Различные виды топлива и их характеристики

Логистика и транспорт

Все существующие виды топлива разделяются на твердые, жидкие и газообразные. Некоторые группы топлива, в свою очередь, делятся на две подгруппы, из которых одна представляет собой топливо в том виде, в каком оно добывается, и это топливо называется естественным; другая подгруппа - топливо, которое получается путем переработки естественного топлива...

КГБОУ СПО Барнаульский Торгово Экономический Колледж

РЕФЕРАТ

По дисциплине:

Естествознание

По теме:

Различные виды топлива и их характеристики

Выполнил:

Студент первого курса

Группы ТР-1211

Петухов А.Е.

Проверила:

Ерохина Т.Н.

Барнаул 2012

1.Виды топлива.

1.1.Твердое топливо.

1.2.Жидкое топливо

1.3.Газообразное топливо.

3.Заключение.

4.Источники.

1.Виды топлива.

Все существующие виды топлива разделяются на твердые, жидкие и газообразные. Некоторые группы топлива, в свою очередь, делятся на две подгруппы, из которых одна представляет собой топливо в том виде, в каком оно добывается, и это топливо называется естественным; другая подгруппа — топливо, которое получается путем переработки естественного топлива; это топливо называется искусственным.

Твердое топливо: а) естественное — дрова, каменный уголь, антрацит, торф; б) искусственное — древесный уголь, кокс и пылевидное, которое получается из измельченных углей.

Жидкое топливо: а) естественное — нефть; б) искусственное — бензин, керосин, мазут, смола.

Газообразное топливо: а) естественное — природный газ; б) искусственное — генераторный газ, получаемый при газификации различных видов твердого топлива (торфа, дров, каменного угля и др.), коксовальный, доменный, светильный и другие газы.

1.1.Твёрдое топливо.

Твёрдое топливо — горючие вещества, основной составной частью которых является углерод. К твердому топливу относят каменный уголь и бурые угли, горючие сланцы, торф и древесину. Свойства топлива в значительной степени определяются его химическим составом — содержанием углерода, водорода, кислорода, азота и серы. Твердое ракетное топливо — твёрдое вещество или смесь отдельных веществ, способных гореть без доступа воздуха, создавая при этом, реактивную тягу двигателя. В зависимости от способа обработки твердое топливо можно разделить на две группы: природное и очищенное. К природному твердому топливу относятся уголь, бурый уголь, торф, древесина и солома. Уголь и торф являются осадком, образующимся в результате распада и разложения растений в древние времена под воздействием высокого давления и недостатка кислорода.

1.2.Жидкое топливо.

Жидкое топливо представляет собой сложные химические соединения горючих и негорючих веществ. Основными химическими элементами, входящими в состав любого жидкого топлива, являются углерод С, водород Н, кислород О, азот N, сера S. Помимо указанных элементов в составе жидкого топлива имеются влага и негорючие минеральные вещества, образующие при сжигании золу. К жидкому топливу относятся: нефтепродукты, производящиеся путем перегонки сырой нефти; креозот, являющийся продуктом низкотемпературного коксования и возгонки угля; синтетические масла, образующиеся в результате сжижения угля; прочие виды жидкого топлива, например, производящиеся из растений.

1.3.Газообразное топливо.

Газообразное топливо делится на природное и искусственное и представляет собой смесь горючих и негорючих газов, содержащую некоторое количество водяных паров, а иногда пыли и смолы. Количество газообразного топлива выражают в кубических метрах при нормальных условиях, а состав — в процентах по объему. Под составом топлива понимают состав его сухой газообразной части. Наиболее распространенное газообразное топливо — это природный газ, обладающий высокой теплотой сгорания. Основой природных газов является метан, содержание которого в газе 76,7-98%. Другие газообразные соединения углеводородов входят в состав газа от 0,1 до 4,5%.В состав горючих газов входят: водород Н2, метан СН4, другие углеводородные соединения CmHn, сероводород H2S и негорючие газы, двуокись углерода СО2, кислород О2, азот N2 и незначительное количество водяных паров Н2О. Индексы m и n при С и H характеризуют соединения различных углеводородов, например для метана СН4 m = 1 и n = 4, для этана С2Н6 m = 2 и n = 6 и т. д.

2.Общие характеристики топлива.

Топливо в том виде, в каком оно поступает потребителю, называют рабочим топливом. Твердое и жидкое рабочее топливо состоит из углерода С, водорода Н2, кислорода О2, азота N2, серы S, негорючих примесей А и влаги W.

Твердые негорючие примеси характеризуют зольность топлива. Поэтому величина А обычно означает содержание золы в топливе. Состав твердого и жидкого топлива принято выражать в весовых процентах: Топливо, из которого в результате сушки полностью удалена влага, называется абсолютно сухим топливом: где составляющие - процент в абсолютно сухом топливе.

