Существует несколько определений понятия вероятности. Приведем классическое определение. Оно связано с понятием благоприятствующего исхода. Те элементарные исходы (э.и.), в кот. интересующее нас событие наступает назовем благоприятствующими этому событию. Опр. : Вер.ю события А назыв. отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных э. и., образующих полную группу. P(A) = m/n, где m – число э. и., благоприятствующих событию А; n – число всех возможных э. и. испытания. Из определения вероятности вытекают ее св-ва :1)вер.(в) достоверного события всегда равна 1. Т.к. событие достоверно, то все э. и. испытания благоприятствуют этому событию, т.е. m=n. P(A)=n/n = 1; 2) В. невозможного соб. равна 0. Т.к. событие невозможно, то нет ни одного э. и., благоприятствующего этому событию, значит m=0. P(A) = 0/n = 0; 3) В. случайного события есть неотрицательная вел-на, заключенная между 0 и 1, т.е. 0

4. Относительная частота. Устойчивость относительной частоты.

Относительной частотой (ОЧ) события называют отношение числа испытаний, в которых событие появилось, к общему числу фактически произведенных испытаний. (НЕ омега!!!). W(A) = m/n, где m – число появления события А, n – общее число испытаний. Определение вероятности не требует, чтобы испытания проводились в действительности. Определение ОЧ предполагает, что испытания были произведены фактически, т.е. вер. вычисляют до опыта, а ОЧ после опыта. Если в одинаковых условиях производят опыты, в каждом из кот. число испытаний достаточно велико, то ОЧ обнаруживает св-во устойчивости. Это св-во состоит в том, что в различных опытах ОЧ изменяется мало, тем меньше, чем больше произведено испытаний, колеблаясь около некоторого постоянного числа. Это число есть вер. появления события. Т.о. опытным путем установлено, что ОЧ можно принять за приближенное значение вероятности.

5.Статистическая вероятность.

Классическое определение вероятности предполагает, что число элементарных исходов испытания конечно. На практике часто встречаются испытания, число возможных исходов кот. бесконечно. В таких случаях классическое определение неприменимо. Наряду с классич. опр. используют статистическое. Опр.: стат. вер. (ст.в.) события – относительная частота (ОЧ) или число близкое к ней. Св-ва вероятности, вытекающие из классич. определения, сохраняются и при статистическом. Если событие достоверно, то его ОЧ =1, т.е. ст.в. также =1. Если событие невозможно, то ОЧ = 0, т.е. ст.в. тоже = 0. Для любого события 0W(A) 1, сл-но. ст.в. заключена между 0 и 1. Для существования ст.в. требуется: 1) возможность хотя бы принципиально проводить неограничен. число испытаний, в каждом из кот. событие наступает или не наступает; 2) устойчивость ОЧ появления события в различных сериях достаточно большого числа испытаний. Недостатком статистич. определения является неоднозначность ст.в. Например, если в рез-те достаточно большого числа испытаний оказалось, что ОЧ весьма близка к 0,6, то это число можно принять за ст.в. Но в кач-ве вероятности события можно принять не только 0,6, но и 0,59 и 0,61.

Относительная частота. Устойчивость относительной частоты

Относительная частота наряду с вероятностью принадлежит к основным понятиям теории вероятностей.

Относительной частотой события называют отношение числа испытаний, в которых событие появилось, к общему числу фактически произведённых испытаний. Таким образом, относительная частота события А определяется формулой

где m – число появлений события, n – общее число испытаний.

Сопоставляя определения вероятности и относитель­ной частоты, заключаем: определение вероятности не требует, чтобы испытания производились в действитель­ности; определение же относительной частоты предпола­гает, что испытания были произведены фактически. Дру­гими словами, вероятность вычисляют до опыта, а относительную частоту-после опыта.

