Автокорреляция в остатках обычно встречается при регрессионном анализе временных рядов, и почти не встречается при анализе пространственных выборок. Чаще встречается положительная автокорреляция. Она в большинстве случаев вызывается направленным постоянным воздействием некоторых неучтенных в модели факторов. При положительной автокорреляции остатки изменяются монотонно с течением времени наблюдения, а при отрицательной - следует частое изменение знака остатка.

Среди основных причин автокорреляции можно выделить следующие:

а) ошибки спецификации - неучет в модели какой-то важной объясняющей переменной или неверный выбор вида функции, что ведет к систематическим отклонениям точек наблюдения от линии регрессии,

б) инерция - запаздывание реакции экономической системы на изменение факторов,

в) сглаживание данных.

Последствия автокорреляции в остатках такие же, как и в случае гетероскедастичности (потеря эффективности, смещение дисперсий оценок параметров, занижение стандартных ошибок и завышение t -статистик параметров), а это может повлечь признание незначимых факторов значимыми. Вследствие перечисленных обстоятельств, прогнозные качества модели ухудшаются.

При анализе временных рядов вместо индекса i часто будем использовать время t , а вместо числа наблюдений n будем писать - продолжительность интервала наблюдения временного ряда.

Мы будем рассматривать автокорреляцию первого порядка, так как в большинстве практических случаев автокорреляционная функция быстро убывает.

Коэффициент автокорреляции 1-го порядка в остатках:

Если этот коэффициент корреляции существенно отличен от 0, то можно говорить о наличии автокорреляции.

Обнаружение автокорреляции в остатках

1. Графический метод - при использовании этого метода строится график: ε t есть функция от ε t - 1 . Если в графике прослеживается отчетливая положительная или отрицательная тенденция, то, скорее всего, имеет место соответствующая автокорреляция в остатках.

2. Метод рядов

В моменты времени определяются знаки отклонений, например:

- для 20-ти наблюдений.

Рядом называют непрерывную последовательность одинаковых знаков (ряд ограничен скобками, в примере приведено 5 рядов). Количество знаков называют длиной ряда. Если рядов мало по сравнению с числом наблюдений, то вполне вероятна положительная автокорреляция, если рядов много, - то отрицательная.

Для более детального анализа используется следующая процедура:

Пусть - число знаков «+»,

Число знаков «-»,

Количество рядов.


При достаточном количестве наблюдений и при отсутствии автокорреляции в остатках случайная величина имеет асимптотически нормальное распределение со следующими параметрами:

Тогда, если k лежит внутри интервала

то гипотеза об отсутствии автокорреляции не отклоняется; если лежит левее данного интервала, то есть положительная автокорреляция, а если правее - то отрицательная автокорреляция. Здесь γ - уровень значимости гипотезы об отсутствии автокорреляции. Для небольших и существует таблица Сведа-Эйзенхарта, в которой по значениям и находятся и .

Если k 1 < k < k 2 , то автокорреляция отсутствует, если k < k 1 - есть положительная автокорреляция, если k > k 2 - есть отрицательная автокорреляция.

учитывая, что и , получим:

Процедура обнаружения автокорреляции по критерию DW такова:

1. Вычисляется критерий DW , для чего должна быть выполнена регрессия y на x и определены остатки. Затем выдвигается гипотеза об отсутствии автокорреляции в остатках.

2. По таблице критических значений теста Дарбина-Уотсона для назначенного уровня значимости γ , числа наблюдений n и числа факторов p определяются верхняя du и нижняя dl критические точки

3. Строятся области: I-от 0 до dl ; II-от dl до du; III-от du до 4-du ; IV- от 4-ul до 4-dl и V-от 4-dl до 4.

Это поясняется табл. 9.1.

таблица 9.1

При использовании критерия следует учитывать следующие ограничения:

а) он применим лишь для модели с ненулевым свободным членом,

в) временной ряд должен иметь одинаковую периодичность, то есть не должно быть пропусков наблюдений,

Поясним это:

где - коэффициент авторегрессии, - количество наблюдений, - дисперсия коэффициента c 1 в уравнении авторегрессии y t = a + bx t + c 1 y t - 1 +…+ ε t , c 1 - коэффициент при в упомянутом уравнении.

