Цитоплазма — обязательная часть клетки, заключенная между плазматической мембраной и ядром; подразделяется на гиалоплазму (основное вещество цитоплазмы), органоиды (постоянные компоненты цитоплазмы) и включения (временные компоненты цитоплазмы). Химический состав цитоплазмы: основу составляет вода (60-90% всей массы цитоплазмы), различные органические и неорганические соединения. Цитоплазма имеет щелочную реакцию. Характерная особенность цитоплазмы эукариотической клетки — постоянное движение (циклоз ). Оно обнаруживается, прежде всего, по перемещению органоидов клетки, например хлоропластов. Если движение цитоплазмы прекращается, клетка погибает, так как, только находясь в постоянном движении, она может выполнять свои функции.

Гиалоплазма (цитозоль ) представляет собой бесцветный, слизистый, густой и прозрачный коллоидный раствор. Именно в ней протекают все процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов. В зависимости от преобладания в гиалоплазме жидкой части или крупных молекул, различают две формы гиалоплазмы: золь — более жидкая гиалоплазма и гель — более густая гиалоплазма. Между ними возможны взаимопереходы: гель превращается в золь и наоборот.

Функции цитоплазмы:

  1. объединение всех компонентов клетки в единую систему,
  2. среда для прохождения многих биохимических и физиологических процессов,
  3. среда для существования и функционирования органоидов.

Клеточные оболочки

Клеточные оболочки ограничивают эукариотические клетки. В каждой клеточной оболочке можно выделить как минимум два слоя. Внутренний слой прилегает к цитоплазме и представлен плазматической мембраной (синонимы — плазмалемма, клеточная мембрана, цитоплазматическая мембрана), над которой формируется наружный слой. В животной клетке он тонкий и называется гликокаликсом (образован гликопротеинами, гликолипидами, липопротеинами), в растительной клетке — толстый, называется клеточной стенкой (образован целлюлозой).

Все биологические мембраны имеют общие структурные особенности и свойства. В настоящее время общепринята жидкостно-мозаичная модель строения мембраны . Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами. Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты; участок молекулы, в котором находится остаток фосфорной кислоты, называют гидрофильной головкой, участки, в которых находятся остатки жирных кислот — гидрофобными хвостами. В мембране фосфолипиды располагаются строго упорядоченно: гидрофобные хвосты молекул обращены друг к другу, а гидрофильные головки — наружу, к воде.

Помимо липидов в состав мембраны входят белки (в среднем ≈ 60%). Они определяют большинство специфических функций мембраны (транспорт определенных молекул, катализ реакций, получение и преобразование сигналов из окружающей среды и др.). Различают: 1) периферические белки (расположены на наружной или внутренней поверхности липидного бислоя), 2) полуинтегральные белки (погружены в липидный бислой на различную глубину), 3) интегральные, или трансмембранные, белки (пронизывают мембрану насквозь, контактируя при этом и с наружной, и с внутренней средой клетки). Интегральные белки в ряде случаев называют каналообразующими, или канальными, так как их можно рассматривать как гидрофильные каналы, по которым в клетку проходят полярные молекулы (липидный компонент мембраны их бы не пропустил).

А — гидрофильная головка фосфолипида; В — гидрофобные хвостики фосфолипида; 1 — гидрофобные участки белков Е и F; 2 — гидрофильные участки белка F; 3 — разветвленная олигосахаридная цепь, присоединенная к липиду в молекуле гликолипида (гликолипиды встречаются реже, чем гликопротеины); 4 — разветвленная олигосахаридная цепь, присоединенная к белку в молекуле гликопротеина; 5 — гидрофильный канал (функционирует как пора, через которую могут проходить ионы и некоторые полярные молекулы).

В состав мембраны могут входить углеводы (до 10%). Углеводный компонент мембран представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины) или липидов (гликолипиды). В основном углеводы располагаются на наружной поверхности мембраны. Углеводы обеспечивают рецепторные функции мембраны. В животных клетках гликопротеины образуют надмембранный комплекс — гликокаликс, имеющий толщину несколько десятков нанометров. В нем располагаются многие рецепторы клетки, с его помощью происходит адгезия клеток.

Молекулы белков, углеводов и липидов подвижны, способны перемещаться в плоскости мембраны. Толщина плазматической мембраны — примерно 7,5 нм.

Функции мембран

Мембраны выполняют такие функции:

  1. отделение клеточного содержимого от внешней среды,
  2. регуляция обмена веществ между клеткой и средой,
  3. деление клетки на компартаменты («отсеки»),
  4. место локализации «ферментативных конвейеров»,
  5. обеспечение связи между клетками в тканях многоклеточных организмов (адгезия),
  6. распознавание сигналов.

Важнейшее свойство мембран — избирательная проницаемость, т.е. мембраны хорошо проницаемы для одних веществ или молекул и плохо проницаемы (или совсем непроницаемы) для других. Это свойство лежит в основе регуляторной функции мембран, обеспечивающей обмен веществ между клеткой и внешней средой. Процесс прохождения веществ через клеточную мембрану называют транспортом веществ . Различают: 1) пассивный транспорт — процесс прохождения веществ, идущий без затрат энергии; 2) активный транспорт — процесс прохождения веществ, идущий с затратами энергии.

При пассивном транспорте вещества перемещаются из области с более высокой концентрацией в область с более низкой, т.е. по градиенту концентрации. В любом растворе имеются молекулы растворителя и растворенного вещества. Процесс перемещения молекул растворенного вещества называют диффузией, перемещения молекул растворителя — осмосом. Если молекула заряжена, то на ее транспорт влияет и электрический градиент. Поэтому часто говорят об электрохимическом градиенте, объединяя оба градиента вместе. Скорость транспорта зависит от величины градиента.

Можно выделить следующие виды пассивного транспорта: 1) простая диффузия — транспорт веществ непосредственно через липидный бислой (кислород, углекислый газ); 2) диффузия через мембранные каналы — транспорт через каналообразующие белки (Na + , K + , Ca 2+ , Cl -); 3) облегченная диффузия — транспорт веществ с помощью специальных транспортных белков, каждый из которых отвечает за перемещение определенных молекул или групп родственных молекул (глюкоза, аминокислоты, нуклеотиды); 4) осмос — транспорт молекул воды (во всех биологических системах растворителем является именно вода).