Если предположить, что из абсолютно сухого топлива удалены негорючие примеси А, то остаются пять компонентов, которые называют горючей массой топлива: Сера в топливе содержится в различных соединениях:

Сульфатная Sc – входит в состав СaSO4, NaSO4, K2SO4;

Колчеданная Sk – в соединении с металлами и FeS2;

Органическая – в составе органических соединений, Sop и Sk участвуют в горении топлива и их сумма составляет серу топлива Sл=Sop+Sk.

При исключении из горючей массы колчеданной серы останется топливо такого состава Со+Но+Оо+No+So=100%. Такой состав топлива называется органической массой. В большинстве случаев содержание серы в топливе невелико (десятые доли процента). Поэтому состав органической массы иногда записывают упрощенно: Основной горючий элемент топлива - углерод, составляющий большую часть рабочей массы (50-75% для твердых топлив и 83-85% для мазутов). Количество углерода в твердых топливах невелико. Сера же, несмотря на малое содержание ее в топливе (0,2-0,5%), при сгорании образует вредные соединения и вызывает коррозию оборудования.

Влажность топлива колеблется в широких пределах: для каменных углей Wp=5-14%, для бурых - до 40%. Влага в топливе нежелательна, потому что из-за нее уменьшается доля горючих компонентов в единице массы топлива, удорожается его транспорт, усложняется разгрузка, возникают трудности при сжигании, снижается тепловой эффект горения, т.к. часть теплоты затрачивается на испарение.

При проектировании и эксплуатации устройств для производства тепла часто приходится пересчитывать состав топлива. Состав рабочего топлива может изменяться, т.к. величины Ар и Wр могут колебаться в широких пределах. В то же время состав горючей массы топлива более стабилен. Это позволяет с приемлемой точностью находить состав рабочего топлива путем пересчета, не производя каждый раз полного элементарного анализа топлива.

Если известны состав горючей массы (СГ, НГ и т.д.) зольность Ар, влажность Wр рабочего топлива, то можно найти состав рабочего топлива:
Пользуясь этим же коэффициентом, можно найти содержание в рабочем топливе остальных компонентов (Нр, Ор и т.д.).

3.Заключение.

Несмотря на огромное разнообразие видов топлива, основными источниками энергии остаются нефть, природный газ, и уголь. Положение дел 100 лет назад было освещено Менделеевым. Первые два ископаемых топлива закончатся в ближайшем будущем. Нефтяные топлива обладают особой ценностью для транспортных средств (основных потребителей энергии), в силу удобства перевозки, поэтому в настоящий момент ведутся исследования по использованию угля для выработки жидких топлив, в том числе и моторных. Также огромны запасы ядерного топлива, однако его использование накладывает высокие требования к безопасности, высокие затраты на подготовку, эксплуатацию и утилизацию топлива и попутных материалов.

Мировое потребление ископаемых топлив составляет около 12 млрд т. у.т. в год. По данным BP Statistical review of World Energy потребление ископаемого топлива составило:

В Европейском союзе (EU-15) — 1396 млн тонн нефтяного эквивалента (2,1 млрд т. у.т.)

45 % — нефть, 25 % — газ (природный), 16 % — уголь, 14 % — ядерное топливо

В США — 2235 млн тонн нефтяного эквивалента (3,4 млрд т. у.т.)

40 % — нефть, 27 % — газ (природный), 26 % — уголь, 8 % — ядерное топливо

Доля возобновимых источников энергии в энергобалансах

Европы — 5 %

США — 2 %

По приблизительным оценкам энергопотребление России составляет 1,3 млрд т. у.т. в год.

6 % — ядерное топливо

4 % — возобновимые источники

За последние 20 лет мировое энергопотребление возросло на 30 % (и этот рост, по-видимому, продолжится в связи ростом потребности бурно развивающихся стран азиатского региона). В развитых странах за тот же период сильно изменилась структура потребления — произошло замещение части угля более экологичным газом (Европа и прежде всего Россия, где доля газа в потреблении составила до 40 %), а также возросла с 4 % до 10 % доля атомной энергии.

После приведения цифр стоит указать пример Австралии, в балансе которой солнечная энергетика занимает около 30 %. Эту долю потребляет солевая промышленность, вырабатывающая продукцию естественным испарением на солнце.