Как использовать h- статистику?

Для назначенного уровня значимости γ выдвигают гипотезу об отсутствии автокорреляции в остатках, т.е. полагают, что в модели AR(1) остатков и статистика h имеет стандартное нормальное распределение: .

По таблице функции Лапласа определяют критическую точку такую, что . Если , то отклоняется. В противном случае не отклоняется и автокорреляция не признается.

Методы устранения автокорреляции

1. Обобщенный МНК (ОМНК)

Рассмотрим исходную модель в моменты времени t и t -1:

Есть случайная величина, так как и - случайные величины,

Так как и .

Остаток не коррелирует ни с одним регрессором, следовательно, можно применить классический МНК. Оценка параметра b вычисляется непосредственно, а оценка параметра a вычисляется так: .

ОМНК может применяться для данных, начиная с момента , т.е. первое наблюдение теряется; его можно восстановить для и , используя поправку Прайса-Уинстена:

Если наше предположение о том, что остатки описанные - моделью первого порядка соответствуют действительности, то можно показать, что .

Существуют два наиболее распространенных метода определения автокорреляции остатков. Первый метод -- это построение графика зависимости остатков от времени и визуальное определение наличия или отсутствия автокорреляции. Второй метод - использование критерия Дарбина -- Уотсона и расчет величины

Согласно (4.1) величина d есть отношение суммы квадратов разностей последовательных значений остатков к остаточной сумме квадратов по модели регрессии. Практически во всех статистических ППП значение критерия Дарбина - Уотсона указывается наряду с коэффициентом детерминации, значениями t- и F- критериев.

Коэффициент автокорреляции остатков первого порядка определяется как


Между критерием Дарбина-Уотсона и коэффициентом автокорреляции остатков первого порядка имеет место следующее соотношение:

Таким образом, если в остатках существует полная положительная автокорреляция и = 1, то d = 0. Если в остатках полная отрицательная автокорреляция, то = - 1 и, следовательно, d = 4. Если автокорреляция остатков отсутствует, то = 0 и d = 2. Следовательно, 0 ??d ??4.

Алгоритм выявления автокорреляции остатков на основе критерия Дарбина-Уотсона следующий. Выдвигается гипотеза Н0 об отсутствии автокорреляции остатков. Альтернативные гипотезы Н1 и Н1* состоят, соответственно, в наличии положительной или отрицательной автокорреляции в остатках. Далее по таблице (приложение А) определяются критические значения критерия Дарбина-Уотсона dL и dU для заданного числа наблюдений n , числа независимых переменных модели k и уровня значимости a . По этим значениям числовой промежуток разбивают на пять отрезков. Принятие или отклонение каждой из гипотез с вероятностью (1-a ) рассматривается на рис. 4.1.


Рис. 4.1.

Если фактическое значение критерия Дарбина - Уотсона попадает в зону неопределенности, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу H0.

Пример 4.1. Проверка гипотезы о наличии автокорреляции в остатках.

Исходные данные, значения?t и результаты промежуточных расчетов

представлены в табл. 4.1.

Таблица 4.1 - Расчет критерия Дарбина-Уотсона для модели зависимости потребления от дохода


Фактическое значение критерия Дарбина-Уотсона для этой модели составляет d = 4,1233/1,6624 = 2,48. Сформулируем гипотезы:

Н0 - в остатках нет автокорреляции;

Н1 - в остатках есть положительная автокорреляция;

Н1* - в остатках есть отрицательная автокорреляция.

Зададим уровень значимости a = 0,05. По таблицам значений критерия Дарбина-Уотсона определим для числа наблюдений n = 7 и числа независимых переменных модели k " = 1 критические d L = 0,700 и d U = 1,356. Получим следующие промежутки внутри интервала

Рис. 4.2.

Фактическое значение d = 2,48 попадает в промежуток от d U до 4 - d U. Следовательно, нет оснований отклонять гипотезу H0 об отсутствии автокорреляции в остатках.