Необходимость активного транспорта возникает тогда, когда нужно обеспечить перенос через мембрану молекул против электрохимического градиента. Этот транспорт осуществляется особыми белками-переносчиками, деятельность которых требует затрат энергии. Источником энергии служат молекулы АТФ. К активному транспорту относят: 1) Na + /К + -насос (натрий-калиевый насос), 2) эндоцитоз, 3) экзоцитоз.

Работа Na + /К + -насоса . Для нормального функционирования клетка должна поддерживать определенное соотношение ионов К + и Na + в цитоплазме и во внешней среде. Концентрация К + внутри клетки должна быть значительно выше, чем за ее пределами, а Na + — наоборот. Следует отметить, что Na + и К + могут свободно диффундировать через мембранные поры. Na + /К + -насос противодействует выравниванию концентраций этих ионов и активно перекачивает Na + из клетки, а K + в клетку. Na + /К + -насос представляет собой трансмембранный белок, способный к конформационным изменениям, вследствие чего он может присоединять как K + , так и Na + . Цикл работы Na + /К + -насоса можно разделить на следующие фазы: 1) присоединение Na + с внутренней стороны мембраны, 2) фосфорилирование белка-насоса, 3) высвобождение Na + во внеклеточном пространстве, 4) присоединение K + с внешней стороны мембраны, 5) дефосфорилирование белка-насоса, 6) высвобождение K + во внутриклеточном пространстве. На работу натрий-калиевого насоса тратится почти треть всей энергии, необходимой для жизнедеятельности клетки. За один цикл работы насос выкачивает из клетки 3Na + и закачивает 2К + .

Эндоцитоз — процесс поглощения клеткой крупных частиц и макромолекул. Различают два типа эндоцитоза: 1) фагоцитоз — захват и поглощение крупных частиц (клеток, частей клеток, макромолекул) и 2) пиноцитоз — захват и поглощение жидкого материала (раствор, коллоидный раствор, суспензия). Явление фагоцитоза открыто И.И. Мечниковым в 1882 г. При эндоцитозе плазматическая мембрана образует впячивание, края ее сливаются, и происходит отшнуровывание в цитоплазму структур, отграниченных от цитоплазмы одиночной мембраной. К фагоцитозу способны многие простейшие, некоторые лейкоциты. Пиноцитоз наблюдается в эпителиальных клетках кишечника, в эндотелии кровеносных капилляров.

Экзоцитоз — процесс, обратный эндоцитозу: выведение различных веществ из клетки. При экзоцитозе мембрана пузырька сливается с наружной цитоплазматической мембраной, содержимое везикулы выводится за пределы клетки, а ее мембрана включается в состав наружной цитоплазматической мембраны. Таким способом из клеток желез внутренней секреции выводятся гормоны, у простейших — непереваренные остатки пищи.

    Перейти к лекции №5 «Клеточная теория. Типы клеточной организации»

    Перейти к лекции №7 «Эукариотическая клетка: строение и функции органоидов»

Клетка — саморегулируемая структурно-функциональная единица тканей и органов. Клеточная теория строения органов и тканей была разработана Шлейденом и Шванном в 1839 г. В дальнейшем с помощью электронной микроскопии и ультрацентрифугирования удалось выяснить строение всех основных органелл животных и растительных клеток (рис. 1).

Рис. 1. Схема строения клетки животных организмов

Главными частями клетки являются цитоплазма и ядро. Каждая клетка окружена очень тонкой мембраной, ограничивающей ее содержимое.

Клеточная мембрана называется плазматической мембраной и характеризуется избирательной проницаемостью. Это свойство позволяет необходимым питательным веществам и химическим элементам проникать внутрь клетки, а излишним продуктам выходить из нее. Плазматическая мембрана состоит из двух слоев липидных молекул с включением в нее специфических белков. Основными липидами мембраны являются фосфолипиды. Они содержат фосфор, полярную головку и два неполярных хвоста из длинноцепочечных жирных кислот. К мембранным липидам относятся холестерин и эфиры холестерина. В соответствии с жидкостно-мозаичной моделью строения, мембраны содержат включения протеиновых и липидных молекул, которые могут перемешаться относительно бислоя. Для каждого типа мембран любой животной клетки характерен свой относительно постоянный липидный состав.

Мембранные белки по структуре подразделяют на два вида: интегральные и периферические. Периферические белки могут удаляться из мембраны без ее разрушения. Имеется четыре типа мембранных белков: транспортные белки, ферменты, рецепторы и структурные белки. Одни мембранные белки обладают ферментативной активностью, другие связывают определенные вещества и способствуют их переносу внутрь клетки. Белки обеспечивают несколько путей передвижения веществ через мембраны: образуют большие поры, состоящие из нескольких белковых субъединиц, которые позволяют перемещаться молекулам воды и ионам между клетками; формируют ионные каналы, специализированные для передвижения ионов некоторых видов через мембрану при определенных условиях. Структурные белки связаны с внутренним липидным слоем и обеспечивают цитоскелет клетки. Цитоскелет придает механическую прочность клеточной оболочке. В различных мембранах на долю белков приходится от 20 до 80% массы. Мембранные белки могут свободно перемещаться в латеральной плоскости.

В мембране присутствуют и углеводы, которые могут ковалентно связываться с липидами или белками. Известно три вида мембранных углеводов: гликолипиды (ганглиозиды), гликопротеиды и протеогликаны. Большинство липидов мембраны находятся в жидком состоянии и обладают определенной текучестью, т.е. способностью перемещаться из одного участка в другой. На внешней стороне мембраны имеются рецепторные участки, связывающие различные гормоны. Другие специфические участки мембраны мог>т распознавать и связывать некоторые чужеродные для данных клеток белки и разнообразные биологически активные соединения.

Внутреннее пространство клетки заполнено цитоплазмой, в которой протекает большинство катализируемых ферментами реакций клеточного метаболизма. Цитоплазма состоит из двух слоев: внутреннего, называемого эндоплазмой, и периферического — эктоплазмы, которая имеет большую вязкость и лишена гранул. В цитоплазме находятся все компоненты клетки или органеллы. Важнейшими из органелл клетки являются — эндоплазматический ретикулум, рибосомы, митохондрии, аппарат Гольджи, лизосомы, микрофиламенты и микротрубочки, пероксисомы.

Эндоплазматический ретикулум представляет собой систему взаимосвязанных каналов и полостей, пронизывающих всю цитоплазму. Он обеспечивает транспорт вешеств из окружающей среды и внутри клеток. Эндоплазматический ретикулум также служит депо для внутриклеточных ионов Са 2+ и служит основным местом синтеза липидов в клетке.