4.Источники

Wikipedia.ru

Allfuel.ru


А также другие работы, которые могут Вас заинтересовать

36820. Определение уровня качества технических средств защиты информации 146.5 KB
Цель работы Изучение методов определения показателей качества технических средств защиты информации и практическое определение их уровня качества с использованием комплексных показателей. Основные понятия термины и определения теории качества Технические средства защиты информации ТСЗИ в большинстве случаев представляют собой радиоэлектронные устройства РЭУ предназначенные для обнаружения и подавления прослушивающих устройств шифрования и кодирования информации защиты информации в возможных каналах утечки. Поэтому знание методов...
36821. ИЗУЧЕНИЕ РАВНОУСКОРЕННОГО ДВИЖЕНИЯ НА МАШИНЕ АТВУДА 101 KB
ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 1 ИЗУЧЕНИЕ РАВНОУСКОРЕННОГО ДВИЖЕНИЯ НА МАШИНЕ АТВУДА. В первом случае используя формулу пути при равноускоренном движении h=1t2 2 получим 1=2h t2 1 где пройденный грузами путь h и время движения t измеряются непосредственно. При втором способе формулу для определения ускорения на этом участке движения h получим из рассмотрения изменения энергии системы Ek= Где v линейная...
36822. Сведения о некоторых командах ОС UNIX. Сведения к лабораторной работе 115 KB
ls поданная без параметров команда выводит список файлов и каталогов содержащихся в текущем каталоге. Например чтобы получить список файлов в каталоге usr sbin необходимо использовать команду ls usr sbin У команды ls есть множество ключей которые нужны главным образом для того чтобы выводить дополнительную информацию о файлах в каталоге или выводить указанный список файлов вместо указания имен файлов можно использовать шаблоны. ll выводит список всех имен файлов каталога включая скрытые А lmostll выводит список всех...
36823. Запуск Word. Выход из Word. Настройка пользовательского интерфейса. Открытие и сохранение документа 294 KB
Выход из Word. Существует несколько способов запустить Microsoft Word для Windows 95. Если вы запускаете Word с помощью кнопки Пуск Windows 95 Word создает пустой незаполненный документ.
36825. Мировые информационные ресурсы 444 KB
Задание №1 Сформируйте электронный глоссарий по тематике Мировые информационные ресурсы: Блог Веб страница Интернет ресурс Информационная культура Информационное общество Информационные взаимодействия Информационные ресурсы Информационные сети Информационные системы Информационный портал Информационный потенциал общества Информация Мировые информационные ресурсы Национальные информационные ресурсы Сайт Сервис Средства массовой информации Телеконференция Файловый сервер Чат Электронная база...
36826. Получить навыки работы с электронной таблицей Microsoft Excel 170 KB
Откройте меню настройки панелей управления Вид Панели инструментов и убедитесь в том что включено отображение только двух панелей: Стандартная и Форматирование. Чтобы настроить масштаб отображения войдите в меню Вид Масштаб. Войдите в меню Сервис Параметры. Для этого достаточно воспользоваться командой меню Правка Отменить.
36827. МОДЕЛИРОВАНИЕ реакции с диффузией в трубчатом реакторе 862.5 KB
Поэтому математическое описание процессов протекающих в этих реакторах имеет большое значение. Рассмотрим математическое описание трубчатого реактора для проведение реакции с диффузией. Этот поток входит в реактор где одновременно с диффузией осуществляется реакция первого порядка Длина реактора L площадь его поперечного сечения 1 м2. При условии что скорость питания w м3 ч концентрация М равна с0 а коэффициент диффузии М принимается постоянный со значением D м2 ч определить концентрацию М как функцию длины реактора.
36828. ПОВЕРКА МИКРОМЕТРА 227.5 KB
Лабораторная работа № 2 ПОВЕРКА МИКРОМЕТРА Цель работы: изучить устройство и принцип действия микрометра; получить первичные практические навыки в выполнении поверки СИ осуществить поверку микрометра определить пригодность микрометра к использованию. Устройство и принцип действия микрометра Микрометр относится к классу микрометрических измерительных инструментов принцип действия которых основан на использовании винтовой пары винт гайка позволяющей преобразовать вращательное движение микровинта в поступательное. Устройство...

ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ ЭНЕРГИИ

НОВЫЕ ВИДЫ ЖИДКОГО И ГАЗООБРАЗНОГО ТОПЛИВА

Нефть «синтетическую» и газ, полученные из угля дополни­тельные углеводородные ресурсы, представленные органической составляющей горючих сланцев, битуминозных пород, топлив­ные спирты, а также водород относят к новым видам жидкого и газообразного топлива.

Уголь, горючие сланцы и битуминозные породы являются глав­ными перспективными источниками получения жидкого и газо­образного топлива. Потенциальные запасы содержащегося в них углеводородного сырья намного превосходят известные запасы нефти и природного газа.

Широко доступная и разнообразная сырьевая база и полно­стью отработанная и освоенная технология их производства яв­ляются одним из основных преимуществ энергетического исполь­зования спиртов в качестве топлива или добавки к нему. По мне­нию многих специалистов водород способен заменить ископае­мое органическое топливо в таких сферах его потребления, как авиация, автотранспорт, коммунально-бытовой сектор и т. д. При этом ресурсы водорода (если в качестве его источника рассмат­ривать воду) практически не ограничены.