Есть несколько существенных ограничений на применение критерия Дарбина-Уотсона. Во-первых, он неприменим к моделям, включающим в качестве независимых переменных лаговые значения результативного признака, т. е. к моделям авторегрессии. Во-вторых, методика расчета и использования критерия Дарбина - Уотсона направлена только на выявление автокорреляции остатков первого порядка. При проверке остатков на автокорреляцию более высоких порядков следует применять другие методы. В-третьих, критерий Дарбина-Уотсона дает достоверные результаты только для больших выборок.

1. 0ценивание параметров уравнения регрессии при наличии автокорреляции в остатках

Обратимся к уравнению регрессии

Примем некоторые допущения относительно этого уравнения:

  • 1. пусть уt и хt не содержат тенденции, например, представляют собой отклонения выравненных по трендам значений от исходных уровней временных рядов;
  • 2. пусть оценки а и b параметров уравнения регрессии найдены обычным МНК;
  • 3. пусть критерий Дарбина - Уотсона показал наличие автокорреляции в остатках первого порядка.

Основной подход к оценке параметров модели регрессии в случае, когда имеет место автокорреляция остатков, заключается в следующем: исходная модель регрессии (5.1) с помощью замены переменных приводится к виду


Здесь - коэффициент автокорреляции первого порядка.

Поскольку ut, - случайная ошибка, то для оценки параметров преобразованного уравнения можно применять обычный МНК.

Итак, если остатки по исходному уравнению регрессии содержат автокорреляцию, то для оценки параметров уравнения используют обобщенный МНК.

Его реализация разбивается на следующие этапы:

  • 1. Перейти от исходных переменных уt и хt к переменным у"t их"t по формулам (5.3).
  • 2. Применив обычный МНК к уравнению (5.2), определить оценки параметров а " и b .
  • 3. Рассчитать параметр а исходного уравнения из соотношения (4.9) как

4. Выписать исходное уравнение (5.1).

Обобщенный метод наименьших квадратов аналогичен методу последовательных разностей. Однако мы вычитаем из уt (или хt) не все значение предыдущего уровня уt-1 (или x t-1), а некоторую его долю r ?1· уt-1 (или r ?1· x t-1). Если r ?1 = 1, то данный метод есть просто метод первых разностей, так как

Поэтому в случае, если значение критерия Дарбина - Уотсона близко к нулю, применение метода первых разностей вполне обоснованно.

Основная проблема, связанная с применением данного метода, заключается в том, как получить оценку r ?1. Основными способами являются оценка этого коэффициента непосредственно по остаткам, полученным по исходному уравнению регрессии, и получение его приближенного значения из соотношения между коэффициентом автокорреляции остатков первого порядка и критерием Дарбина-Уотсона

Рассматривая последовательность остатков как временной ряд, можно построить график их зависимости от времени. В соответствии с предпосылками МНК остатки должны быть случайными. Однако при моделировании временных рядов нередко встречается ситуация, когда остатки содержат тенденцию или циклические колебания. Это свидетельствует о том, что каждое следующее значение остатков зависит от предшествующих. В этом случае говорят об автокорреляции остатков.

Автокорреляция в остатках может быть вызвана несколькими причинами, имеющими различную природу.

  • 1. Она может быть связана с исходными данными и вызвана наличием ошибок измерения в значениях результативного признака.
  • 2. В ряде случаев автокорреляция может быть следствием неправильной спецификации модели. Модель может не включать фактор, который оказывает существенное воздействие на результат и влияние которого отражается в остатках, вследствие чего последние могут оказаться автокоррелированными.

Существуют два наиболее распространенных метода определения автокорреляции остатков:

  • 1) построение графика зависимости остатков от времени и визуальное определение наличия или отсутствия автокорреляции.
  • 2) использование критерия Дарбина -- Уотсона и расчет величины:

Таким образом, d есть отношение суммы квадратов разностей последовательных значений остатков к остаточной сумме квадратов по модели регрессии.

Алгоритм выявления автокорреляции остатков на основе критерия Дарбина -- Уотсона следующий. Выдвигается гипотеза Н0 об отсутствии автокорреляции остатков. Альтернативные гипотезы Н1 и Н1* состоят, соответственно, в наличии положительной или отрицательной автокорреляции в остатках.