Пример 1 . Отдел технического контроля обнаружил 3 нестандартных детали в партии из 80 случайно отобранных деталей. Относительная частота появления нестандартных деталей

Пример 2. По цели произвели 24 выстрела, причем было зарегистрировано 19 попаданий. Относительная частота поражения цели

Длительные наблюдения показали, что если в одина­ковых условиях производят опыты, в каждом из которых число испытаний достаточно велико, то относительная частота обнаруживает свойство устойчивости. Это свой­ство состоит в том, что в различных опытах относитель­ная частота изменяется мало (тем меньше, чем больше произведено испытаний), колеблясь около некоторого постоянного числа . Оказалось, что это постоянное число есть вероятность появления события.

Таким образом, если опытным путем установлена от­носительная частота, то полученное число можно принять за приближенное значение вероятности.

Подробнее и точнее связь между относительной часто­той и вероятностью будет изложена далее. Теперь же проиллюстрируем свойство устойчивости на примерах.

Пример 3. По данным шведской статистики, относительная час­тота рождения девочек за 1935 г. по месяцам характеризуется следующими числами (числа расположены в порядке следования месяцев, начиная с января): 0,486; 0,489; 0,490; 0,471; 0,478; 0,482; 0.462; 0,484; 0,485; 0,491; 0,482; 0,473.

Относительная частота колеблется около числа 0,482, которое можно принять за приближенное значение вероятности рождении девочек.

Заметим, что статистические данные различных стран дают при­мерно то же значение относительной частоты.

Пример 4 . Многократно проводились опыты бросания монеты, которых подсчитывали число появления «герба». Результаты не­скольких опытов приведены в табл. 1.

Здесь относительные частоты незначительно отклоняются от чис­ла 0,5, причем тек меньше, чем больше число испытаний. Напри­мер, при 4040 испытаниях отклонение равно 0, 0069, а при 24 000 испытаний - лишь 0, 0005. Приняв во внимание, что вероятность появления «герба» при бросании монеты равна 0,5, мы вновь убеж­даемся, что относительная частота колеблется около вероятности.

Предмет теории вероятностей. Испытание. Классификация событий.

Теория вероятностей – это раздел математики, который изучает закономерности, имеющие место в массовых однородных испытаниях (МОИ).

Испытание – это комплекс каких-либо условий, действий.

МОИ – это такие испытания, которые теоретически могут быть продолжены до бесконечности (учёба, соц.опросы, подбрасывание монеты).

Исход испытания – возможный результат испытания.

Событие – это абстракция исхода испытания (произошло явление в МОИ или нет).

НАПР., подбрасывание монеты – испытание, а появление «орла» - событие.

Событие принято обозначать большими лат. буквами A, B, C.

ВИДЫ СОБЫТИЙ:

1. Достоверным называется событие, которое произойдёт при любом исходе испытания.

2. Невозможное – не произойдет ни при каком исходе испытания.

3. Случайное – может произойти в результате испытания или нет.

НАПР., Подбрасывается игральный кубик.

Событие А – число очков не > 6: достоверное.

Событие В – число очков > 6: невозможное.

Событие С – от 1 до 6: случайное.

СЛУЧАЙНЫЕ СОБЫТИЯ

1. Равновозможные – такие, для которых сущ-вуют равноправие отдельных исходов испытания.

НАПР., извлечение короля, туза, дамы, валета из колоды карт.

2. Единственновозможные - такие, если в испытании обязательно наступит хотя бы одно из них.

НАПР., В семье 2 детей: А – 2 мальчика, В – 2 девочки, С – 1 м. и 1 д.


Комбинаторика. Основные формулы комбинаторики.

Комбинаторика – наука о соединениях. Под соединением понимают любую совокупность элементов некоторого множ-ва.

НАПР., множ-во студентов, сидящих в аудитории.

Все соединения делятся на 3 группы:

1)Размещения. Р-ми из n эл-тов по m () называются такие соед-я, которые отличаются друг от друга либо составом эл-тов, либо порядком соединения эл-тов, либо тем и другим вместе.