Самым важным свойством водорода является универсаль­ность его использования. Он может применяться в качестве ос­новного топлива или как добавка к нефтяному при относительно небольших конструктивных переделках двигателя; энергия водо­рода может также преобразовываться в топливных элементах в электроэнергию; водород способен заменить природный газ и нефть почти во всех крупных химических производствах и т. д.


СИНТЕТИЧЕСКОЕ ТОПЛИВО ИЗ УГЛЕЙ

Большое значение имеет создание промышленной техноло­гии получения синтетических жидких топлив на базе огромных запасов бурых и каменных углей, в состав которых входят орга­нические и минеральные компоненты. Перечень и вещественное содержание этих компонентов предопределяет выбор направле­ний использования и методов комплексной переработки углей. Существенное влияние на дальнейшее расширение глубокой пе­реработки углей оказывает технический прогресс, представля­ющий собой непрерывное развитие и совершенствование орудий труда и технологических процессов в этой области.



К настоящему времени разработаны и проходят проверку но­вые технологические схемы и процессы, внедрение которых значительно расширит масштабы комплексной переработки уг­лей. К таким процессам в первую очередь относятся высокоско­ростной пиролиз, гидрогенизация и термическое растворение.

Высокоскоростной пиролиз (полукоксование) - процесс по­следовательного нагрева предварительно измельченного до пыле­видного состояния угля сначала газовым до температуры 300 °С (сушка), а затем твердым теплоносителем до температуры 650 °С (разложение с выделением основной массы паров смол и тяже­лых углеводородов). При взаимодействии с твердым теплоноси­телем происходит теплообмен с высокими скоростями. Это по­зволяет резко интенсифицировать процесс по сравнению с тради­ционными схемами полукоксования и обеспечить более чем в 2 раза выход продуктов пиролиза.

В результате такого интенсивного разложения получаются по­лукокс (68%), энергетический газ (15%) и смола (17%), которые характеризуются следующими качественными показателями:

Полукокс

Зольность,%................................. 12...20

Теплота сгорания, кДж................. 27,21 ...28,05

Насыпной вес, кг/м 3 ....................... 760

Смола, %

Карбены-карбоиды...................... .......... 5

Асфальтены.................................. .......... 5

Фенолы......................................... ......... 26

Нейтральные масла................ 47

Осмоляющиеся............................. 14

Пиридиновые основания.............. 2

Карбоновые кислоты................... 1


Энергетический газ,%

Углекислоты................................ ......... 23

Оксиды углерода......................... ..... 16,8

водорода........................ ..... 24,2

Удельные углеводороды.............. ..... 25,0

Непредельные углеводороды.. 4,7

Кислород..................................... ........ 0,5

Азот.............................................. ........ 6,2

Сероводород............................... ........ 0,3

Теплота сгорания, кДж/кг..... 20,09

Удельный нес, кг/м 3 ....................... 1,04

Исследованиями установлена возможность выделения из смо­лы до 47% дистиллятной части, из которой около 50% отгоняется в виде бензиновой фракции. Жидкие топлива из тяжелой части смолы могут быть получены при ее замедленном коксовании.

Гидрогенизация - процесс получения жидких и газообраз­ных продуктов из углей под давлением 10 МПа, при температуре 420...430 °С и объемной скорости 0,8... 1 ч " в присутствии пасто-образователя - донора водорода, катализаторов (солей железа и молибдена) и надбавок ингибиторов радикальной полимеризации.

К настоящему времени разработан ряд новых решений. В частности, это относится к предварительной сушке угля газо­вым теплоносителем в вихревых камерах, механохимической подготовке углемасляных суспензий, очистке газов низкотемпе­ратурной короткоциклонной адсорбцией, сжиганию шламов и сточных вод и регенерации катализаторов. Количество органи­ческой массы угля (ОМУ), превращаемое в жидкие и газообраз­ные продукты, составляет 90...92%. Жидкие продукты с темпе­ратурой кипения до 300 °С подвергаются переработке с примене­нием процессов гидроочистки, каталитического риформинга и гидрокрекинга с получением высокооктанового бензина и дизель­ного топлива, выход которых составляет 45...50% по отношению к исходному углю (ОМУ).

Термическое растворение - технология получения из углей тяжелых жидких экстрактов и выработки синтетической нефти и моторных топлив путем деструктивной гидрогенизации про­дуктов термического растворения. Работы ведутся в Институте горючих ископаемых, носят поисковый характер и проводятся на лабораторной аппаратуре. Процесс ведется при давлении 5 МПа, температуре 415 °С, объемной скорости 1...1,3 ч л по пасте с ис­пользованием дистиллятного растворителя с температурой кипе­ния 200...350 °С (содержащего до 33% донора водорода), в коли­честве 1,8 по отношению к углю. Последующая переработка жид-


ких продуктов включает фильтрование, коксование беззольного экстракта, гидрогенизационную переработку сырого бензина и части регенерированного растворителя. Выход продуктов состав­ляет: бензин автомобильный - 7,45%, электродный кокс - 12,45%, битум - 25,92%, газы - 12,17%, остаточный уголь - 25,92%, потери - 8,63%. Полученные предварительные резуль­таты свидетельствуют о значительно меньшем выходе моторных топлив, чем в процессе прямой гидрогенизации.