Рибосомы - микроскопические сферические частицы диаметром 10-25 нм. Рибосомы свободно располагаются в цитоплазме или прикрепляются к наружной поверхности мембран эндоплазматической сети и ядерной мембраны. Они взаимодействуют с информационной и транспортной РНК, и в них осуществляется синтез белков. Они синтезируют белки, которые попадают внутрь цистерн или в аппарат Гольджи, и затем выделяются наружу. Рибосомы, свободно располагающиеся в цитоплазме, синтезируют белок для использования самой клеткой, а рибосомы, связанные с эндоплазматическим ретикулумом, производят белок, который выводится из клетки. В рибосомах синтезируются различные функциональные белки: белки-переносчики, ферменты, рецепторы, белки цитоскелета.

Аппарат Гольджи образован системой канальцев, цистерн и пузырьков. Он связан с эндоплазматическим ретикулумом, и поступившие сюда биологически активные вещества хранятся в уплотненном виде в секреторных пузырьках. Последние постоянно отделяются от аппарата Гольджи, транспортируются к клеточной мембране и сливаются с ней, а содержащиеся в пузырьках вещества выводятся из клетки в процессе экзоцитоза.

Лизосомы - окруженные мембраной частицы размером 0,25-0,8 мкм. Они содержат многочисленные ферменты, участвующие в расщеплении белков, полисахаридов, жиров, нуклеиновых кислот, бактерий и клеток.

Пероксисомы сформированы из гладкого эндоплазматического ретикулума, напоминают лизосомы и содержат ферменты, катализирующие разложение пероксида водорода, который расщепляется под влиянием пероксидаз и каталазы.

Митохондрии содержат наружную и внутреннюю мембраны и являются «энергетической станцией» клетки. Митохондрии представляют собой округлые или удлиненные образования с двойной мембраной. Внутренняя мембрана формирует выступающие внутрь митохондрии складки — кристы. В них происходит синтез АТФ, осуществляется окисление субстратов цикла Кребса и множество биохимических реакций. Образованные в митохондриях молекулы АТФ диффундируют во все части клетки. В митохондриях содержится небольшое количество ДНК, РНК, рибосомы, и с их участием происходит обновление и синтез новых митохондрий.

Микрофиламенты представляют собой тонкие белковые нити, состоящие из миозина и актина, и образуют сократительный аппарат клетки. Микрофиламенты участвуют в образовании складок или выпячиваний клеточной мембраны, а также при перемещении различных структур внутри клеток.

Микротрубочки составляют основу цитоскелета и обеспечивают его прочность. Цитоскелет придает клеткам характерные внешний вид и форму, служит местом прикрепления внутриклеточных органелл и различных телец. В нервных клетках пучки микротрубочек участвуют в транспорте веществ из тела клетки к концам аксонов. При их участии осуществляется функционирование митотического веретена во время деления клеток. Они играют роль двигательных элементов в ворсинках и жгутиках у эукариот.

Ядро является основной структурой клетки, участвует в передаче наследственных признаков и в синтезе белков. Ядро окружено ядерной мембраной, содержащей множество ядерных пор, через которые происходит обмен различными веществами между ядром и цитоплазмой. Внутри него находится ядрышко. Установлена важная роль ядрышка в синтезе рибосомной РНК и белков-гистонов. В остальных частях ядра содержится хроматин, состоящий из ДНК, РНК и ряда специфических белков.

Функции клеточной мембраны

В регуляции внутриклеточного и межклеточного обмена важнейшую роль играют клеточные мембраны. Они обладают избирательной проницаемостью. Их специфическое строение позволяет обеспечивать барьерную, транспортную и регуляторную функции.

Барьерная функция проявляется в ограничении проникновения через мембрану растворенных в воде соединений. Мембрана непроницаема для крупных белковых молекул и органических анионов.

Регуляторная функция мембраны состоит в регуляции внутриклеточного метаболизма в ответ на химические, биологические и механические воздействия. Различные воздействия воспринимаются специальными мембранными рецепторами с последующим изменением активности ферментов.

Транспортная функция через биологические мембраны может осуществляться пассивно (диффузия, фильтрация, осмос) или с помощью активного транспорта.

Диффузия - движение газа или растворимого вещества по концентрационному и электрохимическому градиенту. Скорость диффузии зависит от проницаемости клеточной мембраны, а также градиента концентрации для незаряженных частиц, электрического и концентрационного градиентов для заряженных частиц. Простая диффузия происходит через липидный бислой или через каналы. Заряженные частицы движутся согласно электрохимическому градиенту, а незаряженные — химическому градиенту. Например, простой диффузией через липидный слой мембраны проникают кислород, стероидные гормоны, мочевина, спирт и т.д. Через каналы перемещаются различные ионы и частицы. Ионные каналы образованы белками и подразделяются на управляемые и неуправляемые каналы. В зависимости от селективности различают ионоселективные канаты, пропускающие только один ион, и каналы, не обладающие селективностью. Каналы имеют устье и селективный фильтр, а управляемые каналы — и воротный механизм.

Облегченная диффузия - процесс, при котором вещества переносятся через мембрану с помощью специальных мембранных белков- переносчиков. Таким путем в клетку проникают аминокислоты и моносахара. Этот вид транспорта происходит очень быстро.

Осмос - движения воды через мембрану из раствора с более низким в раствор с более высоким осмотическим давлением.

Активный транспорт - перенос веществ против градиента концентрации с помощью транспортных АТФаз (ионных насосов). Этот перенос происходит с затратой энергии.

В большей мере изучены Na + /K + -, Са 2+ - и Н + -насосы. Насосы располагаются на клеточных мембранах.

Разновидностью активного транспорта являются эндоцитоз и экзоцитоз. С помощью этих механизмов транспортируются более крупные вещества (белки, полисахариды, нуклеиновые кислоты), которые не могут переноситься по каналам. Этот транспорт более распространен в эпителиальных клетках кишечника, почечных канальцев, эндотелии сосудов.

При эндоцитозе клеточные мембраны образуют впячивания внутрь клетки, которые отшнуровываясь, превращаются в пузырьки. При экзоцитозе пузырьки с содержимым переносятся к клеточной мембране и сливаются с ней, а содержимое пузырьков выделяется во внеклеточную среду.

Строение и функции клеточной мембраны

Для понимания процессов, обеспечивающих существование электрических потенциалов в живых клетках, прежде всего нужно представлять строение клеточной мембраны и ее свойства.