Далее по специальным таблицам определяются критические значения критерия Дарбина -- Уотсона dL и dU для заданного числа наблюдений n, числа независимых переменных модели k и уровня значимости б . По этим значениям числовой промежуток разбивают на пять отрезков. Принятие или отклонение каждой из гипотез с вероятностью осуществляется следующим образом:

есть положительная автокорреляция. Принимается гипотеза H1 с вероятностью (1- б ).

зона неопределенности.

автокорреляция остатков нет.

зона неопределенности.

есть отрицательная автокорреляция. Принимается гипотеза H1* с вероятностью (1-б).

Если фактическое значение критерия Дарбина -- Уотсона попадает в зону неопределенности, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу Hо.

Есть несколько существенных ограничений на применение критерия Дарбина -- Уотсона:

  • 1. Он неприменим к моделям, включающим в качестве независимых переменных лаговые значения результативного признака, т.е. к моделям авторегрессии.
  • 2. Методика расчета и использования критерия Дарбина-Уотсона направлена только на выявление автокорреляции остатков первого порядка.
  • 3. Критерий Дарбина-Уотсона дает достоверные результаты только для больших выборок.

Регрессионная модель МНК позволяет получить несмещенную оценку с минимальной дисперсией только тогда, когда остатки независимы друг от друга. Нарушение условия независимости остатков () называется автокорреляцией. Если имеет место автокорреляция остатков, то коэффициенты регрессии не смещены, но стандартные ошибки недооценены, а проверка статистической значимости коэффициентов ненадежна. Автокорреляция остатков означает наличие корреляции между остатками текущих и предыдущих наблюдений. Автокорреляция остатков обычно встречается в регрессионном анализе при использовании данных временных рядов. В силу этого в дальнейших выкладках вместо символа i порядкового номера наблюдения будем использовать символ t, отражающий момент наблюдения. Объем выборки при этом будем обозначать T.

Причины автокорреляции:

Ошибки спецификации – неучет в модели важной объясняющей переменной или неправильный выбор формы зависимости;

Эффект паутины – многие экономические показатели реагируют на изменение экономических условий с запаздыванием (временным лагом).

Методы обнаружения автокорреляции

В силу неизвестности значений параметров уравнения регрессии неизвестными будут также и истинные значения отклонений ,t= 1, 2, ..., Т. Поэтому выводы об их независимости осуществляются на основе оценок ε t ,t= 1, 2, ..., Т, полученных из эмпирического уравнения регрессии. Рассмотрим возможные методы определения автокорреляции.

Метод рядов.

Последовательно определяются знаки отклонений ,t= 1, 2, ..., Т.

Например, (- - - - -)(+++++++)(- - -)(++++)(-),

т.е. 5 «-», 7 «+», 3 «-», 4 «+», 1 «-».

Ряд определяется как непрерывная последовательность одинаковых знаков. Количество знаков в ряду называетсядлиной ряда .

Визуальное распределение знаков свидетельствует о неслучайном характере связей между отклонениями. Если рядов слишком мало по сравнению с количеством наблюдений п , то вполне вероятна положительная автокорреляция. (В большинстве случаев положительная автокорреляция вызывается направленным постоянным воздействием некоторых неучтенных в модели факторов). Если же рядов слишком много, то вероятна отрицательная автокорреляция. Для более детального анализа предлагается следующая процедура. Пусть

п - объем выборки;

п 1 - общее количество знаков «+» прип наблюдениях;

п 2 - общее количество знаков «-» прип наблюдениях; .

k- количество рядов.

Если при достаточно большом количестве наблюдений (n 1 >10,п 2 >10) количество рядовkлежит в пределах

то гипотеза об отсутствии автокорреляции не отклоняется.

Для небольшого числа наблюдений (n 1 <20,n 2 <20) Свед и Эйзенхарт разработали таблицы критических значенийk 1 ,k 2 отn 1 ,n 2 .

Если , то говорят об отсутствии автокорреляции;

если , говорят о положительной автокорреляции остатков;

если , говорят об отрицательной автокорреляции остатков.

В нашем примере: n=20,n 1 =11,n 2 =9,k=5. По таблицамk 1 =6,k 2 =16. Пронимается предположение о наличии положительной автокорреляции на уровне значимости 0,05.

Для проверки автокорреляции первого порядка (для регрессии временных рядов) необходимо рассчитать критерий Дарбина-Уотсона . Он определяется так:

.