ГОРЮЧИЕ СЛАНЦЫ

Кроме России, добычу горючих сланцев и производство син­тетического топлива в промышленных масштабах осуществляют в КНР, где производство составляет 0,3 млн т в год, и в Бразилии, где производство сланцевой смолы доведено до 50 тыс т/год. На пороге промышленного освоения месторождений горючих сланцев находятся США, Марокко, Австралия. Разработаны раз­личные варианты добычи и переработки сланцев. Все они пре­дусматривают термическое разложение с получением синтетичес­ких топлив и побочных продуктов - серы, аммиака, кокса и т. д.

Перспективными способами переработки сланцев являются газификация на парокислородном дутье под давлением (Саратов­ский политехнический институт) и термическое растворение (ИГИ). Исходя из предварительных разработок при газификации, возможно получение газа с калорийностью 3000 ккал/кг в объеме 9 млн т у. т. (если газифицировать все сланцы), что позволит в перспективе в Поволжье сэкономить до 10% котельно-печного

При термическом растворении 40 млн т горючих сланцев возможно производство около 20 млн т у. т. высококипящего без­зольного экстракта и 2 млн т у. т. газа. По расчетам, целесообраз­но беззольный экстракт прямо использовать в качестве дорож­ных битумов, а высвобожденные битумы использовать в даль­нейшей переработке с производством энергетической продукции.

Большое значение для повышения экономичности исполь­зования волжских сланцев имеет выделение и утилизация попут­но залегающих полезных ископаемых, микрокомпонентов, редко­земельных металлов и серы.

Исходя из запасов, уровней подготовленности к промышлен­ному освоению и имеющегося опыта разработки сланцевых ме­сторождений возможна, начиная с 2008 г., разработка месторож­дений горючих сланцев Поволжья с доведением в перспективе до 30.. .40 млн т в год.


Глава 9

БИТУМИНОЗНЫЕ ПОРОДЫ

Значительным резервом развития в стране индустрии допол­нительного углеводородного сырья являются битуминозные по­роды. Это комплексное органоминеральное сырье, которое при термическом воздействии способно выделять органическую со­ставляющую, являющуюся заменителем нефти, а минеральные остатки, остающиеся после отделения «синтетической» нефти, являются прекрасным сырьем для строительной и дорожной ин­дустрии.

Месторождения и скопления битуминозных пород довольно многочисленны, и географическое размещение их крайне нерав­номерно. В связи с плохой изученностью прогнозные запасы «синтетического» топлива, содержащегося в битуминозных по­родах, варьируют от 20 до 30 млрд т.

Значительные разведанные запасы размещаются на террито­рии Татарстана, Ульяновской и Самарской областей, где они за­легают на глубинах до 400 м. Имеются месторождения природ­ных битумов на Северном Кавказе, Восточной Сибири, в Коми и других районах нашей страны.

За исключением Татарстана и Якутии специальных геолого­разведочных работ на битумы в стране не проводили.

Наиболее изученными считаются скопления битуминозных пород в пермских отложениях Татарстана. В соответствии с ре­шением ГКЗ в качестве основы для планирования геологоразве­дочных работ приняты запасы в размере 1,0 млрд т с битумона-сыщенностью свыше 5%. По степени разведанности эти запасы относятся к категории прогнозных.

СПИРТОВЫЕ ТОПЛИВА

Как компоненты моторных топлив спирты - метанол, эта­нол ранее в периоды острой нехватки топлива уже использова­лись. В настоящее время за рубежом наибольший практический опыт накоплен по использованию этилового спирта.

В начале 70-х годов XX в. в связи с возрастающими требова­ниями к качеству используемых топлив, необходимостью расши­рения сырьевой базы производства моторных топлив возрос ин­терес и к использованию метанола как топлива или добавки к нему. Известны такие топлива, как «газохол», «дизохол».

Значительный интерес к спиртовым топливам, особенно ме-танольному, обусловлен рядом причин, из которых главными являются: в экологическом отношении такие топлива более прием-


ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ НОВЫХ ВИДОВ ТОПЛИВА

немы, чем синтетический бензин и другие не нефтяные топлива, хранение и распределение аналогично бензину, их применение дает возможность достичь повышения топливной экономичности двигателя. Все это достигается при одновременном расширении ресурсов моторных топлив нефтяного происхождения.

Технически доказана возможность использования метанола: в качестве 5 и 15% добавки к бензину; для производства высоко­октановой добавки к топливу - МТБЭ (метил-трет-бутиловый эфир); для производства бензина из метанола; в чистом виде.