Аnm = n!/(n-m)!

Задача. Сколько различных 2значных чисел можно составить из множ-ва цифр {1;2;3;4}, причем так, чтобы цифры числа были различными.

А из 4 по 2 = 4!/(4-2)! = 24/2=12

2) Сочетания. Сочетаниями из n эл-тов по m называются такие соединения, которые отличаются друг от друга только составом эл-тов (порядок следования не важен)

С из n по m = n!/m!*(n-m)!

Задача. Скольким числом способов можно в группе из 30 человек распределить путевки в санаторий Уссури.

C из 30 по 3 = 30!/3!*(30-3)! = 28*29*30/1*2*3 = 4060.

3) Перестановки (Pn). Перестановками из n эл-тов называются такие соединения, которые включают в себя все n эл-тов и отличаются друг от друга только порядком их соединения.

Задача. Скольким числом способов можно расставить в шеренгу 6 курсантов на плацу.

ПРАВИЛО СУММЫ – если объект а может быть выбран из множ-ва различными s способами, а объект b – различными r способами, тогда выбор одного из эл-тов a или bar может быть осуществлен различными r+s способами.

ПРАВИЛО ПРОИЗВЕДЕНИЯ – если объект а может быть выбран различными s способами и после каждого такого выбора объект b может быть выбран различными r способами, тогда выбор пары эл-тов может быть осуществлен различными r*s способами (а и b = r*s).


Классическое определение вероятности. Свойства вероятности.

Вероятностью события А называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу (P(A)=m/n).

СВОЙСТВА В-ТИ:

1) В-ть достоверного события = 1.

Т.к. D – достоверное событие, то каждый возможный исход испытания благоприятствует событию, т.е. m=n.

P(D) = m/n = n/n = 1/

2) В-ть невозможного события равна нулю. Т.к. событие N невозможно, то ни один из элементарных исходов не благоприятствует событию, т.е. m=0.

P(D) = m/n = 0/n = 0/

3) В-ть случайного события есть положительное число, заключенное между 0 и 1. Случайному событию S благоприятствует лишь из общего числа элемент. исходов испытания, т.е. 0

0

Таким образом, в-ть любого события удовлетворяет двойному неравенству: 0<=P(A)<=1.

Относительная частота. Устойчивость относительных частот. Статистическое определение вероятности.

Относительной частотой события называется отношение числа испытаний, в которых событие произошло, к общему числу фактически произведенных испытаний.

W(A)=m/n, где m – число появления события, n – общее число испытаний.

В-ть предполагает, а относительная частота – фиксирует. В-ть не требует, чтобы события проводились, а относительная частота – требует. Другими словами, в-ть события вычисляют до проведения опытов, а отн. частоту – после.

УСТОЙЧИВОСТЬ относительной частоты.

Длительные наблюдения показали, что если в одинаковых условиях производятся опыты, в каждом из которых число испытаний достаточно велико, то относительная частота обнаруживает свойство устойчивости.

Это свойство состоит в том, что в различных опытах относительная частота изменяется мало, колеблясь около некоторого постоянного числа.

Оказалось, что это постоянное число есть в-ть появления события W(A) = P(A).

СТАТИСТИЧЕСКОЙ в-тью события называется число, вокруг которого группируются относительные частоты этого события, причем при неизменных условиях и неограниченном возрастании числа испытаний относительная частота незначительно отличается от этого числа.

Классическое определение вероятности

Вероятность - одно из основных понятий теории вероятностей. Существует несколько определений этого понятия. Вероятность есть число, характеризующее степень возможности появление того или иного события.

Каждый из возможных результатов испытания называется элементарным исходом (элементарным событием). Обозначения: …,

Те элементарные исходы, в которых интересующее нас событие наступает, назовем благоприятствующими.

Пример: В урне 10 одинаковых шаров, из которых 4 – черные, 6- белые. Событие - из урны извлекается белый шар. Число благоприятствующих исходов, в которых из урны будут извлекаться белые шары, равно 4-м.

