами ног или рук, туловища, головы. Больной с корковым параличом совершает хаотические медленные движения с небольшим размахом, вытягивает губы и двигает головой. На его лице выступает гримаса, он перекашивает рот.

Болезнь Паркинсона . Эта патология проявляется мышечной ригидностью, оскудением двигательной активности, тремором и неустойчивостью положения тела. Современная медицина, к сожалению, кроме симптоматической терапии, не имеет других альтернатив. Препараты лишь снимают проявления болезни, не устраняя ее причину.

Болезнь Гетингтона – генетически обусловленная патология базальных ядер. Кроме физических проявлений болезни (хаотичные движения, непроизвольные сокращения мышц, отсутствие координации, скачкообразные движения глаз), пациенты также страдают психическими расстройствами. С прогрессированием патологии больные претерпевают качественные изменения личности, ослабляются их умственные способности, теряется способность абстрагировано мыслить. На исходе патологии, как правило, перед врачами предстает депрессивный, панический, эгоистичный и агрессивный пациент с ослабевшими когнитивными способностями.

Диагностика и прогноз патологии

Диагностикой, кроме врачей-неврологов, занимаются врачи остальных кабинетов (функциональная диагностика). Основными методам выявления болезней базальных ядер являются:

  • анализ жизни больного, его анамнез;
  • объективный внешний неврологический осмотр и физикальное исследование;
  • магнитно-резонансная и компьютерная томография;
  • исследование структуры сосудов и состояния кровообращения в головном мозгу;
  • визуальные методы исследования структур головного мозга;
  • электроэнцефалография;

Прогностические данные зависят от множества факторов, таких как пол, возраст, общая конституция больного, момент заболевания и момент диагностирования, его генетических склонностей, течения и эффективности лечения, собственно патологий и ее деструктивных свойств. По данным статистики – 50% заболеваний базальных ядер имеют неблагоприятный прогноз. Остальная же половина случаев имеет шанс на адаптацию, реабилитацию и нормальную жизнь в обществе.