Бензометанольная смесь, содержащая 5% метанола, ввиду расслаивания при температуре -3 °С может быть использована как летний вид топлива. Если использовать 1,5 млн т метанола в качестве такой добавки, расширение ресурсов моторных топ­лив может составить 0,8 млн т. В целом бензометанольные смеси стабильны в эксплуатации, выхлопы компонентов в отработан­ных газах значительно снижены: углеводородов на 10...20%, ок­сидов азота - на 30...35%.

В настоящее время в лабораториях проводят работы по ис­пользованию метанола в чистом виде. Однако такое использова­ние требует значительных изменений конструкций серийных дви­гателей, которые не могут быть осуществлены на современном уровне развития техники. Отрабатывают раздельную подачу ме­танола от бензина. Такие двойные топливные системы имеют ряд преимуществ. По данным ГосНИИметанолпроекта, при внедре­нии двойных топливных систем потребуется расход метанола в объеме до 10% объема бензина и он может использоваться во всех климатических зонах. Такая подача топлива позволяет так­же использовать низкооктановый бензин.

ВОДОРОДНАЯ ЭНЕРГЕТИКА

В настоящее время основным сырьем в России для производ­ства водорода является природный газ, из которого производят более 90% водорода.

Уже разработаны и внедряются перспективные методы извле­чения водорода из водородо содержащих газов различных произ­водств: низкотемпературная конденсация, адсорбция, абсорбция, мембранная технология. Производство водорода этими методами значительно экономичнее, чем на специальных установках паро­вой конверсии углеводородных газов, считающейся наиболее де­шевым методом производства водорода. Перспективным источ­ником является уголь. Однако в программе развития водородной


ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ НОВЫХ ВИДОВ ТОПЛИВА

энергетики в стране на перспективу предусмотрено, что основ­ным сырьевым источником получения водорода станет вода, для разложения которой должно быть использовано тепло высокотем­пературного ядерного реактора (ВТЯР).

Водород обладает очень высокой теплотой сгорания: при сжигании 1 г водорода получают 28,6 кал тепловой энергии (при сжигании 1 г бензина - 11,2 кал), его можно транспортировать и распределять по трубопроводам, как природный газ.

Главным преимуществом водородной энергетики является возможность экономии традиционного энергетического сырья за счет широкого использования водорода в качестве топлива для двигателей внутреннего сгорания (как в чистом виде, так и в виде добавки) и газотурбинных двигателей (авиатранспорт, электро­энергетика).

Испытания показали, что более эффективно использовать водород в виде 5... 10% добавки к бензину, поскольку использо­вание чистого водорода ведет к нарушению рабочего процесса двигателя и выделению больших количеств NO x , а также к ус­ложнению хранения больших количеств водорода на борту авто­мобиля. Такая смесь позволяет повысить топливную экономич­ность двигателя на 20...25%, снизить эксплуатационный расход бензина на 35...40% и токсичность отработавших газов по СО в 15-20 раз, по углеводородам в.1,5-2,0 раза и окислам азота в 10-15 раз.

В связи с отсутствием товарных ресурсов водорода на началь­ном этапе перевод автомобильного транспорта на бензоводород-ные композиции целесообразно проводить по определенным ре­гионам, в которых имеются либо достаточные ресурсы вторично­го водорода, являющегося побочным продуктом химических и нефтехимических производств, либо имеются достаточные ресур­сы технологических газов, из которых может быть получен деше­вый водород.

С целью получения пиковой электроэнергии использование водорода в энергетике необходимо рассматривать одновременно с использованием электроэнергии АЭС для производства водоро­да электролизом воды с дальнейшим сжиганием его для выработ­ки электроэнергии в часы максимальных нагрузок, либо в паро­вой турбине, в парогенераторе и МГД-генераторе, либо в МГД-генераторе и парогенераторе. Расчетные значения затрат на маги­стральный транспорт водорода на большие расстояния при той же передаваемой мощности оказываются в 3-5 раз ниже затрат на транспорт электроэнергии.


9.7. ПЕРСПЕКТИВЫ РАЗВИТИЯ ВИЭ

Если в 1980 г. доля производимой электроэнергии на ВИЭ в мире составляла 1%, то по оценке Американского общества инженеров-электриков к 2005 г. она достигнет 5, к 2020 - 13 и к 2060 г. - 33%. По данным Министерства энергетики США, в этой стране к 2020 г. объем производства электроэнергии на базе ВИЭ может возрасти с 11 до 22%. В странах Европейского Союза планируется увеличение доли использования ВИЭ для производства тепловой и электрической энергии с 6 (1996) до 12% (2010). Исходная ситуация в странах ЕС различна. И если в Дании доля использования ВИЭ с 3% в 2000 г. достигла 10%, то Нидерланды планируют увеличить долю ВИЭ с 3% в 2000 г. до 10% в 2020 г. Основной результат в общей картине определяет Германия, в которой планируется увеличить долю ВИЭ с 5,9% в 2000 г. до 12% в 2010 г. в основном за счет энергии ветра, солнца и биомассы. Главными причинами, обусловившими раз­витие ВИЭ, являются:

· обеспечение энергетической безопасности;

· сохранение окружающей среды и обеспечение экологической безопасности;

· завоевание мировых рынков ВИЭ, особенно в развивающихся странах;

· сохранение запасов собственных энергоресурсов для будущих поколений;

· увеличение потребления сырья для неэнергетического ис­пользования топлива.