В настоящее время наибольшим признанием пользуется жидкостно-мозаичная модель мембраны, предложенная С. Сингером и Г. Николсоном в 1972 г. Основу мембраны составляет двойной слой фосфолипидов (бислой), гидрофобные фрагменты молекулы которого погружены в толщу мембраны, а полярные гидрофильные группы ориентированы наружу, т.е. в окружающую водную среду (рис. 2).

Мембранные белки локализованы на поверхности мембраны или могут быть внедрены на различную глубину в гидрофобную зону. Некоторые белки пронизывают мембрану насквозь, и различные гидрофильные группы одного и того же белка обнаруживаются по обе стороны клеточной мембраны. Белки, обнаруженные в плазматической мембране, играют очень важную роль: они участвуют в образовании ионных каналов, играют роль мембранных насосов и переносчиков различных веществ, а также могут выполнять рецептор- ную функцию.

Основные функции клеточной мембраны: барьерная, транспортная, регуляторная, каталитическая.

Барьерная функция заключается в ограничении диффузии через мембрану растворимых в воде соединений, что необходимо для защиты клеток от чужеродных, токсических веществ и сохранения внутри клеток относительного постоянного содержания различных веществ. Так, клеточная мембрана может замедлить диффузию различных веществ в 100 000-10 000 000 раз.

Рис. 2. Трехмерная схема жидкостно-мозаичной модели мембраны Сингера-Николсона

Изображены глобулярные интегральные белки, погруженные в липидный бислой. Часть белков является ионными каналами, другие (гликопротеины) содержат олигосахаридные боковые цепи, участвующие в узнавании клетками друг друга и в межклеточной ткани. Молекулы холестерола вплотную примыкают к фосфолипидным головкам и фиксируют прилегающие участки «хвостов». Внутренние участки хвостов молекулы фосфолипидов не ограничены в своем движении и ответственны за текучесть мембраны (Bretscher, 1985)

В мембране располагаются каналы, через которые проникают ионы. Каналы бывают потенциал зависимыми и потен циалнезависимыми. Потенциалзависимые каналы открываются при изменении разности потенциалов, а потенциалнезависимые (гормонрегулируемые) открываются при взаимодействии рецепторов с веществами. Каналы могут быть открыты или закрыты благодаря воротам. В мембрану встроены два вида ворот: активационные (в глубине канала) и инактивационные (на поверхности канала). Ворота могут находиться в одном из трех состояний:

  • открытое состояние (открыты оба вида ворот);
  • закрытое состояние (закрыты активационные ворота);
  • инактивационное состояние (закрыты инактивационные ворота).

Другой характерной особенностью мембран является способность осуществлять избирательный перенос неорганических ионов, питательных веществ, а также различных продуктов обмена. Различают системы пассивного и активного переноса (транспорта) веществ. Пассивный транспорт осуществляется через ионные каналы с помощью или без помощи белков-переносчиков, а его движущей силой является разность электрохимических потенциалов ионов между внутри- и внеклеточным пространством. Избирательность ионных каналов определяется его геометрическими параметрами и химической природой групп, выстилающих стенки канала и его устье.

В настоящее время наиболее хорошо изучены каналы, обладающие избирательной проницаемостью для ионов Na + , К+ , Са 2+ а также для воды (так называемые аквапорины). Диаметр ионных каналов, по оценкам разных исследований, составляет 0,5-0,7 нм. Пропускная способность каналов может изменяться, через один ионный канал может проходить 10 7 - 10 8 ионов в секунду.

Активный транспорт происходит с затратой энергии и осуществляется так называемыми ионными насосами. Ионные насосы — это молекулярные белковые структуры, встроенные в мембрану и осуществляющие перенос ионов в сторону более высокого электрохимического потенциала.

Работа насосов осуществляется за счет энергии гидролиза АТФ. В настоящее время хорошо изучены Na+/K+ — АТФаза, Са 2+ — АТФаза, Н + — АТФаза, Н + /К + — АТФаза, Mg 2+ — АТФаза, которые обеспечивают перемещение соответственно ионов Na + , К + , Са 2+ , Н+, Mg 2+ изолированно или сопряжено (Na+ и К+; Н+ и К+). Молекулярный механизм активного транспорта до конца не выяснен.

Основные мембраны клетки:

Плазматическая мембрана

Плазматическая мембрана, окружающая каждую клетку, определяет её величину, обеспечивает транспорт малых и больших молекул из клетки и в клетку, поддерживает разницу концентраций ионов по обе стороны мембраны. Мембрана участвует в межклеточных контактах, воспринимает, усиливает и передаёт внутрь клетки сигналы внешней среды. С мембраной связаны многие ферменты, катализирующие биохимические реакции.

Ядерная мембрана

Ядерная оболочка состоит из внешней и внутренней ядерных мембран. Ядерная оболочка имеет поры, через которые РНК проникают из ядра в цитоплазму, а регуляторные белки из цитоплазмы в ядро.

Внутренняя ядерная мембрана содержит специфические белки, имеющие участки связывания основных полипептидов ядерного матрикса - ламина А, ламина В и ламина С. Важная функция этих белков - дезинтеграция ядерной оболочки в процессе митоза.

Мембрана эндоплазматического ретикулума (ЭР)

Мембрана ЭР имеет многочисленные складки и изгибы. Она образует непрерывную поверхность, ограничивающую внутреннее пространство, называемое полостью ЭР. Шероховатый ЭР связан с рибосомами, на которых происходит синтез белков плазматической мембраны, ЭР, аппарата Гольджи, лизосом, а также секретируемых белков. Области ЭР, не содержащие рибосом, называют гладким ЭР. Здесь происходит завершающий этап биосинтеза холестерина, фосфолипидов, реакции окисления собственных метаболитов и чужеродных веществ с участием мембранных ферментов - цитохрома Р 450 , цитохром Р 450 редуктазы, цитохром b 5 редуктазы и цитохрома b 5

Аппарат Гольджи

Аппарат Гольджи - важная мембранная органелла, отвечающая за модификацию, накопление, сортировку и направление различных веществ в соответствующие внутриклеточные компартменты, а также за пределы клетки. Специфические ферменты мембраны комплекса Гольджи, гликозилтрансферазы, гликозилируя белки по остаткам серина, треонина или амидной группе аспарагина, завершают образование сложных белков - гликопротеинов.

Митохондриальные мембраны

Митохондрии - органеллы, окружённые двойной мембраной, специализирующиеся на синтезе АТФ путём окислительного фосфорилирования. Отличительная особенность внешней митохондриальной мембраны - содержание большого количества белка порина, образующего поры в мембране. Благодаря порину внешняя мембрана свободно проницаема для неорганических ионов, метаболитов и даже небольших молекул белков (меньше 10 кД). Для больших белков внешняя мембрана непроницаема, это позволяет митохондриям удерживать белки межмембранного пространства от утечки в цитозоль.