Отношение числа благоприятствующих событию элементарных исходов к их общему числу называют вероятностью события; обозначение В нашем примере

Вероятностью события называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу,

где число элементарных исходов, благоприятствующих событию ; число всех возможных элементарных исходов испытания.

Свойства вероятности:

1. Вероятность достоверного события равна единице, т.е.

2. Вероятность невозможного события равно нулю, т. е.

3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей, т. е.

или

С учетом свойств 1 и 2, вероятность любого события удовлетворяет неравенству

4 . Основные формулы комбинаторики

Комбинаторика изучает количество комбинаций, подчиненных определенным условиям, которые можно составить из заданного конечного множества элементов произвольной природы. При непосредственном вычислении вероятностей часто используют формулы комбинаторики. Приведем наиболее употребительные из них.

Перестановками называют комбинации, состоящие из одних и тех же различных элементов и отличающиеся только порядком их расположения.

Число всех возможных перестановок

где Принято, что

Пример. Число трехзначных чисел, когда каждая цифра входит в изображение трехзначного числа только один раз, равно

Размещениями называют комбинации, составленные из различных элементов по элементов, которые отличаются либо составом элементов, либо их порядком. Число всех возможных размещений

Пример. Число сигналов из 6 флажков различного цвета, взятых по 2:

Сочетаниями называют комбинации, составленные из различных элементов по элементов, которые отличаются хотя бы одним элементом. Число сочетаний

Пример. Число способов выбора двух деталей из ящика, содержащего 10 деталей:



Числа размещений, перестановок и сочетаний связаны равенством

При решении задач комбинаторики используют следующие правила:

Правило суммы . Если некоторый объект может быть выбран из совокупности объектов способами, а другой объект может быть выбран способами, то выбрать либо , либо можно способами.

Правило произведения . Если объект можно выбрать из совокупности объектов способами и после каждого такого выбора объект можно выбрать способами, то пара объектов в указанном порядке может быть выбрана способами.

Относительная частота также является основным понятием теории вероятностей.

Относительной частотой события называют отношение числа испытаний, в которых событие появилось, к общему числу фактически произведенных испытаний и определяется формулой

,

где число появлений события в испытаниях, общее число испытаний.

Сопоставляя определения вероятности и относительной частоты, заключаем, что определение вероятности не требует проведения испытаний, а определение относительной частоты предполагает фактическое проведение испытаний.

Длительные наблюдения показывают, что при проведении опытов в одинаковых условиях, относительная частота обладает свойством устойчивости. Это свойство состоит в том, что в различных сериях опытов относительная частота испытаний от серии к серии изменяется мало, колеблясь около некоторого постоянного числа. Это постоянное число и есть вероятность появления события.

Классическое определение вероятности имеет некоторые недостатки:

1) число элементарных исходов испытания конечно, на практике это число может быть и бесконечным;

2) очень часто результат испытания невозможно представить в виде совокупности элементарных событий;

По этим причинам наряду с классическим определением вероятности используют статистическое определение: в качествестатистической вероятности события принимают относительную частоту.

Относительная частота. Устойчивость относительной частоты

Относительной частотой события называют отноше­ние числа испытаний, в которых событие появилось, к общему числу фактически произведенных испытаний. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, относительная частота события А опре­деляется формулой

где m - число появлений события, n-общее число испы­таний.

Определœение вероятности не требует, чтобы испытания производились в действитель­ности; определœение же относительной частоты предпола­гает, что испытания были произведены фактически. Дру­гими словами, вероятность вычисляют до опыта͵ а относительную частоту - после опыта.