Масштабы роста использования ВИЭ в мире на ближайшие 10 лет представлены в табл. 9.1.

Таблица 9.1

ПРОГНОЗ РОСТА УСТАНОВЛЕННОЙ МОЩНОСТИ ВИЭ В МИРЕ, ГВт


Примечания: 1. В строке «фотоэлектричество» в скобках указано го­довое производство фотоэлементов. 2. I, II сценарии развития геотер­мальной энергетики, соответственно при ежегодном росте 10% и 15%.

Контрольные вопросы

1. Какие новые виды жидкого и газообразного топлива могут быть
использованы в перспективе?

2. Как можно получить «синтетическое» топливо?

3. Где в России размещены основные залежи сланцев и какова перспек­тива их вовлечения в ТЭБ страны?

4. Для каких целей можно использовать спиртовые топлива?

5. Каковы перспективы развития водородной энергетики?

6. Каковы перспективы развития ВИЭ?

7. Что образуется из пылеугольного топлива при высокоскоростном пиролизе?

8. Как происходит гидрогенизация углей?

9. В чем преимущества спиртовых топлив по сравнению с синте­тическими бензинами и другими не нефтяными топливами?

10. На сколько процентов можно на автомобильном транспорте при эксплуатации снизить расход бензина при использовании 5... 10% до­бавки водорода?


СПИСОК ЛИТЕРАТУРЫ

L. Бурман А. П. и др. Основы современной энергетики. - М. МЭИ. 2002.

2. Безруких П. П., Арбузов Ю. Д., Борисов Г. А. и др. Ресурсы и эффективность использования возобновляемых источников энергии. С.-Пб. Наука. 2002.

3. Бушу ев В. В. Об энергетической стратегии России // Вестник электроэнергетики, 1998, № 3.

4. Гриценко А. И. Нетрадиционные возобновляемые источники энергии.- М.: ВНИИГАЗ. 1996.

5. Методические указания по расчету выбросов загрязняющих веществ при сжигении топлива в котлах.- М.: М.О Гидроме-теосздат. 1985.

6. Сибикин Ю. Д., Сибикин М. Ю. Технология энергосбережения. Учебник. М.: Форум-Инфра-М. 2006.

7. Ятров С. Н., Жилина Л. В., Сибикин Ю. Д. и др. Энергосбере­гающие технологии в СССР и за рубежом в 2 т. М.: Фирма «Энергосбережение». 1993.

8. Будрейко Е. Н., Зайцев В. А. Введение в промышленную эколо­гию. М.: Профобр. 1991.

Традиционные виды топлива, по сути, получают из невозобновляемых ресурсов, а это значит, что рано или поздно они закончатся. Поэтому человечество нашло им альтернативу. Однако у каждой такой альтернатива могут быть свои преимущества и недостатки, рассмотрим их на конкретных примерах.

Возможно вас заинтересует - Солнечная энергетика в Беларуси .

Еще Рудольф Дизель, создатель дизельного двигателя, в 1900 году предложил получать топливо из растительного сырья, он даже продемонстрировал проект двигателя, который мог работать на арахисовом масле. Сегодня подтверждено, что в основу для такого топлива можно положить: рапс, сою, хлопок, ятрофу (бутылочное дерево). Кстати, использовать для производства можно даже пищевые отходы, которые скапливаются в предприятиях общественного питания.

«+»

  1. сырье возобновляемое,
  2. выбросы СО 2 в атмосферу ниже на 50–80% по сравнению с традиционными видами топлива,
  3. в процессе получения такого биотоплива производят еще несколько полезных побочных продуктов,
  4. государства, где нет собственных запасов нефти, могут за счет этого обеспечить себе топливную независимость.

«–»

  1. пока что высокая себестоимость производства,
  2. меньшая мощность двигателей на таком топливе, больший расход,
  3. необходимость больших площадей под выращивание нужных культур.

В 2003 году корпорация DaimlerChrysler разработало первое в мире синтетическое дизельное топливо из древесных отходов. Назвали его BIOTROLL. Когда оно сгорает, углекислый газ не попадает в атмосферу. Изготавливать подобное топливо можно не только из отходов деревообработки, но и из бытового мусора, сельскохозяйственных отходов. Только пока такое своеобразное биотопливо используют в смеси с соляркой, улучшая тем самым экологические показатели двигателей.