Для внутренней мембраны митохондрий характерно высокое содержание белков, около 70%, которые выполняют в основном каталитическую и транспортную функции. Транслоказы мембраны обеспечивают избирательный перенос веществ из межмембранного пространства в матрикс и в обратном направлении, ферменты участвуют в транспорте электронов (цепи переноса электронов) и синтезе АТФ.

Мембрана лизосом

Мембрана лизосом играет роль "щита" между активными ферментами (более 50), обеспечивающими реакции распада белков, углеводов, жиров, нуклеиновых кислот, и остальным клеточным содержимым. Мембрана содержит уникальные белки, например АТФ-зависимую протонную помпу (насос), которая поддерживает кислую среду (рН 5), необходимую для действия гидролитических ферментов (протеаз, липаз), а также транспортные белки, позволяющие продуктам расщепления макромолекул покидать лизосому. Такие мембраны, защищают их от действия протеаз.

Общие функции биологических мембран следующие:

    Отграничивают содержимое клетки от внешней среды и содержимое органелл от цитоплазмы.

    Обеспечивают транспорт веществ в клетку и из нее, из цитоплазмы в органеллы и наоборот.

    Выполняют роль рецепторов (получение и преобразование сит-налов из окружающей среды, узнавание веществ клеток и т. д.).

    Являются катализаторами (обеспечение примембранных химических процессов).

    Участвуют в преобразовании энергии.

Общие свойства биологических мембран

Все без исключения клеточные мембраны построены по общему принципу: это тонкие липопротеидные пленки, состоящие из двойного слоя липидных молекул, в который включены молекулы белка. В весовом отношении в зависимости от типа мембран на долю липидов приходится 25-60%, на долю белков 40-75%. В состав многих мембран входят углеводы, количество которых может достигать 2-10%.

Биологические мембраны весьма избирательно пропускают вещества из окружающего раствора. Они довольно легко пропускают воду и задерживают большинство веществ, растворимых в воде, и в первую очередь ионизированные вещества или несущие электрический заряд. В силу этого в солевых растворах биомембраны являются хорошими электроизоляторами.

Основу мембраны составляет двойной липидный слой, в формировании которого участвуют фосфолипиды и гликолипиды. Липидный бислой образован двумя рядами липидов, гидрофобные радикалы которых спрятаны внутрь, а гидрофильные группы обращены наружу и контактируют с водной средой. Белковые молекулы как бы "растворены" в липидном бислое

Поперечный разрез плазматической мембраны

Липидный состав мембран:

Фосфолипиды. Все фосфолипиды можно разделить на 2 группы - глицерофосфолипиды и сфингофосфолипиды. Глицерофосфолипиды относят к производным фосфатидной кислоты. Наиболее распространённые глицерофосфолипиды мембран - фосфатидилхолины и фосфатидилэтаноламины. В мембранах эукариотических клеток обнаружено огромное количество разных фосфолипидов, причём они распределены неравномерно по разным клеточным мембранам. Эта неравномерность относится к распределению как полярных "головок", так и ацильных остатков.

Специфические фосфолипиды внутренней мембраны митохондрий - кардиолипины (дифосфатидилглицеролы), построенные на основе глицерола и двух остатков фосфатидной кислоты. Они синтезируются ферментами внутренней мембраны митохондрий и составляют около 22% от всех фосфолипидов мембраны.

В плазматических мембранах клеток в значительных количествах содержатся сфингомиелины. Сфингомиелины построены на основе церамида - ацилированного аминоспирта сфингозина. Полярная группа состоит из остатка фосфорной кислоты и холина, этаноламина или серина. Сфингомиелины - главные липиды миелиновой оболочки нервных волокон.

Гликолипиды. В гликолипидах гидрофобная часть представлена церамидом. Гидрофильная группа - углеводный остаток, присоединённый гликозидной связью к гидроксильной группе у первого углеродного атома церамида. В зависимости от длины и строения углеводной части различаютцереброзиды, содержащие моно- или олигосахаридный остаток, иганглиозиды, к ОН-группе которых присоединён сложный, разветвлённый олигосахарид, содержащий N-ацетилнейраминовую кислоту (NANA).

Полярные "головки" гликосфинголипидов находятся на наружной поверхности плазматических мембран. В значительных количествах гликолипиды содержатся в мембранах клеток мозга, эритроцитов, эпителиальных клеток. Ганглиозиды эритроцитов разных индивидуумов различаются строением олигосахаридных цепей, проявляющих антигенные свойства.

Холестерол. Холестерол присутствует во всех мембранах животных клеток. Его молекула состоит из жёсткого гидрофобного ядра и гибкой углеводородной цепи, единственная гидроксильная группа является "полярной головкой".

Для животной клетки среднее молярное отношение холестерол/фосфолипиды равно 0,3-0,4, но в плазматической мембране это соотношение гораздо выше (0,8-0,9). Наличие холестерола в мембранах уменьшает подвижность жирных кислот, снижает латеральную диффузию липидов и белков, и поэтому может влиять на функции: мембранных белков.

В составе мембран растений холестерола нет, а присутствуют растительные стероиды - ситостерол и стигмастерол.

Белки мембран: принято делить на интегральные (трансмембранные) и периферические. Интегральные белки имеют обширные гидрофобные участки на поверхности и нераствориммы в воде. С липидами мембран они связаны гидрофобными взаимодействиями и частично погружены в толщу липидного бислоя, а зачастую и пронизывают бислой, оставляя на поверхности сранительно небольшие гидрофильные участки. Отделить эти белки от мембраны удается только с помощью детергентов, типа додецилсульфата или солей желчных кислот, которые разрушают липидный слой и переводят белок в растворимую форму (солюбилизируют его) образуя с ним ассоциаты. Все дальнейшие операции по очистке интегральных белков осуществляются также в присутствии детергентов. Периферические белки связаны с поверхностью липидного бислоя электростатическими силами и могут быть отмыты от мембраны солевыми растворами.

23. Механизмы переноса веществ через мембраны: простая диффузия, пассивный симпорт и антипорт, первично-активный транспорт, вторично-активный транспорт, регулируемые каналы (примеры). Перенос через мембрану макромолекул и частиц. Участие мембран в межклеточных взаимодействиях.