Эмпирическое правило гласит, что если критерий Дарбина- Уотсона равен двум, то не существует положительной автокорреляции, если он равен нулю, то имеет место совершенная положительная автокорреляция, а если он равен четырем, то имеет место совершенная отрицательная автокорреляция. Критерий Дарбина-Уотсона имеет выборочное распределение, которое обладает двумя критическими значениями: d L – нижняя границаиd U – верхняя граница.

Автокорреляция – это корреляционная зависимость между текущими значениями некоторой переменной и значениями этой же переменной, сдвинутыми на несколько периодов времени назад. Автокорреляция случайной составляющей e модели – это корреляционная зависимость текущих и предыдущих значений случайной составляющей модели. Величина l называется запаздыванием , сдвигом во времени или лагом .

Автокорреляция случайных возмущений модели нарушает одну из предпосылок регрессионного анализа: условие

не выполняется.

Автокорреляция может быть вызвана несколькими причинами, имеющими различную природу. Во-первых, иногда она связана с исходными данными и вызвана наличием ошибок измерения в значениях результирующей переменной. Во-вторых, в ряде случаев причину автокорреляции следует искать в формулировке модели. Модель может не включать фактор, оказывающий существенное воздействие на результат, влияние которого отражается на возмущениях, вследствие чего последние могут оказаться автокоррелированными. Очень часто этим фактором является фактор времени t : автокорреляция обычно встречается при анализе временных рядов.

Постоянная направленность воздействия не включенных в модель переменных является наиболее частой причиной так называемой положительной автокорреляции .

Иллюстрацией положительной автокорреляции может служить следующий пример.

Пример 5.2. Пусть исследуется спрос Y на прохладительные напитки в зависимости от дохода X по ежемесячным и сезонным наблюдениям. Зависимость, отражающая увеличение спроса с ростом дохода, может быть представлена линейной функцией регрессии y = ax + b , изображенной вместе с результатами наблюдений на рис. 5.2.

Рис. 5.2. Положительная автокорреляция

На величину спроса Y оказывают влияние не только доход X (учтенный фактор), но и другие факторы, которые не учтены в модели. Одним из таких факторов является время года.

Положительная автокорреляция означает постоянное в одном направлении действие неучтенных факторов на результирующую переменную. Так спрос на прохладительные напитки всегда выше линии регрессии летом (т.е. для летних наблюдений e > 0) и ниже зимой (т.е. для зимних наблюдений e < 0) (рис. 5.2). g

Аналогичная картина может иметь место в макроэкономическом анализе с учетом циклов деловой активности.

Отрицательная автокорреляция означает разнонаправленное действие неучтенных в модели факторов на результат: за положительными значениями случайной составляющей e в одних наблюдениях следуют, как правило, отрицательные в следующих, и наоборот. Графически это выражается в том, что результаты наблюдений y i «слишком часто» «перескакивают» через график уравнения регрессии. Возможная схема рассеяния наблюдений в этом случае представлена на рис. 5.3.


Рис. 5.3. Отрицательная автокорреляция

Последствия автокорреляции в определенной степени сходны с последствиями гетероскедастичности. Среди них при применении МНК обычно выделяют следующие.

1. МНК-оценки параметров, оставаясь несмещенными и линейными, перестают быть эффективными. Следовательно, они перестают обладать свойствами наилучших линейных несмещенных оценок.

2. Стандартные ошибки коэффициентов регрессии будут рассчитываться со смещением. Часто они являются заниженными, что влечет за собой увеличение t -статистик. Это может привести к признанию статистически значимыми объясняющих переменных, которые в действительности таковыми не являются. Смещенность возникает вследствие того, что выборочная остаточная дисперсия (m – число объясняющих переменных модели), которая используется при вычислении указанных величин (см. формулы (2.18) и (2.19)), является смещенной. Во многих случаях она занижает истинное значение дисперсии возмущений s 2 .

Вследствие вышесказанного все выводы, получаемые на основе соответствующих t - и F - статистик, а также интервальные оценки будут ненадежными. Следовательно, статистические выводы, получаемые при проверке качества оценок (параметров модели и самой модели в целом), могут быть ошибочными и приводить к неверным заключениям по построенной модели.