«+»

  1. низкие выбросы вредных веществ,
  2. переработка отходов,
  3. неисчерпаемые запасы сырья.

«–»

  1. необходимы значительные финансовые вложения, чтобы организовать весь процесс: сбор и подготовку сырья, производство синтетического горючего, создание системы распространения.

Водород

Как оказалось, водород может быть альтернативным топливом, например, для тех же автомобилей. Причем использовать его можно по-разному: смешивать с традиционными видами, применять только его, использовать водород в топливных элементах.

«+»

  1. высокие энергетические свойства,
  2. относительная экологичность сгорания, по сравнению с бензином,
  3. нелимитированная сырьевая база

«–»

  1. сегодня производство водородного топлива в 4 раза дороже, чем бензина,
  2. несмотря на то что углекислый газ при сгорании водорода не выделяется, некоторые ученые указывают на образование других газов, которые вредят озоновому слою,
  3. сложно будет организовать «водородную инфраструктуру.

На протяжении всей истории развития человечества, люди постоянно были связаны с получением и использованием в своих целях различных видов энергии. Люди пользовались тепловой энергией в целях обогрева жилища, приготовления пищи, изготовления различных видов предметов быта и орудий труда.

С самого начала люди использовали нефть и уголь, которые при сжигании дают приличное количество тепла. На данный момент само понятие «топливо» подразумевает те вещества, которые при сжигании выделяют тепло в больших размерах. Данные вещества добываются промышленным способом и в зависимости от вида распространены на поверхности и в глубине Земли.

На данный момент самыми распространенными видами топлива являются нефть, нефтепродукты, уголь, природный газ, древесина, растительные виды топлива или отхода, торфяные соединения, горючие сланцы. Самыми сложными в использовании, но с другой стороны тепловыделяющими веществами являются вещества, которые используются на атомных электростанциях в ядерных реакторах, а также в ракетных и космических двигателях.

Вообще, все виды топлива можно классифицировать, например, по агрегатному состоянию. Т.е. получается существует твердое топливо (древесина, горючие сланцы, торф и уголь), жидкое топливо (нефть, нефтепродукты) и газообразное топливо (природный газ, водород). Возможно разделять топливо еще и по происхождению - растительное, минеральное и продукты промышленной деятельности, в частности, переработки.

Практически во всех видах топлива есть такой элемент как углерод, он может содержаться в количестве от 30-85% от общей массы вещества. В химический состав топлива могут входить также такие вещества, как водород, кислород, азот, сера, зола и вода.

Все виды топлива не могут быть одинаково эффективны и полезны. В основном это различие заключается в количестве тепла, которое выделяется при его полном сжигании. К примеру, при сжигании древесины выделяется 10,5 МДж, бензина - 45 МДж, а вот каменного угля - 20 МДж. Величина тепла, которое выделяется при полном сжигании топлива, прямо пропорционально зависит от того, сколько содержится в топливе углерода и водорода, и обратно пропорционально зависит от содержания азота и кислорода.

Также топливо можно разделить по жаропроизводительности, так, например, при сжигании бензина выделяется 2100 градусов Цельсия, при сжигании каменного угля - 2030 градусов Цельсия, а при сжигании древесина - 1600 градусов.

На сегодняшний день самым распространенным видов топлива является нефть, а до 70-х годов таким видом топлива являлся уголь. Нефть на данный момент является самым энергоэффективным топливом, и скорее всего топливо природного происхождения уже навсегда останется самым ходовым видом топлива.

Практически весь объем топлива, который сейчас добывается сжигается полностью. Только 10% из этого объема остается на переработку химической промышленностью (газ и нефть). Сейчас почти 80-90% топлива расходуется на нужды тепловых электростанций, атомных электростанций, в тепловых двигателях и на тепловые нужды. Эти нужды могут обеспечиваться потребностью в отоплении производственных помещений, жилых домов и крупных промышленных предприятий.

Крайняя медленная воспламеняемость до сих пор является основным недостатком природных видов топлива.

Посредством того, что потребности в энергетических ресурсах у человека с каждым днем растут и потребление топлива все время увеличивается, все ближе наступает день, когда энергетический кризис наступит, и это, к сожалению, неизбежно. Поэтому поиск новых видов топлива все больше заботит сегодняшних ученых и исследователей.

Благодаря научным разработкам и исследованиям, ученые сделали вывод, что не так сильно затронутыми и проработанными являются такие вещества, как вода, водород, газ и другие природные элементы. Поэтому сейчас нужно активно внедрять новые разработки в области применения энергоэффектиных продуктов и анализировать их распределение.

Россия является той страной, которая может похвастаться объемами энергетических ресурсов, уровнем их добычи и применения, поэтому на сегодняшний момент наша страна является одним из главных экспортеров энергоэффективного топлива по всему миру.