Существует несколько механизмов транспорта веществ через мембрану .

Диффузия -проникновение веществ через мембрану по градиенту концентрации {из области, где их концентрация выше, в область, где их концентрация ниже). Диффузный транспорт веществ (воды, ионов) осуществляется при участии белков мембраны, в которых имеются молекулярные поры, либо при участии липидной фазы (для жирорастворимых веществ).

При облегченной диффузии специальные мембранные белки-переносчики избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану по градиенту концентрации.

Облегчённая диффузия веществ

В мембранах клеток существуют белки-транслоказы. Взаимодействуя со специфическим лигандом, они обеспечивают его диффузию (транспорт из области большей концентрации в область меньшей) через мембрану. В отличие от белковых каналов, транслоказы в процессе взаимодействия с лигандом и переноса его через мембрану претерпевают конформационные изменения. Кинетически перенос веществ облегчённой диффузией напоминает ферментативную реакцию. Для транслоказ существует насыщающая концентрация лиганда, при которой все центры связывания белка с лигандом заняты, и белки работают с максимальной скоростью Vmax. Поэтому скорость транспорта веществ облегчённой диффузией зависит не только от градиента концентраций переносимого лиганда, но и от количества белков-переносчиков в мембране.

Существуют транслоказы, переносящие только одно растворимое в воде вещество с одной стороны мембраны на другую. Такой простой транспорт называют "пассивный унипорт". Примером унипорта может служить функционирование ГЛЮТ-1 - транслоказы, переносящей глюкозу через мембрану эритроцита:

Облегчённая диффузия (унипорт) глюкозы в эритроциты с помощью ГЛЮТ-1 (S - молекула глюкозы). Молекула глюкозы связывается переносчиком на наружной поверхности плазматической мембраны. Происходит конформационное изменение, и центр переносчика, занятый глюкозой, оказывается открытым внутрь клетки. Вследствие конформационных изменений переносчик теряет сродство к глюкозе, и молекула высвобождается в цитозоль клетки. Отделение глюкозы от переносчика вызывает конформационные изменения белка, и он возвращается к исходной "информации.

Некоторые транслоказы могут переносить два разных вещества по градиенту концентраций в одном направлении - пассивный симпорт , или в противоположных направлениях -пассивный антипорт .

Примером транслоказы, работающей по механизму пассивного антипорта, может служить анионный переносчик мембраны эритроцитов. Внутренняя митохондриальная мембрана содержит много транслоказ, осуществляющих пассивный антипорт. В процессе такого переноса происходит эквивалентный обмен ионами, но не всегда эквивалентный обмен по заряду.

Первично-активный транспорт

Перенос некоторых неорганических ионов идёт против градиента концентрации при участии транспортных АТФ-аз (ионных насосов). Все ионные насосы одновременно служат ферментами, способными к аутофосфорилированию и аутодефосфорилированию. АТФ-азы различаются по ионной специфичности, количеству переносимых ионов, направлению транспорта. В результате функционирования АТФ-азы переносимые ионы накапливаются с одной стороны мембраны. Наиболее распространены в плазматической мембране клеток человека Ма+,К+-АТФ-аза, Са2+-АТФ-аза и Н+,К+,-АТФ-аза слизистой оболочки желудка.

Na+, К+-АТФ-аза

Этот фермент-переносчик катализирует АТФ-зависимый транспорт ионов Na+ и K+ через плазматическую мембрану. Ка+,К+-АТФ-аза состоит из субъединиц α и β; α - каталитическая большая субъединица, a β - малая субъединица (гликопротеин). Активная форма транслоказы - тетрамер (αβ)2.

Na+,К+-АТФ-аза отвечает за поддержание высокой концентрации К+ в клетке и низкой концентрации Na+. Так как Na+Д+-АТФ-аза выкачивает три положительно заряженных иона, а закачивает два, то на мембране возникает электрический потенциал с отрицательным значением на внутренней части клетки по отношению к её наружной поверхности.

Са2+-АТФ-аза локализована не только в плазматической мембране, но и в мембране ЭР. Фермент состоит из десяти трансмембранных доменов, пронизывающих клеточную мембрану. Между вторым и третьим доменами находятся несколько остатков аспарагиновой кислоты, участвующих в связывании кальция. Область между четвёртым и пятым доменами имеет центр для присоединения АТФ и аутофосфорилирования по остатку аспарагиновой кислоты. Са2+-АТФ-азы плазматических мембран некоторых клеток регулируются белком кальмодулином. Каждая из Са2+-АТФ-аз плазматической мембраны и ЭР представлена несколькими изоформами.

Вторично-активный транспорт

Перенос некоторых растворимых веществ против градиента концентрации зависит от одновременного или последовательного переноса другого вещества по градиенту концентрации в том же направлении (активный симпорт) или в противоположном (активный антипорт). В клетках человека ионом, перенос которого происходит по градиенту концентрации, чаще всего служит Na+.

Последовательность событий в процессе работы Са2*-АТФ-азы.

1 - связывание двух ионов кальция участком АТФ-азы, обращённой в цитозоль;

2 - изменение заряда и конформации фермента (АТФ-азы), вызванное присоединением двух ионов Са2+, приводит к повышению сродства к АТФ и активации аутофосфорилирования;

3 - аутофосфорилирование сопровождается информационными изменениями, АТФ-аза закрывается с внутренней стороны мембраны и открывается с наружной;

4 - происходит снижение сродства центров связывания к ионам кальция и они отделяются от АТФ-азы;

5 - аутодефосфорилирование активируется ионами магния, в результате Са2+-АТФ-аза теряет фосфорный остаток и два иона Мg2+;

6 - АТФ-аза возвращается в исходное состояние.

Примером такого типа транспорта может служить Na+,Са2+-обменник плазматической мембраны (активный антипорт), ионы натрия по градиенту концентрации переносятся в клетку, а ионы Са2+ против градиента концентрации выходят из клетки.

По механизму активного симпорта происходят всасывание глюкозы клетками кишечника и реабсорбция из первичной мочи глюкозы, аминокислот клетками почек.

Перенос через мембрану макромолекул и частиц: эндоцитоз и экзоцитоз

Макромолекулы белков, нуклеиновых кислот, полисахаридов, липопротеидные комплексы и др. сквозь клеточные мембраны не проходят, в отличие от ионов и мономеров. Транспорт макромолекул, их комплексов и частиц внутрь клетки происходит совершенно иным путем - посредством эндоцитоза. При эндоцитозе {эндо... - внутрь) определенный участок плазмалеммы захватывает и как бы обволакивает внеклеточный материал, заключая его в мембранную вакуоль, возникшую вследствие впячивания мембраны. В дальнейшем такая вакуоль соединяется с лизосомой, ферменты которой расщепляют макромолекулы до мономеров.