Длительные наблюдения показали, что если в одина­ковых условиях производят опыты, в каждом из которых число испытаний достаточно велико, то относительная частота обнаруживает свойство устойчивости. Это свой­ство состоит в том, что в различных опытах относитель­ная частота изменяется мало {тем меньше, чем больше произведено испытаний), колеблясь около некоторого по­стоянного числа. Оказалось, что это постоянное число есть вероятность появления события.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, в случае если опытным путем установлена от­носительная частота͵ то полученное число можно принять за приближенное значение вероятности.

Пример 1. Многократно проводились опыты бросания монеты, в которых подсчитывали число появления ʼʼгербаʼʼ. Результаты не­скольких опытов приведены в табл.

Относит.частоты незначит. Отклоняются от числа 0,5, причём чем меньше, чем больше число испытаний.

В случае если учесть, что вер-ть появления ʼʼГʼʼ при бросании монеты=0,5, то вновь убеждаемся, что относит. Частота колеблется около вер-ти.

Наиболее слабая сторона классич. Опр-я вер-ти состоит в том, что оч.часто невозможно представить результат испытания в виде сов-ти элементарных событий. Ещё труднее указать основания, позволяющие считать элемент.соб-я равновозможными. По этой причине наряду с классич. Определœением вер-ти используют и др.
Размещено на реф.рф
опр-я вер-ти В частности, статистическое: В качестве статистической вер-ти события принимают относит. частоту или число близкое к ней.

При этом и опр-е статистич.вер-ти имеет свои ʼʼ-ʼʼ. К примеру, неоднозначность статистич.вер-ти. Так в рассмотренном примере в кач-ве вер-ти события можно принять не только 0,5, но и 0,5069, и 0,5016 и т.д.

Понятие ʼʼгеометрическая вер-ть ʼʼ сост. в след:

Путь в область G бросается наудачу точка. Выражение ʼʼбросается наудачуʼʼ принято понимать в том смысле, что брошенная точка может попасть в любую точку области G. Вер-ть попасть в какую-л. часть области G пропорциональна мере этой части (длина, площадь, объём) и не зависит от ее расположения и формы.

Т.о. если g – часть области G, то вер-ть попадания в обл-ть g по определœению= Р(g)= мера g/мераG. Заметим, что здесь пр-во Ω всœех элементарных исходов представляет собой сов-ть всœех точек области G и значит состоит из бесконечного множества элементарных событий=>понятие ʼʼгеом. Вер-тьʼʼ можно рассматривать как обобщение понятия ʼʼклассич. Вер-тьʼʼ на случай опытов с бесконечным числом исходов.

Задача о встрече . Реш-е: Обозначим через х и у моменты прихода лиц А и В. Встреча состоится, в случае если |х-у|≤10.

В случае если изображать х и у как декартовы координаты на пл-ти, то всœе возможные исходы изобразятся точкой квадрата со сторонами 60.

10≤у-х≤10

Задача Бюффона . Реш-е: введём обозначения: х – расстояние от середины иглы до ближайшей параллели;

φ – угол, составляющий этой параллелью с иглой.

Положение иглы полностью опр-ся заданными определœенными значениями х и φ. Причем х Є(0;а), φЄ(0;π). Другими словами, середина иглы может попасть в любую из точек прямоугольника со сторонами а и π.

Т.о. данный прямоугольник можно рассмотреть как фигуру G, точки к-рой представляют из себявсœе возможные положения середины иглы. Очевидно, эта площадь фигуры = πа.

Найдём фигуру g, каждая точка к-рой благоприятствует интересующему нас событию, ᴛ.ᴇ. каждая точка фигуры может служить серединой иглы, к-рая пересекает параллель.

Игла пересечет ближайшую к ней параллель при условии: х≤l·sinφ

Т.е. если середина иглы попадает в любую из точек фигуры, заштрихованной на рис(2). Т.о. заштрихованную фигуру можно рассматривать как g. Найдём её площадь:

Ответ: 2l/аπ

Относительная частота. Устойчивость относительной частоты - понятие и виды. Классификация и особенности категории "Относительная частота. Устойчивость относительной частоты" 2017, 2018.