Процесс, обратный эндоцитозу - экзоцитоз (экзо... - наружу). Благодаря ему клетка выводит внутриклеточные продукты или непереваренные остатки, заключенные в вакуоли или пузырьки. Пузырек подходит к цитоплазматической мембране, сливается с ней, а его содержимое выделяется в окружающую среду. Гак выводятся пищеварительные ферменты, гормоны, гемицеллюлоза и др.

Таким образом, биологические мембраны как основные структурные элементы клетки служат не просто физическими границами, а представляют собой динамичные функциональные поверхности. На мембранах органелл осуществляются многочисленные биохимические процессы, такие как активное поглощение веществ, преобразование энергии, синтез АТФ и др.

УЧАСТИЕ МЕМБРАН В МЕЖКЛЕТОЧНЫХ ВЗАИМОДЕЙСТВИЯХ

В плазматической мембране эукариотических клеток содержится множество специализированных рецепторов, которые, взаимодействуя с лигандами, вызывают специфические клеточные ответы. Одни рецепторы связывают сигнальные молекулы - гормоны, нейромедиаторы, другие - питательные вещества и метаболиты, третьи - участвуют в клеточной адгезии. Этот класс включает рецепторы, необходимые для узнавания клетками друг друга и для их адгезии, а также рецепторы, ответственные за связывание клеток с белками внеклеточного матрикса, такими как фибронектин или коллаген.

Способность клеток к специфическому взаимному узнаванию и адгезии важна для эмбрионального развития. У взрослого человека адгезивные взаимодействия "клетка-клетка" и "клетка-матрикс" продолжают оставаться существенными для поддержания стабильности тканей. В многочисленном семействе рецепторов клеточной адгезии наиболее изучены интегрины, селектины и кадгерины.

Интегрины - обширное суперсемейство гомологичных рецепторов клеточной поверхности для молекул межклеточного матрикса, таких как коллаген, фибронектин, ламинин и др. Являясь трансмембранными белками, они взаимодействуют как с внеклеточными молекулами, так и с внутриклеточными белками цитоскелета. Благодаря этому интегрины участвуют в передаче информации из внеклеточной среды в клетку, определяя таким образом направление её дифференцировки, форму, митотическую активность, способность к миграции. Передача информации может идти и в обратном направлении - от внутриклеточных белков через рецептор во внеклеточный матрикс.

Примеры некоторых интегринов:

    рецепторы для белков внеклеточного мат-рикса. Они связываются с гликопротеиновыми компонентами внеклеточного матрик-са, в частности с фибронектином, ламинином и витронектином (см. раздел 15);

    интегрины тромбоцитов (IIb и IIIa) участвуют в агрегации тромбоцитов, происходящей при свёртывании крови;

    лейкоцитарные белки адгезии. Для того чтобы мигрировать к месту инфекции и воспаления, лейкоциты должны вступить во взаимодействие с эндотелиальными клетками сосудов. Это взаимодействие может опосредовать связывание Т-лимфоцитов с фибробластами при воспалении.

Кадгерины и селектины - семейства трансмембранных Са 2+ -зависимых гликопротеинов, участвующих в межклеточной адгезии. Три возможных способа участия рецепторов этого типа в межклеточной адгезии.

Рецептор фибронектина. Рецептор фибронектина принадлежит к семейству интегринов. Каждая субъединица имеет единственный трансмембранный домен, короткий цитоплазматический и протяжённый N-внеклеточный домены. Обе субъединицы (α, β) интегрина гликозилированы и удерживаются вместе нековалентными связями, α-Субъединица синтезируется в виде одной полипептидной цепи, затем расщепляемой на малую трансмембранную цепь и большую внеклеточную цепь, соединённые дисульфидными мостиками. β-Субъединица содержит 4 повтора из 40 аминокислотных остатков каждый. α-Субъединицы богаты цистеином и содержат множество внутрицепочечных дисульфидных связей (на рисунке не показаны). Связываясь с фибронектином снаружи и с цитоскелетом внутри клетки, интегрин действует как трансмембранный линкер.

Способы взаимодействия между молекулами клеточной поверхности в процессе межклеточной адгезии. А - рецепторы одной клетки могут связываться с такими же рецепторами соседних клеток (гомофильное связывание); Б - рецепторы одной клетки могут связываться с рецепторами другого типа соседних клеток (гетерофильное связывание); В - рецепторы клеточной поверхности соседних клеток могут связываться друг с другом с помощью поливалентных линкерных молекул.

Кадгерины разных тканей очень схожи, гомологичные аминокислотные последовательности составляют 50-60%. Каждый рецептор имеет один трансмембранный домен.

Наиболее полно охарактеризованы 3 группы кадгериновых рецепторов:

    Е-кадгерин находится на поверхности многих клеток эпителиальных и эмбриональных тканей;

    N-кадгерин локализован на поверхности нервных клеток, клеток сердца и хрусталика;

    Р-кадгерин расположен на клетках плаценты и эпидермиса.

Кадгерины играют важную роль при начальной межклеточной адгезии, на стадиях морфо-и органогенеза, обеспечивают структурную целостность и полярность тканей, особенно эпителиального монослоя.

В семействе селектиновых рецепторов наиболее хорошо изучены три белка: L-селектин, Р-селектин и Е-селектин. Внеклеточная часть селектинов состоит из 3 доменов: первый домен представлен 2-9 блоками повторяющихся аминокислотных остатков (комплементрегуля-торный белок), второй - домен эпидермального фактора роста (ЭФР), третий - N-концевой лектиновый домен. Селектины L, Р, Е различаются количеством блоков в ком-плементрегуляторном белке. Лектины - семейство белков, специфически взаимодействующих с определёнными последовательностями углеводных остатков в составе гликопротеинов, протеогликанов и гликолипидов внеклеточного матрикса.


Мембраны биологические.

Термин "мембрана"(лат. membrana - кожица, пленка) начали использовать более 100 лет назад для обозначения клеточной границы, служащей, с одной стороны, барьером между содержимым клетки и внешней средой, а с другой - полупроницаемой перегородкой, через которую могут проходить вода и некоторые вещества. Однако этим функции мембраны не исчерпываются, поскольку биологические мембраны составляют основу структурной организации клетки.
Строение мембраны. Со гласно этой модели основной мембраны является липидный бислой, в котором гидрофобные хвосты молекул обращены внутрь, а гидрофильные головки-наружу. Липиды представлены фосфолипидпми - производными глицерина или сфингозина. С липидным слоем связаны белки. Интегральные(транмембраные) белки пронизывают мембрану насквозь и прочно с ней связаны; переферические не пронизывают и связаны с мембраной менее прочно. Функции мембраных белков: поддержание структуры мембран, получение и преобразование сигналов из окр. среды, транспорт некоторых веществ, катализ реакций, происходящих на мембранах. толщина мембраны составляет от 6 до 10 нм.

Свойства мембраны:
1. Текучесть. Мембрана не представляет собой жесткую структуру- большая часть входящих в ее состав белков и липидов может перемещаться в плоскости мембран.
2. Асимметрия. Состав наружного и внутреннего слоев как белков, так и липидов различен. Кроме того, плазматические мембраны животных клеток снаружи имеют слой гликопротеинов (гликокаликс, выполняющий сигнальную и рецепторные функции, а также имеющий значение для объединения клеток в ткани)
3. Полярность. Внешняя сторона мембраны несет положительный заряд, а внутренняя-отрицательный.
4. Избирательная проницаемость. Мембраны живых клеток пропускают, помимо воды, лишь определенные молекулы и ионы растворенных веществ.(Использование по отношению к мембранам клеток термина "полупроницаемость" не совсем корректно, тк это понятие подразумевает то, что мембрана пропускает только молекулы растворителя, задерживая при этом все молекулы и ионы растворенных веществ.)

Наружная клеточная мембрана (плазмалемма) - ультрамикроскопическая пленка толщиной 7.5нм, состоящая из белков, фосфолипидов и воды. Эластичная пленка, хорошо смачвающася водой и быстро восстанавливающийся целостность после повреждения. Имеет универсальное строение, те типичное для всех биологических мембран. Пограничное положение этой мембраны, ее участие в процессах избирательной проницаемости, пиноцитозе, фагоцитозе, выведение продуктов выделения и синтез, во взаимосвязи с соседними клетками и защите клетки от повреждений делает ее роль исключительно важной. Животные клетки снаружи от мембраны иногда бывают покрыты тонким слоем,состоящим из полисахаридов и белков, - гликокаликсом. У растительных клеток снаружи от клеточной мембраны находится прочная, создающая внешнюю опору и поддерживающая форму клетки клеточная стенка. Она состоит из клетчатки (целлюлозы)-нерастворимого в воде полисахарида.

Снаружи клетка покрыта плазматической мембраной (или наружной клеточной мембраной) толщиной около 6-10нм.

Клеточная мембрана это плотные пленки из белков и липидов (в основном, фосфолипидов). Молекулы липидов расположены упорядоченно - перпендикулярно к поверхности, в два слоя, так, что их части, интенсивно взаимодействующие с водой (гидрофильные), направлены наружу, а части, инертные к воде (гидрофобные) - внутрь.

Молекулы белка расположены несплошным слоем на поверхности липидного каркаса с обеих его сторон. Часть их погружена в липидный слой, а некоторые проходят через него насквозь, образуя участки, проницаемые для воды. Эти белки выполняют различные функции - одни из них являются ферментами, другие - транспортными белками, участвующими в переносе некоторых веществ из окружающей среды в цитоплазму и в обратном направлении.

Основные функции клеточной мембраны

Одним из основных свойств биологических мембран является избирательная проницаемость (полупроницаемость) - одни вещества проходят через них с трудом, другие легко и даже в сторону большей концентрации Так, для большинства клеток концентрация ионов Na внутри значительно ниже, чем в окружающей среде. Для ионов K характерно обратное соотношение: их концентрация внутри клетки выше, чем снаружи. Поэтому ионы Na всегда стремятся проникнуть в клетку, а ионы K - выйти наружу. Выравниванию концентраций этих ионов препятствует присутствие в мембране особой системы, играющей роль насоса, который откачивает ионы Na из клетки и одновременно накачивает ионы K внутрь.

Стремление ионов Na к перемещению снаружи внутрь используется для транспорта сахаров и аминокислот внутрь клетки. При активном удалении ионов Na из клетки создаются условия для поступления глюкозы и аминокислот внутрь ее.


У многих клеток поглощение веществ происходит также путем фагоцитоза и пиноцитоза. При фагоцитозе гибкая наружная мембрана образует небольшое углубление, куда попадает захватываемая частица. Это углубление увеличивается, и, окруженная участком наружной мембраны, частица погружается в цитоплазму клетки. Явление фагоцитоза свойственно амебам и некоторым другим простейшим, а также лейкоцитам (фагоцитам). Аналогично происходит и поглощение клетками жидкостей, содержащих необходимые клетке вещества. Это явление было названо пиноцитозом .

Наружные мембраны различных клеток существенно отличаются как по химическому составу своих белков и липидов, так и по их относительному содержанию. Именно эти особенности определяют разнообразие в физиологической активности мембран различных клеток и их роль, в жизнедеятельности клеток и тканей.

С наружной мембраной связана эндоплазматическая сеть клетки. При помощи наружных мембран осуществляются различные типы межклеточных контактов, т.е. связь между отдельными клетками .

Для многих типов клеток характерно наличие на их поверхности большого количества выступов, складок, микроворсинок. Они способствуют как значительному увеличению площади поверхности клеток и улучшению обмена веществ, так и более прочным связям отдельных клеток друг с другом.

У растительных клеток снаружи клеточной мембраны имеются толстые, хорошо различимые в оптический микроскоп оболочки, состоящие из клетчатки (целлюлозы). Они создают прочную опору растительным тканям (древесина).

Некоторые клетки животного происхождения тоже имеют ряд внешних структур, находящихся поверх клеточной мембраны и имеющих защитный характер. Примером может быть хитин покровных клеток насекомых.

Функции клеточной мембраны (кратко)

Функция Описание
Защитный барьер Отделяет внутренние органеллы клетки от внешней среды
Регулирующая Производит регуляцию обмена веществ между внутренним содержимым клетки и наружной средой
Разграничивающая (компартментализация) Разделение внутреннего пространства клетки на независимые блоки (компартменты)
Энергетическая - Накопление и трансформация энергии;
- световые реакции фотосинтеза в хлоропластах;
- Всасывание и секреция.
Рецепторная (информационная) Участвует в формировании возбуждения и его проведения.
Двигательная Осуществляет движение клетки или отдельных ее частей.